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Thresholds in aridity and soil carbon-to-nitrogen
ratio govern the accumulation of soil microbial
residues
Zhiguo Hao1,2,5, Yunfei Zhao1,3,5, Xia Wang 1,3✉, Jinhong Wu1,4, Silong Jiang1,3, Jinjin Xiao1,3,

Kaichang Wang1,2, Xiaohe Zhou1,2, Huiying Liu1,4, Jia Li1,2 & Yuxin Sun1,4

Microbial moribunds after microbial biomass turnover (microbial residues) contribute to the

formation and stabilization of soil carbon pools; however, the factors influencing their

accumulation on a global scale remain unclear. Here, we synthesized data for 268 amino

sugar concentrations (biomarkers of microbial residues) in grassland and forest ecosystems

for meta-analysis. We found that soil organic carbon, soil carbon-to-nitrogen ratio, and aridity

index were key factors that predicted microbial residual carbon accumulation. Threshold

aridity index and soil carbon-to-nitrogen ratios were identified (~0.768 and ~9.583, respec-

tively), above which microbial residues decreased sharply. The aridity index threshold was

associated with the humid climate range. We suggest that the soil carbon-to-nitrogen ratio

threshold may coincide with a sharp decrease in fungal abundance. Although dominant

factors vary between ecosystem and climate zone, with soil organic carbon and aridity index

being important throughout, our findings suggest that climate and soil environment may

govern microbial residue accumulation.
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Soil is the largest carbon (C) reservoir in terrestrial ecosys-
tems. Small changes in the C budget can cause large fluc-
tuations in atmospheric carbon dioxide concentrations,

which, in turn, can have profound impacts on the structure and
function of terrestrial ecosystems1–3. As native inhabitants of soil,
microorganisms can regulate soil C dynamics through catabolism
and anabolism4–7, and the role of microbial anabolism in trans-
forming soil organic matter into more stable forms is increasingly
highlighted6. Plant residues are obtained by microorganisms and
part of them are used to construct microbial biomass6,8. After the
death of microorganisms, microbial-derived C (in vivo turnover
products, including dead microbial residues and some
metabolites)6 is stabilized in the soil by association with minerals
or occlusion in aggregates6,9, which can resist disturbance from
external factors over longer residence times. This process results
in the preservation of large amounts of underground microbial-
derived C. Some studies have shown that microbial residual C
accounts for a large proportion (more than 50%, up to 80%) of
the soil organic carbon (SOC) pool10–15. Therefore, although
microbial biomass C only accounts for 2–4% of SOC11,16, the
contribution of microbial residues to the SOC cannot be ignored.
The relatively stable storage of microbial residues contributes to
the persistence of organic C in soil6,11. Consequently, it is
essential to study the accumulation patterns of microbial residues
to enhance our understanding of C sequestration in terrestrial
ecosystems6,11,17,18.

Microbial communities are highly sensitive to environmental
change19,20. External factors, including soil properties and climate
change, can affect the transfer of microbial metabolites to the soil
and their stabilization by influencing microbial physiological
characteristics, such as microbial growth rate and growth effi-
ciency, as well as biochemical characteristics21–23. For example,
under limited soil moisture conditions, both microorganism
growth and activity are weakened24, and the transformation of
plant residues into microbial biomass and then into microbial
residues is decreased25,26. Under increased soil moisture condi-
tions, the C utilization efficiency (CUE) of microorganisms and
the microbial residue accumulation efficiency should improve.
However, excessive soil moisture would lead to oxygen limitation,
which would decrease microbial substrate utilization efficiency,
and consequently reduce microbial necromass accumulation27.

Multiple studies have shown that low CUE limit the synthesis
of microbial biomass28,29. The higher the microbial growth rate
and growth efficiency, the higher the rate of accumulation of
microbial residues30. However, with increased microbial activity,
SOC decomposition and utilization ability (plant-derived or
microbial-derived C31, etc.) increases29. Consequently, there may
not be a simple linear relationship between microbial physiolo-
gical characteristics and their mediated C sequestration23. Con-
sidering the influence of environmental change on the internal
characteristics of microbial communities19,20, there is potentially
an optimal range of environmental conditions for maximizing the
accumulation of microbial residues. Determining the optimal
environmental conditions for microbial growth with the greatest
microbial residue accumulation and the least SOC decomposition
could facilitate the management of C sequestration in soil.
However, the optimal environmental conditions for microbial C
accumulation remain poorly understood.

The remains of dead microorganisms (microbial residues) can
be traced using amino sugars32,33, given that only a small pro-
portion of amino sugars in the soil is associated with microbial
biomass, and plants do not contain amino sugars34,35. In addi-
tion, different amino sugars have been linked to specific microbial
populations35,36. Therefore, using amino sugars as a biomarker to
characterize microbial residues facilitates the characterization of
SOC sources and the estimation of their stabilization

potentials18,32,37,38. In the majority of studies, only four types of
amino sugars, glucosamine, galactosamine, mannosamine, and
muramic acid, have been quantified32, among which glucosa-
mine, galactosamine, and muramic acid are most abundant38, of
these four, fungi produce most of the glucosamine, while bacteria
produce only a small proportion of glucosamine, in addition to
muramic acid32,38.

Amino sugar biomarkers are increasingly being used to study
the mechanisms underlying storage of microbial residues26,39,40.
This enables extensive quantification of the global heterogeneity
of soil amino sugar content and its predictors. Forest and grass-
land ecosystems account for approximately 30%41 and 26%42 of
the earth’s land surface area, respectively, and approximately 47%
and 20% of the earth’s land SOC content, respectively42,43. In the
present study, we collected amino sugar data from forest and
grassland ecosystems for meta-analysis. We found that most of
the studies on soil microbial residues are carried out in the 0–10
or 0–20 cm mineral soil layers in these ecosystems. We synthe-
sized 268 data points of microbial residues in the 0–20 cm soil
layer of forest and grassland ecosystems (Fig. 1).

The aim of the present study was to investigate the relative
importance of climate, geographical location, and soil physico-
chemical properties in predicting microbial residue accumulation, as
well as to explore the variation in microbial residues with changes in
environmental variables. We hypothesized that climate, geographical
location, and soil physicochemical properties have different effects on
microbial residue accumulation. We further hypothesized that their
relative importance is in the order geographical location > climate >
soil physicochemical properties, since differences in geographical
location would lead to distinct climates, and different geographical
location and climate conditions would have varying effects on soil
physicochemical properties. Moreover, we speculated that the
response patterns of microbial residues to different environmental
variables is not always gradual. Hence, we hypothesized the occur-
rence of an optimal range or thresholds of environmental conditions
for the accumulation of microbial residues.

Results
Geographical patterns of microbial residues. The concentra-
tions of topsoil amino sugars ranged from 0.04 to 11.21 mg g−1

soil, with a mean of 2.25 ± 0.13 and a median of 1.68 mg g−1 soil
(Fig. 1c). The Scheirer–Ray–Hare test, using ecosystem type and
climate zone as fixed factors, revealed no significant difference in
amino sugar concentrations between forests and grasslands
(2.21 ± 0.22 and 2.29 ± 0.17 mg g−1 soil, respectively) (p= 0.111,
Table 1). However, significant differences were detected between
climatic zones (p= 0.019, Table 1). Among them, significantly
higher amino sugar concentrations were detected in the tempe-
rate zone than in the subtropical zone (p= 0.031), while no sig-
nificant difference in amino sugar concentrations was observed
among other climatic zones. No significant interaction on amino
sugar concentrations was found between vegetation types and
climatic zones (p= 0.094, Table 1). Kruskal–Wallis tests across
the five categories (subtropical grasslands, temperate grasslands,
tropical forests, subtropical forests, and temperate forests)
revealed significant differences in amino sugar concentrations
between subtropical forests and temperate forests (p= 0.009) and
between subtropical forests and temperate grasslands (p= 0.047,
Fig. 1b). Globally, amino sugar concentrations were significantly
correlated with SOC concentrations (Spearman’s correlation
R2= 0.490, p < 0.001, Fig. 2b).

Predictors of microbial residues on a global scale. The Random
Forest model showed that all the environmental variables con-
sidered in this study were important for predicting the
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concentrations of amino sugars (Overall model: R2= 0.768,
p < 0.001; environment variable p < 0.05, Fig. 2d). Our structural
equation modeling (SEM) explained 65.4% of the variance in
amino sugars (Fig. 2a). SOC, soil carbon-to-nitrogen (C:N) ratio
and aridity index still had more standard total effects (STEs)
(0.929, −0.289, −0.226, respectively, Fig. 2c) after considering the
causal relationships between variables.

Nonlinear responses of microbial residues to drought, soil
carbon-to-nitrogen ratio, and soil organic carbon. Three
important environmental variables (SOC, soil C:N ratio, and
aridity index) suggested by SEM were selected for further analysis
(Fig. 2c). Linear models, quadratic models, and general additive

models (GAM) were fitted to determine the relationships between
amino sugar concentrations and environmental variables. Com-
parisons of Akaike information criteria (AIC) values among the
models showed that nonlinear relationships used in the GAMs
were best fits for the relationship between amino sugars and
aridity index, soil C:N ratio, and SOC concentration (Table 2 and
Supplementary Fig. 1). We identified threshold levels for the
increase in aridity index (0.768) and soil C:N ratio (9.583 [0.57
after ln (x+ 1) conversion, and 2.26 after ln (x) conversion,
respectively], Fig. 3a, b) for the accumulation of amino sugars.
Above this threshold, the concentrations of amino sugars
decreased significantly (Fig. 3c, d). According to the generalized
climate classification scheme of aridity index values formulated
by the United Nations Environment Program in 1997, this
threshold level would lie within the humid climate class (aridity
index >0.65; Supplementary Table 1). The threshold of soil C:N
ratio was between the lower quartile and the lower decile, and was
less than the mean C:N ratios (14.16 ± 0.35) observed in our study
(Supplementary Fig. 2). For SOC, the curvature at the threshold
did not affect the original trend, and there was a linear increase in
accumulation of amino sugars with SOC (Fig. 4).

Predictors of microbial residues in different ecosystem types
and climatic zones. Since the majority of study sites, forests and
grasslands (87.5% and 99.3%, respectively, Fig. 1) are located in
subtropical and temperate zones, we conducted independent analyses
for subtropical forests, temperate forests, subtropical grasslands, and
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Fig. 1 Datasets used in the study. a Study sites. b Kruskal–Wallis test between different ecosystems and climatic zones; letters in the figure indicate
significant differences such that conditions with the same letters are not significantly different. c Frequency distribution histogram of original data for amino
sugars; numbers in the graph show basic statistical information. b Central lines in the boxes represent medians, left edges of the boxes represent first
quartiles, right edges of the boxes represent third quartiles, whiskers indicate 1.5-fold inter-quartile ranges, and dots beyond whiskers represent outliers.

Table 1 Scheirer–Ray–Hare test of the effects of ecosystem
type, climate zone, and their interactions on soil respiration
amino sugar content (characterization of microbial
residues).

SS df H p

Climatic zone 47,057 2 7.8332 0.019
Ecosystem type 15,248 1 2.5381 0.111
Ecosystem type * Climatic zone 28,441 2 4.7344 0.094

SS sum of squares.
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temperate grasslands. Our Random Forest models suggested that
SOC and aridity index were the most important predictors of amino
sugars in subtropical grasslands, temperate grasslands, subtropical
forests, and temperate forests (environment variable: p < 0.05, Fig. 5).
Soil pH and C:N ratio also significantly predicted amino sugars in
grasslands (p < 0.05, Fig. 5a, b), while the absolute latitude predicted
amino sugars in forests (p < 0.05, Fig. 5c, d). In contrast to other

categories, soil clay content was the most influential factor deter-
mining amino sugars in temperate forests (p < 0.05), while the effect
of soil pH was not significant (Fig. 5).

Our SEMs explained 88.2, 74.4, 74.6, and 62.4% of the variance in
amino sugars in subtropical grasslands, temperate grasslands,
subtropical forests, and temperate forests, respectively (Fig. 6). From
the STEs of SEMs of all categories, we identified SOC as the main
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Table 2 The best model for amino sugar response for each variable.

Variable name AIC linear AIC nonlinear Best AIC R2 linear R2 threshold

Aridity index 434.88 431.50 GAM = 406.68 0.016 0.130
Soil C:N ratio 439.06 433.19 GAM = 423.83 0.000 0.108
Soil organic carbon 223.35 223.92 GAM = 211.03 0.553 0.596

Akaike information criteria (AIC) were used to compare the fits of linear, nonlinear, and optimal threshold models. Models with lower AIC values have the best fits. Determination coefficients (R2) of
linear and best-fit threshold models are shown.
GAM general additive model.
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positive regulatory factor for amino sugars (Fig. 7). In grasslands,
aridity index and soil pH were the next most important predictors
(Fig. 7a, b), while the absolute latitude strongly predicted amino
sugars in temperate grasslands (STE: 0.280, Fig. 7b). In subtropical
forests, the effect of soil pH on amino sugars was second only to that
of SOC, followed by soil C:N ratio and soil clay content (Fig. 7c). The
soil C:N ratio in temperate forests showed a strong negative effect on
amino sugars (STE: −0.272, Fig. 7d).

Discussion
In terrestrial ecosystems, latitude significantly affects light
intensity and thus photosynthesis in surface vegetation, resulting
in the inhibition of soil C input and changes in soil C fluxes44–46.

Globally, although the amino sugars closely related to SOC had a
significant correlation with latitude (p < 0.05, Fig. 2b), in the
present study, the correlation coefficient between them was
markedly low (R2= 0.044, Fig. 2b), and the SEM revealed low
STE for latitude (0.030, Fig. 2c). This suggests a weak effect of
latitude on the accumulation of amino sugars. However, we found
that SOC, soil C:N ratio, and aridity index were the most robust
predictors of amino sugars (Fig. 2c). Several studies have reported
strong positive correlations between amino sugars and SOC47,48,
with higher soil organic matter content associated with higher
concentrations of soil microbial residues. Our results are con-
sistent with these findings; although microbial necromass C
accounts for a large proportion of SOC10, it does not completely
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determine the amount of SOC. However, SOC can be used as a
predictor of microbial residue concentration.

Aridity is a key driver of biological and geochemical
processes49,50. Increasingly arid climate conditions have altered
the elemental (C, N, etc.) balance in ecosystems51, resulting in
decreased available soil C and N, poor soil nutrient supply, and
increased N limitation on the growth of plants and soil
microorganisms51,52. This could cause a decline in microbial
function, thereby affecting ecosystem sustainability53. Addition-
ally, drought conditions weaken the evaporative cooling effect of
plant leaves, reinforcing the effects of high temperatures54. Such
relationships between soil water and temperature may lead to the
production of heat waves55, further threatening microorganism
survival. Although SOC increased significantly with decreased
aridity (increase in aridity index; Supplementary Fig. 3a), the
amino sugar concentrations did not increase continuously (STE:
−0.226, Fig. 2c). Therefore, no significant linear relationship was
observed between aridity index and microbial residues (Supple-
mentary Fig. 3b). It is known that an increase in aridity results in
limitation of water availability26,56, reduction in soil hydraulic
conductivity57, formation of disconnected resource islands58, and
reduction in metabolic activity and substrate utilization efficiency
of soil microbial communities24,59. Moreover, aridity can reduce
the capacity of microorganisms as decomposers to utilize SOC
and plant litter for growth and reproduction, thus reducing the
efficiency of accumulation of microbial residues25,60. Drought

conditions can also reduce the production of plant litter and root
biomass, reducing plant C input61. The consequent lack of
available substrates can in turn delay the production and accu-
mulation of microbial residues.

If the global climate situation improves and aridity stress decreases,
soil water content could increase, and ecosystem processes could
gradually recover. In such a context, the content of plant-derived C
transformed into microbial-derived C by microbial utilization gra-
dually increases, and the efficiency of transfer and stabilization of
microbial residues to soil increases6,26. However, extremely humid
climates and active microorganisms are not conducive to the accu-
mulation of SOC (plant-derived or microbial-derived C, etc.). The
movement of oxygen in the soil is limited by extremely high soil
moisture content58. Under such conditions, the growth efficiency of
microorganisms is reduced, resulting in lower microbial CUE, which
in turn affects the production, accumulation, and stabilization of
microbial residues in the soil.

Such environments are more disadvantageous to fungal commu-
nities. Because fungi are aerobic, many bacteria can survive under
anaerobic conditions62, shifting microbial community structure to
bacterial dominance under humid climates61. However, bacterial
residues are more easily decomposed than fungal residues, explaining
the gradual decrease in microbial residues27. Additionally, under wet
conditions, the fast leaching channels are reused first61, and the
leaching loss of available N entails additional N requirement by
surface soil microorganisms to meet their growth needs61. The
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Fig. 6 Structural equation models (SEMs) for ecosystems and climatic zones. a Subtropical grassland. b Temperate grassland. c Subtropical forest.
d Temperate forest. The SEMs show the causality and correlation between the absolute content of soil amino sugars (characterization of microbial
residues) and environmental variables. Red lines indicate positive effects, while blue lines indicate negative effects. The thickness and color of the line are
directly proportional to the standardized path coefficient on the single arrow. SOC soil organic carbon. R2 represents the variance of biomarkers explained
by the model. The asterisk (*) indicates the significance of the path; one, two, and three asterisks indicate p < 0.05, p < 0.01, and p < 0.001, respectively.
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reduction in microbial growth efficiency and CUE reduces the effi-
ciency of microbial-derived C stabilization. Moreover, soil microbial
residues may move to deeper layers with leaching, sharply reducing
microbial residues in surface soil.

Aridity indirectly affects the accumulation of microbial resi-
dues through changing the soil C:N ratio61. Changes in microbial
residues with changes in this ratio occur after an irreversible
critical point, which may also be considered a threshold. C and N
are closely related to the growth and development of micro-
organisms in the biogeochemical cycle63. In an ecosystem with
limited nutrients and resources, microorganisms put more energy
into catabolism through the synthesis of extracellular enzymes,
decomposing complex organic matter and releasing compounds
suitable for plants and microorganisms64, rather than on ana-
bolism (microbial biomass synthesis)65. The efficiency of micro-
bial anabolism is weakened, thereby reducing microbial CUE66,
the production efficiency of microbial-derived C, and the effi-
ciency of long-term slow-cycling microbial-derived C accumula-
tion in soil67, as well as ultimately reducing the relative
contributions of microbial residues to SOC68. The contributions
of microbial-derived C to the SOC pool could be enhanced by
application of fertilizers with high N content to alleviate envir-
onmental pressure69,70. Excluding the case of intensive traditional
farming activities, environments with sufficient nutrient supply
can be considered to accelerate the accumulation of soil microbial
residues68,71. Hence, the proportion of microbial residues in SOC
is higher in soils with low C:N ratios37,72 due to relatively high
soil nutrient content enabling greater anabolism in microorgan-
isms. Moreover, unstable substrates (organic matter with low C:N

ratio) can improve the CUE of microorganisms, which is con-
ducive to the formation and accumulation of microbial necro-
mass in mineral soils52,73.

We found that soil nutrient supply did not continue to pro-
mote the accumulation of microbial residues above a certain level
(Fig. 3b). This may be explained by the effect of the soil C:N ratio
on the bacteria:fungi ratio74. The distribution of fungi is strongly
limited by the availability of resources, with low nutrition and
acidic environments more conducive to bacterial than fungal
growth74. However, fungal necromass constitutes the majority of
microbial residues (Supplementary Fig. 4 and Supplementary
Data 1). Hence, microbial residues decrease when conditions are
not optimal for the accumulation of fungal residues. Alternatively,
we speculate that this could be the result of interactions among
drought, plants, and microorganisms.

Drought reduces the plant N absorption, increasing ammo-
nium N and nitrate N in the soil75. Furthermore, the weakening
of microbial activity reduces the mineralization rate of N76,
leading to a lower C:N ratio in the soil; this also explains the lower
content of microbial residues in high-nutrient soil. To clearly
identify the changes in microbial residues caused by drought, and
the coupling between plants and microorganisms, we fit the
values of amino sugars using a GAM, which revealed a clear
threshold for the reduction in microbial residues (Supplementary
Fig. 5). Under increased drought conditions in terrestrial eco-
systems, soil nutrients seem to become sufficient (p < 0.001,
Supplementary Fig. 3c). In such a context, the microbial com-
munity structure, enzyme secretion characteristics, and microbial
biomass formation will reach optima. The microbial carbon

−0.7

0.0

0.7

1.4

St
an

da
rd

iz
ed

 T
ot

al
 E

ffe
ct

s

−0.7

0.0

0.7

1.4

−0.7

0.0

0.7

1.4

Aridity Index
Clay SOC pH C:N

St
an

da
rd

iz
ed

 T
ot

al
 E

ffe
ct

s

−0.7

0.0

0.7

1.4

Aridity Index
Clay SOC pH C:N

a b

dc

-0.062

0.280

0.043

-0.287

1.109

0.187

0.415

0.956
1.028

-0.367

-0.087

0.063

-0.041

-0.425

0.811

-0.110

0.422

-0.272

0.021

0.790

-0.065

0.050

-0.074

-0.464

Subtropical grassland Temperate grassland 

Subtropical forest Temperate forest

Latitude
Latitude

Fig. 7 Standard total effects of environmental variables on the absolute content of soil amino sugars. Standard total effects (direct and indirect effects)
in structural equation models of: a subtropical grassland, b temperate grassland, c subtropical forest, and d temperate forest.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00306-4

8 COMMUNICATIONS EARTH & ENVIRONMENT |           (2021) 2:236 | https://doi.org/10.1038/s43247-021-00306-4 | www.nature.com/commsenv

www.nature.com/commsenv


pump process, which is driven by microorganism turnover fol-
lowing growth and death in microbial communities6, has the
greatest effect, with microbial residues gradually reaching a peak.
When microbial communities achieved states in which stable C
produced by anabolism is transferred to the soil with maximum
efficiency, the accumulation of microbial residues in soil began to
slow down, and then decreased sharply.

The dominant factors predicting microbial residue accumulation
varied, but SOC and aridity index were key factors in all cases (Figs. 5
and 7). Although Random Forest analysis showed that soil C:N ratio
was not important in the forest (Fig. 5c, d), it still had large STEs
(Fig. 7c, d). Among the other environmental variables, soil pH had a
considerable effect on microbial residues in all datasets, excluding
temperate forests. Previous studies have shown that soil pH can
control soil microbial community structure, affect the adsorption of
soil minerals on soil organic matter, and even affect the recycling
efficiency of microbial residues by microbial communities74,77.
Therefore, dynamic changes in soil pH can affect microbially medi-
ated C sequestration7. Moreover, we noticed that the effect of pH in
subtropical forests was similar to that of SOC, which was significantly
stronger than the effect of these factors in other regions. This may be
because subtropical forest pH is relatively low, and the accumulation
of microbial residues is more sensitive to changes in pH. Similarly,
clay mineral content also plays an important role in stabilizing
microbial residues26,78. The stable storage of SOC is related to both
low decomposition as well as the protective mechanism of soil
minerals79. Microbial residues are stabilized in fine-grained soil
minerals by adsorption and binding, and physical protection prevents
microbial residues from being reused by microbial
communities69,79,80. Therefore, soil with higher clay mineral content
generally has higher organic C content81. Moreover, clay can main-
tain the moisture and nutrient elements of the surface soil, resulting
in greater surface microbial activity82,83. Hence, the effect of clay on
the accumulation of microbial residues is not the same in different
data sets due to these two factors.

Our research has some limitations. First, our criteria for data
compilation were not perfect. For example, we calculated the
mean for soil amino sugars for the 0–10 and 10–20 cm layers in
some studies assuming equal weights, because we reasoned that in
most studies, the same quality of soil was used for the determi-
nation of amino sugar content; however, this may not be the
actual situation. In addition, although we expected the topsoil
data to be 0–20 cm, a small number of studies did not reach this
soil depth, but we also included them in our synthesis. As the
amino sugar concentrations decreased sharply with soil depth,
these data may not be consistent with the amino sugar con-
centrations of soil at the depth of 0–20 cm.

Second, most of our data are from the northern hemisphere,
especially from temperate and subtropical regions, with little to no
data from boreal and tropical regions (Fig. 1). Although our selection
criteria for reducing publication bias excluded some data, we were
able to obtain heterogeneous data. This lack of data presents sig-
nificant limitations on global estimates of microbial residue accu-
mulation. Improvements in data collection and accurate estimation
of such residues will be the focus of our future study.

Third, we used data from the global high-resolution (250 m)
gridded soil properties database (http://data.isric.org) because
some data were not provided in original studies. Such grid-
prediction data may not match data from the actual research
studies. Finally, there remains uncertainty about soil amino
sugars as a biomarker for microbial necromass. Because the soil
needs hydrolysis or digestion before the detection of soil amino
sugars33, which means that the detected sugars exist more or less
in the complete cell biomass10; therefore, the content of soil
amino sugar is affected by microbial biomass to a certain extent.
Therefore, future studies should explore the relationship between

amino sugars and biomass to determine the accurate amino sugar
content for the characterization of microbial residues.

In conclusion, our meta-analysis identified SOC, and drought
as the main factors influencing global and regional microbial
residues. In the wake of global climate change, microbial com-
munities could experience an optimal anabolic phase. In this
phase, the soil microbial carbon pump mediated soil C capture
process will exhibit the best response state. At the global scale, the
optimum appears when the aridity index is ~0.768 or the soil C:N
ratio is ~9.583, and the amount of microbial residues accumu-
lation peaks. Above this level, microbial residues reduce sig-
nificantly. We suggest that may be due to changes in dominant
microbial species in communities. Collectively, our results pro-
vide insights into the optimal conditions for microbial residue
accumulation. Our findings provide a useful reference for mon-
itoring and management of terrestrial C storage.

Methods
Data sources. We extensively searched the Web of Science (http://
apps.webofknowledge.com) and the China Knowledge Resource Integrated Data-
base (http://www.cnki.net) for scientific articles on microbial residues. Data were
collected from field trials published before December 2020. Search terms were
“amino sugars” or “microbial necromass” or “microbial residues,” combined with
“grassland” or “forest” or “woodland”. To reduce the influence of publication bias,
only studies meeting the following seven criteria were selected:

1. As previous studies have shown that amino sugars, the biomarkers of
microbial residues, exhibit maximum release after hydrolysis with hydro-
chloric acid for 6–8 h at 105 °C33, only data from articles using hydrolysis
with 6mol/L hydrochloric acid at 105 °C for 6–8 h and determination by gas
or liquid chromatography were used. In the datasets we collected, only eight
did not use the method of Zhang and Amelung33 (Supplementary Data 2);
therefore, we ignored small differences between the methods for determining
the concentration of amino sugars in different studies, such as derivatization,
so that we could effectively compare and contrast data from different studies.

2. Sampling depth was clearly defined. Our aim was to investigate the mineral
topsoil, excluding the litter layer and O horizon soil. Since most of the
studies were carried out at mineral soil depths less than 20 cm, we defined
topsoil for this study as 0–20 cm. We selected all the studies that measured
amino sugars at 0–20 cm depths. In some studies, one sample included both
0–10 cm and 10–20 cm layers. Since the quality of soil samples used to
determine the concentrations of amino sugars in most studies was similar,
we calculated the arithmetic mean of the two concentrations at the same
point to represent the concentration of amino sugars at 0–20 cm depth.
Similarly, with concentrations determined at 0–5 cm, 5–10 cm, and
10–15 cm depths in some studies, we used the arithmetic mean of the
three concentrations.

3. Studies in which contents of glucosamine, galactosamine, muramic acid, and
mannosamine were provided in the absence of direct supply of total amino sugar
concentrations, as these four types of amino sugars are most commonly
quantified32. Since the proportion of mannosamine is usually less than 4%32, its
concentrations were not provided in some studies. Therefore, for these studies,
we used measurements of the other three types of amino sugars, which are
readily quantified, to calculate the total amino sugar concentrations32. Some
studies only reported the concentrations of fungal necromass C and bacterial
necromass C. We used two conversion factors to convert these to glucosamine
and muramic acid concentrations10. Subsequently, we added them for the
calculation of total amino sugar concentrations. Other studies only reported
concentrations of glucosamine C, galactosamine C, muramic acid C, and
mannosamine C. We converted these concentrations to corresponding amino
sugar concentrations, using their relative molecular masses. See below for the
detailed calculation method.

4. All amino sugar concentration data were obtained from in situ measure-
ments; laboratory incubation and model simulation data were discarded.

5. Data from soil fractions with different aggregate sizes were not used; only
those from bulk soil were used. Data from living microbial cells were
not used.

6. In manipulation experiments (e.g., warming, CO2 rising, and nitrogen
addition), the concentrations of amino sugars from the control treatment
were used.

7. Data obtained from the averages of large ranges of sample points, from
which accurate location information was not available, were not used.

To study the factors affecting amino sugars in different communities, grassland
and forest ecosystems were divided into tropical, subtropical, and temperate zones.
If data from the same study were published in different journals, only the data from
one of them were used to avoid pseudoreplicates. The amino sugar content of

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00306-4 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2021) 2:236 | https://doi.org/10.1038/s43247-021-00306-4 | www.nature.com/commsenv 9

http://data.isric.org
http://apps.webofknowledge.com
http://apps.webofknowledge.com
http://www.cnki.net
www.nature.com/commsenv
www.nature.com/commsenv


different altitudes, grassland, or forest types was regarded as an independent
duplication in the global analysis for a single study.

We obtained 268 data points (Supplementary Fig. 6 and Supplementary
Table 2) from 64 articles that met the criteria for global analysis, and three
unpublished grassland data points (near Longnan City, Gansu Province, China
[Supplementary Data 2, Ref. ID: 65])84. This included 1, 52, 95, 15, 40, and 65 data
points from six categories: tropical grasslands, subtropical grasslands, temperate
grasslands, tropical forests, subtropical forests, and temperate forests, respectively
(Supplementary Data 2). At each study site, we also recorded other information
from the original publications, including geographic (latitude, longitude, and
altitude) and climate (mean annual temperature, mean annual precipitation, and
aridity index) variables. Each dataset is indicated in the graph (Fig. 1a).

Other climate and soil attribute data sources. Since most published articles do
not include such data, a global climate database (Worldclim, version 2.0) was used
to obtain climate information (mean annual temperature, mean annual pre-
cipitation). Similarly, the global high-resolution (250 m) gridded soil properties
database (http://data.isric.org) was used to obtain some soil physical and chemical
properties (i.e., clay content, pH, SOC content, and N content). Aridity index data
were obtained from the Global Aridity and PET Database (http://www.cgiar-
csi.org/data/global-aridity-and-pet-database). The Global Land Cover Character-
istics Database v2.0 was used to obtain altitude data (https://lta.cr.usgs.gov/GLCC).
To evaluate the consistency of the predictors of amino sugars, we ensured that the
depth of data used in the database was consistent with the depth of sample points.
These data were obtained using the ESRI ArcMap (Environmental Systems
Research Institute, Redlands, CA, USA).

Calculation of amino sugar concentrations. We calculated the absolute con-
centration of amino sugars mg g−1 soil in the surface layer (0–20 cm) of soil. The
total amino sugar content is equal to the sum of glucosamine, galactosamine,
muramic acid, and mannosamine contents.

Some studies only reported the contents of fungal necromass C and bacterial
necromass C in SOC, which is based on the concentration of glucosamine and
muramic acid combined with two conversion factors. The absolute concentrations
of muramic acid mg g−1 soil and glucosamine mg g−1 soil were calculated as
follows39:
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� �
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In these equations, 45 is the conversion factor from muramic acid to bacterial
necromass C, and 9 is the conversion factor from glucosamine to fungal necromass
C. It is assumed that the ratio of muramic acid and glucosamine in bacterial cells is
1:239,85.

In some studies, only glucosamine C, galactosamine C, muramic acid C, and
mannosamine C were reported. Since muramic acid has nine C atoms, while the
other amino sugars have six C atoms, the absolute concentration of each amino
sugar mg g−1 soil was calculated as10:
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Statistical analysis
Microbial residues. Unless otherwise specified, all statistical analyses were con-
ducted using R 4.0.3. Before conducting statistical analyses, we tested the normality
of all data. The Scheirer–Ray–Hare test was used to assess differences in amino
sugars across vegetation types, climate zones, and to determine their interactions.
Additionally, since there was only one data point for tropical grassland, differences
in amino sugars among the five categories (subtropical grasslands, temperate
grasslands, tropical forests, subtropical forests, and temperate forests) were ana-
lysed using the Kruskal–Wallis test. The two-tailed Spearman’s linear correlation

was used to explore global correlations between amino sugars and environmental
variables. Statistical significance was assessed at p < 0.05.

Evaluating the importance of environmental variables. We used all the amino sugar
data for model analysis. The Random Forest model is a machine learning algorithm
for regression and classification. We used Random Forest models to identify the
most important environmental variables (absolute latitude, aridity index26, soil clay
content, SOC, soil C:N ratio, and soil pH)86,87. The importance of variables was
evaluated by classifying multiple decision trees86. Since our purpose was to only
determine the importance of predictors and not to predict the data, we used the
whole dataset for analysis, without dividing the data into training and prediction
sets. These analyses were performed using the randomForest88 package in R 4.0.3
(http://cran.R-project.org/). The significance of the model and the cross-validation
R2 were evaluated by using the A3 package. Similarly, the rfPermute package was
used to assess the significance of each predictor’s importance to amino sugars.

We used SEM to test whether the relationship between amino sugars and
environmental factors remains unchanged when considering causal relationships
among multiple environmental factors at the same time. Because the correlation
between SOC and N was significant (Spearman’s R = 0.91), only SOC was selected
as the organic component of SEM. Before performing the SEM, we performed
logarithmic transformation for non-normal variables and standardized each
variable using the Z-score transformation to improve the comparability of the
data89. We built a prior model (Supplementary Fig. 7) based on existing knowledge,
and determined the final SEM through maximum likelihood estimation and based
on an overall goodness-of-fit, including chi-square (χ2) statistics, whole-model
p value, goodness-of-fit index, and the root-mean-square error of approximation90.
Since some variables were non-normal, the Bollen–Stine bootstrap test was used to
recalculate the overall fit of the model90. When the bootstrap p value was greater
than 0.1, the model was considered to have a good fit90. To integrate the function
of SEM, we calculated the STE of each environmental variable. Since most studies
on forests and grasslands (87.5% and 99.3%, respectively, Fig. 1) were located in
subtropical and temperate zones, we only conducted independent Random Forest
and SEM analyses on temperate and subtropical forests and grasslands. SEM
analysis was performed using Amos 26.0 (Amos IBM, USA).

Linear and nonlinear responses of environmental variables. For global data, we
fitted linear and nonlinear (e.g., GAM91) regressions to the relationships between
variables with large effect values and amino sugars shown by SEM. The linear
model assumes that the response of amino sugars to environmental variables is
gradual92. The GAM models indicated that the gradient of environmental variables
is nonlinear but continuous92. We selected the GAM model to describe the com-
plexity of nonlinear trends (through smoothing parameters91). We then used the
AIC to determine the best-fit model for each environmental variable92. In general,
a difference in AIC values >2 indicates that the models are significantly different,
with the most likely model being the one with the lowest AIC value92.

Threshold detection. The existence of thresholds can be explored and nonlinear
trends determined only when the nonlinear model is suitable92. As described by
Goffman et al.93 and Miguel et al.92, we fitted segmented regressions by actively
searching for continuous thresholds, with abrupt changes in the slope on both sides
of the threshold94, and searching for discontinuous thresholds or breakpoint to fit
step + segmented (stegmented) regressions, with changes in intercept and slope on
both sides of the threshold94. In addition, when segmented or stegmented
regression are fitted to the GAM regression model, segmented or stegmented
regression can reveal the maximum curvature point of fitting92. This can be con-
sidered to be a threshold because it shows the extreme value of amino sugar
response to environmental variables, even if the fitting of segmented or stegmented
regression is worse than that of the GAM model92.

Therefore, for environmental variables that the GAM models fit better than
linear models, we fit segmented and stegmented regressions. These models all
provide a threshold point for prediction, which demonstrates the change in
functional relationship (slope or slope + intercept of segmented and stegmented
regressions, respectively94). We considered this to be the threshold of the GAM
regression model. We used the AIC to select the most suitable threshold model for
data. Segmented/stegmented and GAM regressions were fitted with the chngpt94

and gam packages of R 4.0.3, respectively.

Verifying the importance of the determined threshold. To test whether the determined
threshold significantly affects the intercepts of stegmented regressions, we conducted
linear regressions on both of its sides of the threshold92. Then, we extracted the
intercepts and used the boots package in R to perform 1000 bootstrap samplings before
and after the threshold of environmental variables for prediction, and tested the dif-
ference using the Mann–Whitney U-test. The global map, fitting curve, and histogram
of sample distribution in this study were all plotted using R 4.0.3.

Data availability
All datasets used here are publicly available. The global climate database (Worldclim,
version 2.0) was used to obtain climate information (mean annual temperature, mean
annual precipitation). The global high-resolution (250 m) gridded soil properties
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database (http://data.isric.org) was used to obtain soil physical and chemical properties.
Aridity index data were obtained from the Global Aridity and PET Database (http://
www.cgiar-csi.org/data/global-aridity-and-pet-database). The Global Land Cover
Characteristics Database v2.0 was used to obtain altitude data (https://lta.cr.usgs.gov/
GLCC). The datasets during the current study are available at: https://doi.org/10.6084/
m9.figshare.16749967.v1. All data that support the findings of this study are also available
in Supplementary Data.
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