
ARTICLE

Modest flooding can trigger catastrophic road
network collapse due to compound failure
Shangjia Dong1, Xinyu Gao2, Ali Mostafavi2 & Jianxi Gao 3,4✉

Compound failures occur when urban flooding coincides with traffic congestion, and their

impact on network connectivity is poorly understood. Firstly, either three-dimensional road

networks or the traffic on the roads has been considered, but not both. Secondly, we lack

network science frameworks to consider compound failures in infrastructure networks. Here

we present a network-theory-based framework that bridges this gap by considering com-

pound structural, functional, and topological failures. We analyze high-resolution traffic data

using network percolation theory to study the response of the transportation network in

Harris County, Texas, US to Hurricane Harvey in 2017. We find that 2.2% of flood-induced

compound failure may lead to a reduction in the size of the largest cluster where network

connectivity exists, the giant component, 17.7%. We conclude that indirect effects, such as

changes in traffic patterns, must be accounted for when assessing the impacts of flooding on

transportation network connectivity and functioning.
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Infrastructure networks play essential roles in maintaining
community access and supporting economic activities. The
proper functioning of networks is, however, constantly chal-

lenged by two major stressors: rapid population growth and
destructive urban flooding1–7. Population growth increases travel
demand and cause congestion that degrades the service quality of
road networks. In addition, global flood exposure is projected to
increase by a factor of three by 2050 due to population growth
and the development of economic assets in flood-prone areas8.
The rising frequency of devastating caused by urban flooding and
the significance of infrastructure in societal functioning together
highlight the need for understanding the robustness of the flood-
disrupted infrastructure network to prepare our cities for future
urban growth and to mitigate exacerbated flood risk.

The transportation network, in particular, has been shown to
be vulnerable to urban flooding disruptions9–12 because floods
perturb transportation system metastability, which can lead to an
abrupt regime shift between different states2,13,14. Meanwhile, the
scale and magnitude of flood disruptions are increasing due to
climate change15. Climate change-induced sea-level rise further
contributes to flooding vulnerability of the transportation
network16,17. Transportation network robustness has received
wide attention in the interdisciplinary disaster, engineering, and
network science research in recent studies18–22. The majority of
existing studies related to the robustness and resilience of infra-
structure, so far, focus only on the impact of a single type of
failure. Transportation network researchers, in particular, model
disruption by modifying the topological or functional attributes of
roads23. For example, the robustness of transportation networks
during urban flooding has been examined by simulating topolo-
gical changes such as road inundation2,20,24, earthquake-induced
road failure21,25, and targeted attacks26. Additionally, function-
ality changes such as travel delay27 and travel speed
reduction18,19,28 are used to model network failure and examine
the transportation network efficiency and robustness.

In reality, the flooding can, however, cause both network
structural failure (SF) (i.e., road inundation) and functional fail-
ure (FF) (i.e., reduced travel speed) that exacerbate the disaster-
impacted network connectivity loss, and should thus both be
considered in the network failure modeling. Specifically, urban
flooding could result in the road closure and traffic rerouting that
increases travel demand on other road segments, which even-
tually worsens congestion on links distant from flooded areas.
Consequently, road inundation and traffic congestion could
drastically raise indirect failures, whose link structure and func-
tionality remain intact but are isolated from the rest of the
transportation network. Taking the illustrative transportation
network in Fig. 1a as an example, when only flooding is inves-
tigated (e.g., the five low-elevation roads), the largest connected
cluster, namely giant component (GC), contains 14 links (73.7%
of the network) as shown in Fig. 1b; when only congestion (e.g.,
the six congested roads) is studied, the GC has 13 links (68.4% of
the transportation network), according to Fig. 1c. When flood
and congestion are coupled in Fig. 1d, only four links are neither
flooded nor congested but detached from the GC. The GC size
decreases to 21.1%. We define the interplay among these three
failure types as a compound failure. The illustrative case shows
that the impact of compound failure on network robustness
would be more catastrophic than the singular ones due to the
amplification of the individual failures. This compound effect is a
product of the fact that external perturbation such as flooding not
only causes SF but also impacts the functionality of the rest of the
network and results in indirect topological failure (TF). Such
important compound nature-human-induced failures are, how-
ever, not explicitly considered in the disaster-disrupted trans-
portation network robustness modeling. The limited investigation

and understanding of such compound failure could lead to the
underestimation of flood-induced failures in road transportation
networks.

A deeper understanding of urban flooding-induced compound
failures in transportation networks is essential for improving their
robustness and resilience in the face of population growth and exa-
cerbated climate change. The goal of this study is to shed light on the
transportation network robustness under the influence of compound
failures during urban flooding. Understanding this complex rela-
tionship helps us better understand how the transportation network
behaves during urban natural disasters and design concrete strategies
for enhancing their robustness. We use a percolation modeling
approach to examine the impact of compound failure on transpor-
tation network robustness. Percolation theory integrates statistical
physics principles and graph theory to capture the phase transition of
a network from connected to disconnected due to disruptions3. By
removing nodes and links that represent network failure, we can
identify the critical threshold at which the network experiences
structural change as the GC (i.e., the largest connected cluster that
maintains the most connectivity) breaks down into smaller
components29,30. Since the link removal resembles network disrup-
tions, utilization of percolation theory in empirical flood-disrupted
transportation network robustness analysis can facilitate the under-
standing of the interplay between structural, functional, and topolo-
gical failures. In particular, we use the link quality derived from the
travel speed and speed limit as the criteria for link removal. We
propose that the road whose speed performance does not meet the
acceptable standard is considered a failure and thus removed from
the network. To the best of our knowledge, no prior research has
investigated the impact of the compound failures on transportation
network robustness.

By examining the empirical flood data on the spatially dis-
turbed transportation network, we show that modest floods can
severely affect road transportation network robustness; such
impact escalates rapidly as the extent of flooding increases. In
particular, 72% of link removal will lead to the total network
connectivity loss before Hurricane Harvey, but it only takes 48%
link removal to achieve the same effect during Hurricane Harvey,
despite a modest level of flooding (i.e., a maximum of 2.5% flood-
induced road closure). In addition, flooding also leads to
instability in network robustness as the critical percolation
thresholds vary abnormally during Hurricane Harvey. The
impact of flooding is validated by comparing no-flooding and
random scenarios with observed connectivity. The findings
identify new directions for understanding the robustness of
stressed infrastructure networks against compound failures, with
implications for urban planning, as well as for hazard risk miti-
gation and disaster management.

Results
Flood-disrupted Harris County transportation network during
2017 Hurricane Harvey. We investigated compound failures in
the road transportation network in Harris County, Texas (USA),
in the case of the 2017 Hurricane Harvey flooding (August
1–October 31). Hurricane Harvey made landfall in Texas on
August 26, 2017, causing an estimated $125 billion in damage.
We obtained traffic data (road traverse speed at 15-min intervals)
for each major road in August (before Harvey), September
(during & post Harvey), and October (after Harvey). Harris
County’s transportation network comprises 19,712 links and
15,390 nodes. The period termed during Harvey refers to the
period when the network experiences hazardous impacts (e.g.,
wind, rainfall, and flood). Post-Harvey is the time when rainfall
has ended but road blockage (e.g., inundation and debris) is still a
major concern.
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We define three types of failure in transportation network
under flooding impact: (i) SF (i.e., road closure due to flood
inundation), (ii) FF (i.e., unsatisfied travel speed demand due to
traffic slowdown), and (iii) TF due to isolation from GC by (i)
and (ii) despite being intact and functional. The GC represents
the largest connected cluster where network connectivity remains.
Figure 2 shows the temporal variation of different failures and
their corresponding GC. The impact of urban flooding can be
clearly identified when SF increases during Harvey. A maximum
of 2.6% of roads were inundated during Harvey. Meanwhile, FF
also increased to its maximum value of 46.3% along with the
maximum TF of 30.2%. The coupled effects of these failures led to
a sharp drop in the GC to its minimum level of 21.6%. At the

beginning of the post-Harvey phase, because road inundation
persisted due to the gradual flood recession (due to the controlled
water release from the Barker and Addicks reservoirs), people
were still reluctant to commute due to safety concerns. Therefore,
the network reaches its maximum connectivity of 39.2%, with
both FF and TF dropping to their minimum values of 37.2% and
23.3%, respectively.

Percolation modeling of Harvey flood-disrupted transporta-
tion network robustness. We represent the transportation net-
work G at different times t (hourly) as a network G(V, E, t). In a
network that has a changing temporal flow (attributes indicating
link quality), we can analyze the network at a particular time and

Fig. 1 Schematic diagram of flood impact on the transportation network. a Transportation network abstraction from roads to a graph with 19 links in total.
b Transportation network in flooding (structural failure only, gray solid line). Low-elevation roads (five links) are flooded and marked as gray. The fourteen
red links represent roads that are still connected to the giant component. c Transportation network in degraded service (i.e., congested) condition
(functional failure only). Congestion here is defined as the link quality drops below the critical threshold. When certain roads are congested (six links with
cars), they are considered to have low service quality, and their corresponding links (gray links) are removed from the giant component. d Transportation
network under both structural and functional failures. The congested (low link quality) and flooded roads (six congested and five inundated) are marked as
gray and removed from the network. The four black links represent the roads that are neither flooded nor congested but detached from the giant
component.

Fig. 2 Time series of individual failures and their evolution over the course of Hurricane Harvey. We use q= 0.8 for the illustrative purpose. The
average failure before Harvey for each failure is a functional failure (42.3%) in black square solid line, topological failure (24.8%) in yellow triangle dash
line, giant component (32.9%) in blue star dash line, and structural failure (0%) in red dot-dash line.
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examine the network structure and link quality. Each link i∈ E
corresponds to a road in the transportation network, and each
node corresponds to road intersections. We measure the link
quality (i.e., traffic condition) for road i at time t based on travel
speed (vi(t)) and reference speed (vmi ) ratio rti ¼ viðtÞ=vmi . When
rti is smaller than a defined threshold q, we consider the road to
have low link quality (i.e., congested). In the context of road
transportation networks, since users have freedom traveling or
communicating within the largest connected cluster, that is, the
GC2, the size of GC is primarily used as a measure of network
connectivity14,31–34. We remove any link in G with link quality r
less than q and examine the GC in the residual network Gq. The
critical percolation threshold qc at which the GC suddenly breaks
into smaller components is of particular importance, as it signals
the network connectivity loss once link quality drops below
qc35,36 (see “Methods”). We use the size of SC (second GC) to
identify the percolation threshold.

The percolation process on a snapshot of Harris County’s
transportation network at four different phases of Hurricane
Harvey is illustrated in Fig. 3. SF is first overlaid to the network by
removing the inundated roads, and FF is then imposed on the

network (see “Methods"). Figure 3d shows that extensive link
quality deterioration (i.e., congestion) occurred during Hurricane
Harvey. This is because flooding not only caused SF but also
resulted in FF due to travel demand shifts (e.g., detours) to other
roads and speed reduction due to lane closures in partially
flooded areas. Figure 3b, e, h, k demonstrate the percolation
process, indicating performance loss (quantified based on the
value of the critical threshold for link quality) in the transporta-
tion network during Harvey as percolation shows the removal of
the links with link quality values less than qc= 0.69 (i.e.,
congested roads) led to catastrophic network fragmentation
(i.e., the breakdown of GC into small components), compared
with qc= 0.81 and qc= 0.87 values related to the periods before
and after Harvey. However, due to the temporal nature of
congestion dynamics, the number of links removed for the same
qc can vary at different times. For example, there can be 60% of
link has link quality lower than qc= 0.8 during rush hours,
whereas only 30% during regular hours. Removing links based on
qc= 0.8 value would suggest different network robustness
behaviors at other times. Therefore, considering only qc in
robustness measurement can be misleading. Here, we consider

Fig. 3 Percolation analysis on Harris County’s transportation network under the influence of flooding caused by Hurricane Harvey. a, d, g, j
Transportation network service degradation snapshots before (August 1–24), during (August 25–31), post (September 1–21), and after Harvey (September
22–October 31). b, e, h, k Percolation process as a function of link quality threshold q in different phases of Harvey. c, f, i, l Percolation process as a function
of low link quality percentage λ. The irregular increase of the second giant component (SC) size (red square) is used to identify the critical percolation
threshold in the giant component (blue square) phase transition.
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additional steps to calculate the exact fraction of links removed in
different scenarios to investigate road transportation network
robustness under flood-induced compound failures.

Let λ be the fraction of the low-quality (e.g., congested) links
removed. At each timestamp t, we ranked the network link based
on link quality ri(t), removed a fixed percentage λ, and examine
the GC and SC. Figure 3c, f, i, l show the percolation process as a
function of λ. We can see that it would require λc= 0.72 fractions
of link removal to have large network connectivity loss before
Harvey. However, it only takes λc= 0.48 fractions of the road
removal with low link quality (i.e., travel speed is less than
reference speed) to disrupt the network connectivity during
Harvey. Moreover, we observed that there is only a maximum of
2.6% flood-induced road closure. Since a small fraction of road
inundation can lead to such a drastic network robustness change
(i.e., 0.24 decrease of λc), we conclude that Harris County’s
transportation network is fragile to flood disruption. Also, λc is
related to qc. In fact, there are λc fraction of links that have quality
less than qc. By combining both q (i.e., link quality) and λ (i.e.,
quantity), we can obtain a comprehensive and reliable measure-
ment of network connectivity.

Flood disturbed transportation network stability. The critical
threshold fluctuates in temporal networks such as road trans-
portation networks. Figure 4 shows the temporal variation of qc
and λc in different phases of Hurricane Harvey. Critical threshold

indicates that removing links whose quality is below qc or
removing λc fraction of the low-quality (congested) links will lead
to network connectivity loss. The daily average and 5-day moving
average of qc and λc both decreased when Hurricane Harvey
landed, as illustrated in Fig. 4a, c. Although fewer people com-
muted when Harvey landed, link quality was still low because
travel speed slowed due to safety concerns. The valley in qc and λc
during the Harvey period indicates a fragile transportation net-
work in which removal of a small number of roads with low
quality led to network connectivity loss. Additionally, we exam-
ined the statistical significance of such a drop during Hurricane
Harvey. By performing an independent two-sample t-test on qc
and λc before and during Harvey, we obtain a p-value of 0.0001
and 0.0014, respectively. As they are all below 1%, we reject the
null hypothesis of equal average before and during Harvey.
Combining with the results in Fig. 4a, c, we can conclude that
Harvey flooding indeed disrupted the network and resulted in
severe robustness loss.

Although the critical thresholds increased in the post-Harvey
period, the link quality and network robustness did not return to
the baseline level. This can be explained by the impaired mobility
due to the enormous debris on local roads, such as downed trees
and power lines, appliances, electronics, construction and
demolition debris, and household hazardous waste, which is
reported to take months to remove37. To expedite the
transportation network robustness recovery, optimization

Fig. 4 Temporal variation of percolation critical thresholds qc and λc and area under the curve (AUC) on weekdays. a, c, e Time series of average qc, λc,
and AUC (blue solid lines). The baseline is calculated based on the two-week average values for the period prior to Hurricane Harvey. b, d, f Temporal
variation range of qc, λc, and AUC (turquoise bar). Max–min curve (blue dot solid line) is generated by subtracting their maximum and minimum value
each day.
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methods can be developed to prioritize the cleaning of streets that
can improve network mobility the most.

Flooding also perturbs link quality stability. Figure 4b, d shows
that Hurricane Harvey led to a decrease in qc and λc and a
narrower variation range during Harvey. Flooding impacted the
qc and λc differently, however, in the post-Harvey phase.
Specifically, the interquartile range of qc was larger in the post-
Harvey period than the pre-Harvey period, and the max-min
value also shows a large peak in the post-Harvey period. As the
critical percolation thresholds, qc and λc, are important indicators
of the network robustness, the large max-min value means that
the network is less stable during Harvey and in the post-Harvey
periods (see Supplementary Fig. 2 for more details); specifically,
network fragmentation can happen in a wider range of FF
scenarios, which suggests that undesired traffic bottlenecks can
happen in various traffic conditions19. Figure 4d shows a sudden
shrinkage in the interquartile range of λc compared with the pre-
Harvey condition. The results show that urban flooding has a
persistent impact on network robustness stability. This is
particularly important as network metastability reveals the
bottleneck in the network18,38, and accurate identification of
network metastable state enables the development of correspond-
ing traffic management strategies to ensure premium transporta-
tion system efficiency.

The area under the curve (AUC) of the percolation process (see
Methods for more details) shows a comprehensive measurement of
network robustness. We examined the AUC facing Hurricane
Harvey. Figure 4e suggests that the onset of Hurricane Harvey led to
the decrease of average AUC, namely network robustness. Despite
the receding of floodwater after Harvey, network robustness was not
able to fully recover to pre-Harvey condition. Figure 4f shows the
fluctuation of the network robustness range. We observed a sudden
pattern disruption in the midst and at the beginning of post-Harvey
that corresponds to the previous investigation of qc and λc. Also, the
max-min range of AUC increases after the disruption, which also
suggests the network robustness is unstable after Harvey flooding.

Flood exacerbated transportation network fragility. Modest
flood failures can lead to drastic transportation network robust-
ness reduction measured by network connectivity loss. This is
attributable to road closures due to flood inundation leading to
traffic rerouting, which further burdened the links with low link
quality in the network. Figure 5 illustrates the spatial distribution
of the three network failures at q= 0.8. (See Supplementary
Note 2 and Supplementary Figs. 3 and 4 for more detail.)

The failure proportion variation with respect to GC in four
different stages of Hurricane Harvey shows the impact of each
failure type on the transportation network connectivity. In a case,
that travel speed at 80% of the reference speed is considered
satisfactory service quality, when no flooding presents (Fig. 5a),
FF alone (51.3% link removal) led to 29.5% of the TF and left only
19.2% of roads in the GC. When Hurricane Harvey landed
(Fig. 5b), 2.2% flood-induced SF and the latent flood impact
resulted in an increase of FF (63.7%) and TF (32.6%), leaving only
1.5% of roads remaining in the GC. Such a large GC reduction
due to flooding disruption confirms the amplification effect of the
compound structural (i.e., flooding) and functional (i.e., conges-
tion) failures. The network starts to recover in the post-Harvey
period (Fig. 5c) with only 0.1% of links having SF and 13.2% of
links present in the GC, but still, the robustness of the network
was below the pre-Harvey level. As time passed and the city
recovered from the flood impacts, the transportation network
performance gradually approached the pre-Harvey condition
(Fig. 5d).

Relationship between network failures and network connectivity.
To better understand the compound failure dynamics over the
course of Hurricane Harvey, we conducted a regression analysis to
quantify their relationships. Figure 6a-c show the empirically fitted
y ~ log(x) relationships between SF and FF, TF, and GC. We can see
that there is a nonlinear relationship between them. In particular, in
the lower range of SF, a small increase can lead to a large increase in
FF and TF, which eventually will lead to extensive network con-
nectivity loss. Figure 6d–f show the relationship between FF and GC
in the presence versus absence of flooding. The impact of link
quality on GC diminishes when flooding occurs (during & post-
Harvey) and bounces back when flood recedes (post-Harvey).
However, the network status does not return to pre-Harvey level
immediately after the recession of floodwater. This delay could be
due to changes in people’s movement patterns in the aftermath of
flooding. Although flooding exacerbated network service quality and
increased congestion, FF became less dominant in reducing the GC
since SF and TF dramatically increased. This set of results reveals
that flooding exacerbates other types of network failures and creates
catastrophic impacts on network connectivity.

We further illustrated the impact of flooding on network
robustness by comparing the empirical scenario with two
synthetic cases: no-flooding and random-flooding. The percola-
tion process of a transportation network G in a flood scenario г
encapsulates f flooding link removal and λ− f under-serving link
removal if more than f links are removed, where λ is the total
fraction of links that requires removal. By manipulating f (see
Methods for details), we obtained no-flooding (f= 0) and
random-flooding (random f) scenarios. In doing so, we could
reveal the extent to which f flooding can impact road network
connectivity by subtracting empirical flooding percolation AUC
from synthetic flooding scenarios (e.g., no-flooding and random
flooding). Figure 7a gives an illustration of how we measure the
impact of the flood. At a given q, if the network presents a more
robust behavior (i.e., a larger size of GC) under synthetic flooding
scenario than the empirical flooding scenario, a positive value is
obtained. A positive area indicates that the network is more
robust under synthetic flooding, compared with flooding in
reality. Analogously, a negative value implies that the synthetic
flooding weakens the network robustness more than the empirical
flood. By aggregating the differences of robustness value across all
q values, namely, summation of the positive and negative area, we
obtain the total flood impact.

We examined the road network from August 25 to
September 8, when flooding appeared to be heaviest (Fig. 2).
Figure 7b shows that by excluding the flooding, network
robustness shows an oscillating behavior where both superior
and inferior robustness can occur, while Fig. 7c shows that
random flooding is worse than empirical flooding. One
plausible reason is that the flooding-induced failure is between
localized attack and random failures that delays the disag-
gregation of the giant component. By dissecting flooding into
different phases, we can see that flooding impact is 0 on August
25 (Fig. 7d), because flooding is minimal at the beginning of
Hurricane Harvey (Fig. 2). As flooding accelerates during
August 25–30, all positive AUC difference in Fig. 7e shows that
excluding flooding results in higher robustness, suggesting that
flooding impact on network robustness becomes severe. As
flooding dies down during August 25–September 4 (Fig. 2),
Fig. 7f shows flooding is not the major factor affecting network
robustness, but rather traffic dominates. This is likely caused
by traffic resurrection post-Harvey. When minimum flooding
is sustained on the network during September 5–8 (Fig. 2),
flooding and traffic show equal impact on network robustness
as AUC differences present a random behavior Fig. 7g.
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Discussion
This study revealed that urban flooding triggers compound fail-
ures leading to network robustness instability and catastrophic
collapse in road transportation networks. We show that the
impact of the flood is not limited to road inundation but extends
to the link quality change. The results illustrate that the need for

maintaining a satisfactory level of link quality and network
connectivity is important for enhancing performance in flood-
impacted transportation networks. To quantify the relationship
between the compound network failures and their impact on
transportation network connectivity, we utilized high-resolution
traffic and flood data and employed percolation modeling to

Fig. 5 Spatial distribution of network failures in the afternoons with threshold q= 0.8. The same weekday (Monday) and time (16:00) are selected for
the illustration. a Transportation network before Harvey in which functional failure (yellow line) is the leading cause of network connectivity loss. b When
Hurricane Harvey landed, flooding (i.e., structural failure in red line) exacerbated the functional failure (i.e., travel speed reduction) and topological failure
(black line), leading to large-scale network fragmentation (i.e., giant component reduction in blue line). c Immediate post-Harvey recovery with part of
transportation network remaining flooded. d Transportation network long-term recovery after Harvey.

Fig. 6 Unveiling the relationship among structural failure (SF), functional failure (FF), topological failure (TF), and giant component (GC). We use
q= 0.8 for the illustrative purpose. We use a y= a ~ log(x)+ b to fit the empirical failure data. a, b, c Relationship between SF and FF, TF, and GC. Only
non-negligible flooding (i.e., SF larger than 0.5%) during the time period 6:00 a.m. to 8:00 p.m. is considered. (See Supplementary Note 3 and
Supplementary Fig. 5 for more details.) d–f Relationship between FF and GC in different stages of Hurricane Harvey.
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characterize flood-induced structural and functional failures, and
used Harris County in the scenario of 2017 Hurricane Harvey as a
case study.

Three failures affect the transportation network during urban
flooding: SF (flooding), FF (congestion), and TF (indirect). We
show that modest flood-induced SF would amplify the other
failures by reducing the number of viable roads for travel. The
redistribution of travel demand would increase the FF in other
parts of the network (Fig. 3). More importantly, many critical
roads are often built near river basins where human activities are
popular2. Urban flooding often inundates highway ramps and
bridge underpasses, failure of which will cut off connections
between communities and the giant component (Fig. 5a, b). In
addition, the impact of flooding is long-lasting and disturbs the
network stability (Fig. 4). Our investigation and quantification of
compound failures (Fig. 6) show that small SF will exacerbate the
FF and TF and result in a huge drop in GC, which reflects the
extreme vulnerability of the transportation network in the face of
flood perturbations.

The findings of this study have profound implications since
cities are facing growing risks of urban flooding and congestion.
The results show the collision of these two stressors-urban
floodings and population growth-would have catastrophic
impacts on transportation networks when considering the com-
pound structural and functional failures. Hence, long-term
transportation development and flood risk reduction plans
should consider the compound impacts of these failures and
adopt measures and make investments to enhance the robustness
of road transportation networks in preparation for future urban
growth and exacerbated flood risks. For example, measures (such

as public transportation) that alleviate traffic congestion on road
segments could greatly contribute to network robustness during
flooding. Congestion reduction measures could prevent the
amplification of the effects of urban flooding on-road transpor-
tation networks. Also, hazard mitigation plans should account for
functional failures during and in the aftermath of floods to
examine the access of different populations to critical facilities.
The current approaches, however, primarily focus on structural
failures. Our study bridges the gap by considering flood disrup-
tion on physical structure, flow transport, and topological integ-
rity. The proposed analysis procedure can also be applied in other
disruption scenarios, such as snowstorms, cyberattacks, and
extreme wind hazards.

The proposed formulation and analysis of the Harris County
road network during hurricane Harvey demonstrate that modest
flooding can induce catastrophic traffic service failure. Extending
the promising results of this research to other cities with different
geological features (e.g., rivers, mountains), different infra-
structure networks (e.g., power, water, and telecommunication
network), and different types of disaster events (e.g., snowstorms,
tornadoes, and strong winds) requires harnessing more meteor-
ological and mobility data, which will be addressed in our future
research. Moreover, compound infrastructure failure (e.g., power
outage-induced during the 2021 winter storm in Texas and 2021
Hurricane Ida evacuation during COVID) and travel behavior
change during special events (e.g., concerts and sports events) can
further exacerbate traffic meltdown and cause extensive loss of
road service. In addition, people’s mobility and accessibility to
critical facilities, particularly socially vulnerable populations, are
vital in ensuring community well-being. Future research can

Fig. 7 Flood impact comparison between empirical and synthetic no-flooding and random-flooding scenarios. a Schematic illustration for robustness
AUC difference calculation. The total flood impact difference is the summation of the positive (green shade) and negative (red shade) areas. b Histogram
of AUC difference between no-flooding and empirical-flooding case (blue bar). c Histogram of AUC difference between random flooding and empirical
flooding case (red bar). d–g The AUC difference frequency during different time frames.
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investigate how disaster-disrupted service affects community
resilience at scale and how we can strategically develop policy to
mitigate such adverse impact. Integration of these factors into
future research design can greatly improve our understanding of
structural and FFs interplay and their impact on system stability.

Conclusions
This paper examines the impact of compound structural and FFs
on network resilience39 in the case of the Hurricane Harvey
flooding-inundated and -immobilized transportation networks.
We conclude that floods can exacerbate transportation network
failure. The critical percolation threshold of network robustness
shows the recovery behavior (disruption, reduction, and bounce-
back) throughout all phases of Hurricane Harvey. Specifically, we
discover that 2.2% of flood-induced compound failure can cause a
17.7% decrease in the GC size of the transportation network. In
addition, we reveal that there is a non-linear relationship among
structure failure (flooding), function failure (heavy traffic), TF
(indirect failure), and network robustness (GC). This is supported
by the flood impact between different engineered flooding sce-
narios, where a less robust transportation network is presented in
the flood-impacted traffic scenario than in the traffic-only sce-
nario. Nonetheless, network robustness is the lowest in the case of
random flooding. The findings of this paper shed light on the
transportation network meta-stability in facing different types of
network disruptions and provide a holistic approach for exam-
ining the mobility and accessibility issue during floods.

Methods
Link quality derivation. The data used in this paper are 15-min interval travel
speed data at each major road in Harris County for August, September, and
October 2017. Link quality is a metric that is used for describing the travel con-
dition for each link (see Supplementary Note 1 for more details). Compared with a
link’s speed limit, the lower the travel speed is at each time interval, the more severe
the congestion and thus lower travel performance is on the road. Instead of using
maximum speed as the speed limit, however, we created a speed profile for each
road and used its 95 percentile19 as its reference speed. (See Supplementary Fig. 1
for more detail.) The link quality of road i at time t is expressed as a ratio, which is
defined as

rti ¼
viðtÞ
vmi

ð1Þ

where vi(t) represents the travel speed of road i at time t, which is a time-varying
property of the road. vmi represents the reference speed of road i; it is an intrinsic
value of the road.

Network construction. The baseline network starts with a network that contains
19,712 links and 15,390 nodes. To construct the network at time t, we first removed
roads that were inundated. This is done by checking and removing roads marked as
closed. Second, we examined if the road meets the travel criterion. We use link
quality threshold q∈ [0, 1] to represent the acceptable travel condition. A small q
indicates the road is heavily congested. To construct a temporal transportation
network at time t with the acceptable quality level of q, we first derive the link
quality of each road. When rti<q, we consider the road is congested and removed
from the network; when rti ≥ q, we consider the road as functional and mark it as
occupied in the network, as shown in Eq. (2).

1 (Flowing) riðtÞ≥ q
0 (Congested) riðtÞ< q

�
ð2Þ

In doing so, we have a sequence of binary link indices at time t, representing
whether the link is functioning in the network. To generate the transportation
network at time t with specified q, we apply Eq. (2) to each road and collect the
functional roads to build the network G(t, q) based on their geographic location.

Flooding scenarios engineering. We define f as the fraction of flooded links and λ
as the fraction of total links removed. In a flood scenario г, when λ > f, we remove f
fraction of flooded links and λ− f fraction of low-quality links based on their
quality r rank; and when λ < f, we only remove f fraction of flooded links. The AUC
represents the robustness of the network. AUC is defined as

AUC ¼ 1
T

∑
T

q¼1
sðλÞ ð3Þ

where T is the total number of steps involved in the percolation process, and s(λ) is the
fraction nodes in the GC as the results of removing the first λ fraction of low-quality
nodes. Similarly, if we are removing nodes based on link quality threshold q, the
equation will be substituted with s(q), representing the fraction nodes in the GC as a
function of removing nodes that are below congestion level q. The 1/T normalizes the
result so that the robustness of networks of different sizes can be compared40–42. The
area under the curve is a comprehensive robustness performance measure during all
possible traffic congestion scenarios40. We use this measure to avoid the situation
where two processes show the same critical percolation threshold λc or qc34,43 but
display different robustness behavior at other λ or q values.

The principle of flooding scenario engineering is to ensure the total fraction of
removed links λ is the same. We only manipulate the failure sequence of the
flooded links to create different flood scenarios and keep other links unchanged. In
the original flooding scenario, we remove the f fraction of flooded links first
(because they have the quality of r= 0), and then we proceed to remove other λ− f
low quality (i.e., congested) links to make up the λ total removal.

To derive the no-flooding scenario, we find the maximum link quality rmax at
the time and assign the f fraction of flooded links with rmax. Then, we proceed with
removing λ fraction of roads based on their link quality. In doing so, we make sure
the flooded links are removed at the end of the percolation simulation, creating a
flood percolation phenomenon that is equivalent to a no-flooding scenario f= 0.

For a random flooding scenario, we first assign the flooded links the maximum
link quality to enforce their removal at the end of the percolation simulation. At the
same time, we randomly select f fraction of links and remove them first to create
the random flooding case. Then, we remove λ− f (if λ > f) or 0 (if λ < f) fraction to
make up the total λ fraction of link removal. In doing so, we acquire both no-
flooding and random-flooding scenarios.

Percolation simulation. The percolation process involves removing links that do
not meet the criteria, i.e., the link quality is below a threshold qc. After removing
these unqualified links, the initially fully connected network may break into
multiple components depending on the thresholds. The largest connected cluster,
namely, the GC, can well reflect the connectivity or the fragmentation of the road
transportation network2. Therefore, we use the GC, namely, the largest connected
component, as the metric to represent system navigability in facing
failures14,19,33,34,36,44,45. To conduct the percolation simulation at time t with
proper q, we first constructed the network with the aforementioned methods. Next,
we apply different flooding scenarios to the network. Finding the GC requires
enumerating through all the connected clusters and selecting the largest one. The
search of a connected component can be achieved by using the either breadth-first
search or depth-first search algorithm. When a connected component is found but
the total size of the connected component is smaller than the whole network, we
selected a new link that has not been removed or searched and conducted the
previous procedure again, until the summation of connected components and
removed flooded links equals the whole network. We ranked the size of the con-
nected components; the largest connected component is the GC. The second-
largest connected component is used to indicate the phase transition of the per-
colation process, where the GC suddenly fragments into smaller components. We
used the Python module NetworkX to conduct the aforementioned percolation
analysis. The analytical solution can be found in our earlier paper2.

Data availability
The data used in this study are not publicly available under the legal restrictions of the
data provider. Interested readers can request it from INRIX provided here (https://
inrix.com/products/speed/). This paper used high-resolution traffic data (travel speed on
major roads every 5-minute) of Harris County, TX USA from August to September 2017.

Code availability
The percolation analysis is performed using the standard Python package NetworkX. The
code is available upon request from the corresponding author.
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