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Cryogenic land surface processes shape vegetation
biomass patterns in northern European tundra
Juha Aalto1,2✉, Pekka Niittynen 2, Henri Riihimäki2 & Miska Luoto 2

Tundra ecosystems have experienced changes in vegetation composition, distribution, and

productivity over the past century due to climate warming. However, the increase in above-

ground biomass may be constrained by cryogenic land surface processes that cause topsoil

disturbance and variable microsite conditions. These effects have remained unaccounted for

in tundra biomass models, although they can impact multiple opposing feedbacks between

the biosphere and atmosphere, ecosystem functioning and biodiversity. Here, by using field-

quantified data from northern Europe, remote sensing, and machine learning, we show that

cryogenic land surface processes substantially constrain above-ground biomass in tundra.

The three surveyed processes (cryoturbation, solifluction, and nivation) collectively reduced

biomass by an average of 123.0 gm−2 (−30.0%). This effect was significant over landscape

positions and was especially pronounced in snowbed environments, where the mean

reduction in biomass was 57.3%. Our results imply that cryogenic land surface processes are

pivotal in shaping future patterns of tundra biomass, as long as cryogenic ground activity is

retained by climate warming.
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Tundra vegetation is experiencing distributional and composi-
tional changes as a response to climate warming, with the
expansion of woody plants to treeless tundra (including

growth and infill of existing woody plants, i.e., shrubification) being
among the most fundamental phenomena1–4. However, this vege-
tation redistribution and increase in biomass can be constrained by
cryogenic land surface processes (LSP), which are presently active
over ca. 25% of the Earth’s terrestrial areas that are exposed to sea-
sonal and/or permanent ground freezing5–10. In arctic and alpine
tundra, cold climatic conditions prevail due to high latitude and/or
altitude, and plants and other lifeforms are often near their thermal
tolerance limits11,12. Here, LSP are expected to mainly impact
vegetation by causing mechanical disturbances. Repeated ground
freezing and thawing can destabilize the topsoil (here the maximum
rooting depth of vegetation is found to be <30 cm for most tundra
plants13) thus preventing the formation of continuous vegetation
cover, further constraining forest-tundra ecotone dynamics12. In
addition, LSP mediate other local conditions; for example, soil
moisture and growing season length are strongly constrained by
snowpack dynamics in snowbed environments (i.e., nivations), thus
affecting species distributions, community compositions and vege-
tation productivity in tundra ecosystems14. Moreover, cryogenic
mixing of soil horizons may significantly contribute to carbon and
nutrient cycling15,16.

Recent studies suggest a widespread loss of active LSP (i.e.,
stabilization of soil surface and/or disappearance of snow beds)
due to climate change17,18. If realized, this could result in feed-
backs where the warmer climate generates an increase in vege-
tation biomass and uptake of atmospheric CO2, which are then
further accelerated by the stabilization of ground surfaces. In
addition, changes in vegetation may also impact LSP activity19.
Not only can changes in vegetation profoundly impact tundra
ecosystems’ functioning by altering productivity and biotic
interactions, they can also feed back into the global climate sys-
tem through changes in albedo, evapotranspiration, permafrost
and carbon cycling7,20–24. Yet, the effect of multiple LSP in
constraining future tundra biomass over broad environmental
gradients has remained unexplored and consequently unac-
counted for in simulation models concerning tundra biomass.

Here, we use comprehensive field-quantified and remotely
sensed data from northern Europe to incorporate the impacts of
multiple LSP on spatial predictions of tundra above-ground
biomass (AGB; Fig. 1). We first establish a statistical relationship
with field-measured AGB (433 field sites) and satellite-derived
normalized difference vegetation index (NDVI; Landsat 8) to
produce spatially extensive estimates of AGB over 2917 obser-
vations sites. Then using the larger data we focus on the effects of
three dominant LSP on the estimated AGB that create typical
surface-geomorphological features of arctic and alpine tundra
landscapes5; patterned ground, frost boils and hummocky terrain
created by cryoturbation (i.e., frost-churning), lobes and terraces
occurring at the mountain slopes produced by solifluction (i.e.,
slow mass wasting mostly due to cyclic freezing and thawing of
soil), and nivation processes comprising weathering and fluvial
processes indicated by nivation hollows and snowbed environ-
ments. Our study area represents broad regions of the forest-
tundra ecotone25. It ranges from low-lying sub-Arctic coniferous
and birch forests to barren arctic-alpine tundra, characterized by
intense cryogenic soil activity. The study area has strong climatic
gradients (mean annual air temperature range ca. −6.5 to 1.5 °C,
mean annual precipitation sum range ca. 400–900 mm) and is
mainly representative of sporadic and discontinuous
permafrost5,26 (Fig. 1). Within this climatic domain representing
arctic-alpine tundra, the presence of the three LSP and their role
in ecosystem functioning is widely documented5,6,11. Moreover,
the discontinuity of permafrost, relatively high ground

temperatures and low ground-ice content (compared to colder
tundra subzones) can indicate that the soil thermal response t. o
climatic changes is likely to be rapid27. Accordingly, a recent
study by Aalto et al., (2017; ref. 17) suggested that the study area is
likely to experience substantial near-term reductions in the dis-
tribution of multiple cryogenic LSP. This, in turn, has the
potential to alter landscape patterns and dynamics, and affect
features such as slope movements, seasonal thaw depths and
surface hydrology18,28.

Here, we first quantify the LSP effect on spatial patterns of
above-ground biomass in arctic alpine tundra, and then investi-
gate the potential implications of these relationships under
warming climate. We deploy a machine learning framework
(boosted regression trees, BRT) to statistically relate the estimated
AGB to the current activity of LSP at a fine spatial scale29,30 while
controlling for the effects of key climatic and local environmental
gradients, and to account for spatial correlation structures in the
data (Methods). The use of machine learning allows us to model
complex, non-linear relationships, and interactions among pre-
dictors. BRT also provides an estimate of each predictors’ relative
influence in a multivariate modeling setting. We quantify the
effects of LSP on AGB by predicting AGB over the study area at
high spatial resolution using model configurations that both
neglect and account for the effects of the three LSP on AGB.
These analyses allow us to compare the locations where LSP are
either present or absent, after controlling for other environmental
conditions. We expect that in the studied arctic-alpine system
(mainly sporadic-discontinuous permafrost, low ground ice
content) LSP will demonstrate secondary importance to AGB
after the climatic factors.

We show that three surveyed LSP collectively reduced AGB in
the study area on average by nearly one-third (30%, 123.0 g m−2).
This effect was significant over various landscape positions and
was especially pronounced in snowbed environments (mean AGB
reduction 57.3%). Our results suggest that LSP are important in
shaping future patterns of tundra biomass, as long as cryogenic
ground activity is retained by climate warming.

Results
LSP effects on above-ground biomass. Sites with active LSP
present were associated with significantly lower NDVI and con-
sequently estimated AGB compared to sites with no LSP activity
(Supplementary Table 1). We found that the current AGB pat-
terns were most strongly related to growing degree days (GDD,
mean effect size= 653.8 g m−2 [509.8–797.7 g m−2, 95% range of
variation]), potential incoming solar radiation (RAD, 430.7 g m−2

[115.8–842.0 g m−2]) and soil chemistry (pH, 306.8 g m−2

[290.8–323.3 g m−2]; Supplementary Fig. 1). Within the LSP
realm, the total effect of the three LSP on AGB was −123.0 g m−2

(−30.0%; Fig. 2a) on average (−77.4 to −168.7 g m−2). There
were significant negative effects of LSP on AGB (P ≤ 0.001, paired
one-sided t-test, n= 500) across the AGB gradient in our study
area; the presence of active cryoturbation decreased AGB by an
average of −86.6 g m−2 (−26.3, −64.1 to −109.2 g m−2) com-
pared to sites without cryoturbation, but otherwise similar cli-
matic, topographic and soil conditions. On mountain slopes,
which are important transition zones between forest and tundra
biomes12, the presence of active solifluction reduced AGB by an
average of −21.5 g m−2 (-21.7%, -7.1 – -35.9 g m-2). In high-
elevation snowbed environments the presence of nivation led to a
minor absolute (−14.9 g m−2, −6.2 to −23.6 g m−2), but a large
relative average decrease (−57.3%) in AGB. These results support
our argument that cryogenic soil disturbance is likely to impact
the accumulation of vegetation biomass in cold regions over a
wide range of landscape positions.
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Fig. 1 The study area and observation sites, and their climatic coverage. a Location of the study area (black box) in respect to the circum-Arctic region.
b Normalized difference vegetation index (NDVI) overlain by observation sites (n= 2917) and type of LSP (Nivat= nivation, Solif= solifluction,
Cryot= cryoturbation). The black rectangle indicates the model prediction domain. c–e show field photos of typical surface features of LSP: cryoturbation
(frost-churning), solifluction (solifluction lobes) and nivation (snow accumulation sites), respectively. f the relationship between AGB measured in-situ
(sampling regions are labeled as “BM region 1” and “BM region 2”, total number of measurements is 433) and NDVI; the red line depicts a fitted
generalized least squares function used to estimate AGB for the LSP sites (Methods). The kernel smoothed NDVI distributions in the presence of any of the
three LSP (n= 1440) and absence of all LSP (n= 1477) are shown in the background. g Permafrost (PF) conditions at each LSP observation site according
to a recent ground thermal modeling26. The PF categories continuous, discontinuous, sporadic, and PF absent are associated with the presence of at least
one LSP, whereas the last category (PF absent, LSP absent) does not include any LSP.
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Fig. 2 The effect of cryogenic land surface processes (LSP) in the biomass models. a The bar plots show the effect sizes of the observed LSP on estimated
AGB after controlling for the effects of other environmental predictors. The lines indicate 95% confidence intervals based on boosted regression trees (BRT)
modeling over 500 bootstrap samples. Asterisks indicate statistically significant differences between sites with LSP absent and LSP present (P≤ 0.001,
paired one-sided t-test, n= 500). b Prediction error of the AGB models in terms of root mean squared error (RMSE) between observations and each of the
model predictions (calibrated first without LSP [Base model] and then with LSP [LSP model]). The boxplots depict median, 1st and 3rd quartiles, and 95%
range of variation over 500 cross-validation rounds. Asterisks indicate statistically significant model improvement (P≤ 0.01, paired one-sided t-test,
n= 500). c Predictors’ relative influence in the above-ground biomass (AGB) models. Here, the LSP includes the summed influences of cryoturbation,
solifluction and nivation (numerical results are presented in Supplementary Table 2). The black lines indicate the standard deviation over 500 BRT model
runs with bootstrap sampling. GDD growing degree days, WAB water balance, Tfeb February mean air temperature, RAD potential incoming solar radiation,
RAC residual autocovariate for the LSP model (i.e., RACLSP), TWI topographic wetness index, Peat peat cover.
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We tested the effect of LSP on AGB by using two separate BRT
model configurations. The first model did not include the LSP
(hereafter “Base model”); the second model included the LSP
(“LSP model”). The LSP model showed a significant improvement
in the predictive performance (P ≤ 0.01, paired one-sided t-test,
n= 500) in terms of root mean squared error (RMSE; mean
RMSEBase model= 332.1 gm−2 (186.8–572.4 gm−2, 95% range of
variation), mean RMSELSP model= 316.8 gm−2 (175.7–547.8 gm−2);
Fig. 2b). This significant decrease in RMSE indicates that LSP should
be considered in biomass models in order to better predict local
AGB patterns in arctic and alpine tundra. The relative influence of
individual LSP remained low on average (Supplementary Table 2),
but their combined influence of ca. 6.4% was ranked as the fourth
highest after GDD, pH and WAB (Fig. 2c). This finding complies
with our expectation that LSP can be considered as secondary factors
controlling the AGB patterns in these systems.

Our data and analyses are associated with a considerable
amount of uncertainty as indicated by large variability around
mean estimates and prediction error. Such uncertainties are likely
to reflect landscape-level heterogeneity in considered environ-
mental variables not captured by our data, and uncertainty
related to the NDVI-model used to derive AGB estimates for the
LSP sites. In addition, the deployed visual approach for mapping
active LSP is likely to contain uncertainty. Whereas active
cryoturbation can be readily identified based on indications of
frost-heaving and change in vegetation cover, active solifluction
may be more challenging to identify without direct velocity
measurements. This is because the maximum depth of soil
movement can be deeper than the rooting depth enabling
vegetation to grow on active solifluction features19. This may
partly explain our finding of a relatively smaller reduction in AGB
over solifluction sites compared to cryoturbation or nivation sites
(Fig. 2a). In addition, nivation processes are commonly active in
late-lying snowbeds which have relatively consistent year-to-year
patterns31, making such snowbeds good indicators of the
presence of active nivation processes28. However, it is likely that
some of the found effects of nivation on AGB derives from other
mechanisms such as snow cover limiting energy input. Moreover,
our statistical modeling framework assumes that above-ground
biomass in a given area is at equilibrium with its environment
and that the relevant environmental variables have been
adequately sampled. Our input data showed clear spatial
autocorrelation structures for all predictors. For climate pre-
dictors the spatial autocorrelation was found to extend longer
horizontal distances than for local topography and soil-related
predictors, and LSP (Supplementary Figs. 2–3). Such data
structures were explicitly accounted for in the modeling, and
the consequent analyses were not confounded by spatial
autocorrelation (Supplementary Figs. 4–5; see Methods).

Future AGB trajectories under climate warming. In tandem
with the projected increase of AGB20, the studied active LSP are
expected to widely decrease as a response to climate change17

(Supplementary Figs. 6–8), with largely unknown consequences
for tundra vegetation. To examine this, we simulated potential
future AGB trajectories over the study area using the two model
configurations (i.e., Base model and LSP model). We predicted
AGB at high spatial resolution and under several climate warming
scenarios constrained by the corresponding predicted changes of
LSP (Methods). The results suggest that LSP can significantly
hinder the increase in AGB, leading to future trajectories that are
suppressed compared to the predictions that do not account for
LSP (Fig. 3). Here, we stress that our data and methods do not
enable us to account for two-way soil-vegetation interactions and
feedbacks or factors such as herbivory, and thus, these future

projections should be interpreted with caution because of the
inadequacies of the data on which they are based.

Even after a considerable warming and loss of LSP, the models
accounting for the LSP effects project lower AGB values than the
Base models, meaning that LSP potentially still restricts the
accumulation of phytomass under future climates. These LSP
effects are particularly evident over slope and snowpack
environments. For example, under the +3 °C warming scenario
the LSP model predicts on average 71.7 g m−2 (−21.1%) lower
AGB (P ≤ 0.001, paired one-sided Wilcoxon’s test), compared to
the Base model at sites maintaining solifluction activity in the
future. Similarly, the corresponding mean reduction for nivation
sites due to disappearance of active nivation would be 75.0 g m−2

(−45.8%, P ≤ 0.001) compared to prediction by the Base model.
However, it is reasonably to assume that the interactions

between cryogenic soil processes and vegetation may differ across
tundra vegetation types6,12,32. In snowbed environments the large
effect of nivation is partly related to the fact that in these
environments the AGB is generally low. Observational and
experimental studies across the Arctic suggest that the warming
may have contrasting effect on community compositions
depending on the starting vegetation type and the responsiveness
to climate warming can vary greatly9,33. This is likely to be true
for communities characterized by active LSP. Here, we cannot
separate AGB responses to LSP across vegetation types, but our
results suggest that LSP are one additional factor that could cause
the contrasting vegetation responses to warming within and
between landscapes and regions. Notably, cryoturbated soils can
act as favorable new microsites for seed germination and seedling
establishment e.g., for tall shrubs as observed in other tundra
regions32,34 as repeated disturbances limit biotic competition and
heave nutrients from deeper soil layers. After LSP activity has
stopped or at least markedly reduced, the biomass accumulation
can thus be rapid. Then also biogeomorphic feedbacks can come
to play; once LSP activity has decreased to a certain level, an
increasing vegetation cover can accelerate the stabilization of the
cryogenic processes19. Thus, LSP may be one important
mechanism of how climate is controlling local ecotone (e.g.,
treeline) dynamics by facilitating vegetation establishment and
altering competition35–37. This further underlines the multi-
faceted role of LSP in shaping tundra AGB, and the potentially
complex and nonlinear AGB-LSP responses in the
future8,9,14,36–38.

We further estimate that cryogenic soil disturbance currently
prevents 5.5% (0.12 Tg) of aboveground carbon storage from being
sequestered in the study area, assuming 50% of the AGB is carbon39.
In tundra landscapes, differences in AGB translate to pronounced
spatial heterogeneity in short-term carbon stocks, especially at
poleward aspects where the microclimate can sustain active LSP long
after macroclimatic conditions become unsuitable14 (Fig. 4). Here we
suppose that the main impact of LSP on carbon stocks derive from
limiting vegetation establishment and growth. However, as the
majority of carbon in the tundra ecosystems is stored in seasonally or
permanently frozen soils40, further research is needed to quantify the
role of LSP in controlling below-ground carbon stocks. For example,
cryoturbation is known to be an important mechanism to transport
organic material from the soil surface into deeper layers, thus
increasing long-term carbon storage40. Our results indicate that an
increase in AGB—possibly regarding tall and long-lived woody
vegetation22—could be delayed due to cryogenic soil disturbance
(Figs. 3 and 4). Therefore, LSP can indirectly mediate biophysical
feedbacks such as changes in ground reflectance and latent heat
fluxes by impacting tundra ecosystem structure (e.g., vegetation
height and volume, and canopy closure) and functioning (nutrient
cycling and soil moisture variations)20,23. Plant species and functional
types have different capabilities to cope with (or even take advantage
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of) physical disturbance41. Thus, loss of cryogenic soil activity should
lead to a plant succession that may take time to reach a new
equilibrium in an overall slow-reacting tundra vegetation.

Our result suggesting nearly one-third reduction in AGB due
to LSP at the study area underline the fact that cryogenic land
surface dynamics must be carefully considered when assessing
current and future biomass patterns over cold-climate regions.
We further postulate that recent cryospheric alterations, such as
decrease of LSP and reduced seasonal snow cover7,42 could partly
explain the observed greening trends of the tundra regions2,9. Our
simulations suggest that the decrease in soil disturbance could
trigger non-linear feedbacks where AGB increase (e.g., shrub
expansion to tundra) is first delayed (i.e., diverging AGB
trajectories between the models in Fig. 3), but later accelerated
following ground surface stabilization after disappearance of
active LSP. Therefore, cryogenic disturbances can cause a short-
term reduction in AGB, but over a longer time period this effect is
likely to diminish. Nevertheless, the results suggest that the LSP
still affect AGB patterns at the end of 21st century. Notably, as
opposed to our study area, in poorly drained tundra regions
associated with continuous and ice-rich permafrost (e.g., North-
ern Siberia, Alaska, and Canada) climate warming can increase
LSP activity e.g., due to promoting the development of permafrost
thaw slumps43 and ice-wedge degradation44. Therefore, large
uncertainties are related to the timing and spatial characteristics
of AGB-LSP responses due to associated geo-ecological lags
related to ground thermal response, altered land surface
dynamics, and rates of vegetation establishment.

These poorly explored responses of tundra vegetation to
climate warming can have far-reaching consequences for global
atmospheric conditions via albedo, evapotranspiration feedbacks,

and carbon balance20,45–48. Thus, our results challenge the
projections of cold-region vegetation dynamics in the near and
intermediate future (50–100 years)20,45,49, and provide a solid
foundation for investigating vegetation-LSP relationships over
other parts of tundra with different environmental conditions.
We show that further development of cryogenic ground
components is urgently required for the next generation
ecosystem and land surface models over large spatial domains.

Methods
Study area. The study area (78 000 km2) is located between 68–71°N and 20–26°E,
with strong climatic gradients, ranging from wet maritime to relatively dry con-
tinental, over tens of kilometers. The landscape of this climatically sensitive high-
latitude region has been affected by multiple glaciations in the past. It includes the
Scandes Mountains near the Arctic Ocean and low-relief areas to the south and
east. The majority of the region (52%) is underlain by sporadic permafrost. Con-
tinuous and discontinuous permafrost are limited to the highest mountains of the
study area (2% and 7%, respectively)17,26. This large proportion of sporadic,
typically warm and shallow permafrost in the study area indicates that ground
thermal response to climate warming can be rapid27. Our data do not cover low-
relief plateaus of continuous permafrost (similar to northern Siberia and Alaska),
where the generally high ice content of soil may lead to different and enhanced LSP
responses under climate warming (e.g., ice wedge degradation and surface pond-
ing) with altered AGB feedbacks43,44.

LSP observations. The data consist of 2917 study sites (each 25 m × 25 m) and
includes previously combined observations (both in-situ [n= 581] and remote-
sensing [n= 2336]) of the active surface features of three cryogenic LSP common
in the area: cryoturbation, solifluction, and nivation. These LSP are mainly asso-
ciated with seasonal freeze–thaw processes. Cryoturbation (i.e., frost churning) is a
general term for soil movement caused by differential heave, and it creates typical
surface features such as patterned ground, frost boils and hummocky terrain5.
Solifluction is the slow mass wasting of surficial deposits through frost creep and
permafrost flow, where gravitation causes frost-heaved soil to settle downwards
during the summer thaw, creating features of lobes and terraces50. In addition,
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Fig. 3 Cryogenic land surface processes suppress tundra biomass trajectories under climate warming. The above-ground biomass (AGB) predictions
over the study area are based on two boosted regression trees (BRT) model configurations: Base model (climate + topography and soil) and LSP model
(Base model + cryoturbation, solifluction, and nivation). In a–c, cryoturbation, solifluction, and nivation are independently considered, respectively; in d, all
LSP are considered together. The AGB were extracted from areas suitable for LSP occurrences at each temperature scenario (4T), where monthly air
temperatures (averages of 1981–2010) were modified from +0.5 °C to +8.0 °C at 0.5 °C interval. The lines depict the means and the shaded areas
represent 50% of the predictions. The crosses indicate statistically non-significant (P > 0.05) differences between the predictions (a paired one-sided
Wilcoxon’s test).
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solifluction also includes gelifluction which is a mass wasting process caused by
high porewater pressure in unconsolidated surface debris creating similar lobes and
terraces5,50. We use the term nivation to collectively designate various weathering
and fluvial processes which are intensified and depicted by the presence of
snowbeds (which in general are melting in mid-July – late-August) and nivation
hollows28,51. We expect the presence of such a snowbed to be an indication of
active nivation processes, since in these environments the year-to-year spatial snow
patters are fairly consistent31.

The rationale behind LSP sampling is described in previous geomorphic studies
which served as a basis for the used protocol52,53. Due to the large study domain,
study objectives (focus on distribution of active surface features, not on activity
itself) and modeling resolution (50 m × 50 m), we used a visual method to estimate
the presence/absence of the mapped LSP. We used high-resolution aerial
photography (spatial resolution of 0.25 m−2) and targeted field surveys (GPS
accuracy ~5 m; Garmin eTrex personal navigator) to construct the LSP dataset. A
binary variable (1= presence, 0= absence) was assigned to each LSP to indicate
their evident activity (or absence). The activity/absence of the LSP was visually
estimated based on the evidence in ground surface, indicated by e.g., frost-heaving,
cracking, microtopography (e.g., erosional and depositional forms), soil
displacement indicative to a process form (e.g., solifluction lobes, patterned
ground), changes in vegetation cover and late-lying snow. Such indicators average
the LSP activity over several years. Even small areas with slight indication of
activity were considered active processes. However, such a protocol based on a
visual assessment is susceptible for incorrect activity classification; solifluction may
be active despite having a complete vegetation cover19 and the presence of late-
lying snowbed, although being a good indication28, does not necessarily mean that
active nivation processes are present.

Remotely sensed vegetation index. For obtaining remotely sensed vegetation
index for the study area, we employed a maximum-value compositing approach.
We downloaded all available clear sky (less than 80% land cloud cover) Landsat
OLI 8 images overlapping the study area from June to September between 2013 and
2017 (total of 1086 scenes) from the United States Geological Survey (USGS)
database (http:\\earthexplorer.usgs.gov\). Images were USGS surface reflectance

products, which were preprocessed (georeferencing, projection, and atmospheric
corrections) by USGS54. Landsat-8 satellite is the latest addition to the Landsat
mission that has provided repeated land surface information globally since the
1970’s and is the most commonly used fine-scale satellite system for vegetation
mapping. The native resolution of the Landsat OLI sensor is 30 m for the spectral
bands used in the image processing steps of this study.

Normalized difference vegetation index (NDVI), a widely used spectral index to
estimate the amount of green vegetation, was calculated as55:

ðρNIR � ρredÞ=ðρNIR þ ρredÞ ð1Þ
where ρNIR and ρred are the surface reflectance for their respective Landsat bands,
0.851–0.879 μm and 0.636–0.673 μm.

USGS provides pixel-based quality assessment bands for all surface reflectance
products. These bands were used to mask clouds, snow, water, and other low-
quality pixels from the individual NDVI scenes. Additionally, if the NDVI images
still had unphysical values over 1 or under -1, these pixels and their surroundings
of 100 m radius were excluded. We determined maximum values for each 30 m
resolution pixel of the study area individually. After masking cloud, snow, and
water from the scenes, obvious scattered erroneous NDVI values remained in some
scenes. Therefore, we excluded the values outside the pixel-based 95% percentile
prior to maximum composite.

The CFmask cloud detection algorithm that is used to generate the quality
assessment band has clear difficulties in distinguishing small snow patches from
clouds. As such, a large portion of late-lying snow beds were repeatedly and
incorrectly classified as clouds. Moreover, the CFmask algorithm creates buffers
around the cloud pixels54, hence much information was lost around the snow
patches that were incorrectly identified as clouds. After these processing steps,
some pixels around the extreme late-lying snow beds had still too low number of
NDVI records to provide reliable NDVI values for the maximum composite. To fill
these small and scattered gaps in the initial maximum NDVI composite, we
selected 74 mostly cloud-free scenes between August and September. For these
74 scenes, we manually digitized cloud masks to exclude cloud-contaminated pixels
with high certainty. Moreover, every pixel must have passed the following quality
checks to be included in the gap-filling composite: not classified as water in the
USGS quality assessment band; normalized difference snow index (NDSI) value
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less than 0.4, and blue band reflectance less than 0.1 (to exclude snow); reflectance
of red band between 0.03 and 0.4 (second check for water and snow, and deepest
shadows); NDVI between 0 and 0.4 (lower threshold to exclude snow and water
contamination; higher threshold to exclude erroneous values, as very late snowbed
habitats always have very limited vegetation cover). Additionally, if the NDVI
images had unphysical values over 1 or under -1, these pixels and their
surroundings (200 m radius) were excluded. Pixels in the 74 selected images which
passed these checks, were then used to create a secondary maximum NDVI
composite that was used to fill the gaps in the initial maximum NDVI composite.
The secondary composite comprised 0.4% of the pixels in the final composite.
Among all 2917 LSP observation sites, 2.9% were located within the gaps in the
initial maximum NDVI composite, and thus received their maximum NDVI values
from the secondary NDVI composite.

In the used Landsat data, the nivation sites were not covered by snow, but
instead were associated with generally lower AGB values as nival processes affect
the vegetation’s structure and composition (Supplementary Table 1).

Above-ground biomass data. Above-ground biomass (AGB) reference data were
collected from two regions, with a total of 433 sites that represent an area of >
4000 km2 (Supplementary Fig. 9). The first dataset (hereafter BM region 1; cen-
tering to ca. 69°N, 21°E) was collected between 2008 and 2011, and the second
dataset (BM region 2; centering to ca. 70°N, 26.2°E) between 2015 and 2017. Both
study regions are representative of an arctic and alpine treeline ecotone and include
data from mountain birch forest to barren oroarctic tundra56,57.

The BM region 1 dataset consists of 309 field sites (each 10 m × 10m), which
are located around eight different massifs covering a wide range of environmental
conditions (Supplementary Figs. 9–10). Sampling was performed in transects to
cover various aspects of the slope (i.e., topoclimatic conditions), starting from the
foothill of the mountain, and ending at the summit. A plot was systematically
established at every 20 m increase in elevation and recorded with a GPS device.
Four clip-harvest biomass samples (20 cm × 20 cm) were taken 5 m from the plot
center in every cardinal direction. Two samples were used in bare mountaintops
(north, south). The clip-harvest samples were dried for 48 h at +65 °C, and dry
weight was recorded. The sample biomass values were converted to g m-2 and the
average sample value was calculated for each site (Supplementary Fig. 9). The
original BM region 1 dataset contains forest and treeline plots, but these were
excluded from the final analyses due to an incomparable tree sampling strategy
with BM region 2, which could introduce uncertainty into biomass estimates.

The BM region 2 data were collected from three different massifs having an
elevation range from 120 m to 1064 m (Supplementary Fig. 9). The biomasses were
sampled from 102 sites (each 24 m × 24 m in size) that were chosen using a
stratified sampling to cover gradients of thermal radiation (potential incoming
solar radiation), soil moisture (topographic wetness index, TWI) and vegetation
zone (forest, treeline, and alpine zones). Radiation and TWI were calculated from a
10m digital elevation model (DEM, provided by the National Land Surveys of
Finland and Kartverket, the Norwegian mapping authority), and assigned to one of
three classes based on observation percentiles (breaks at 20% and 80%) leading to
total of 27 strata. Vegetation zones were digitized based on aerial imagery. After the
first field survey, 22 sites were added to account for vegetation types that were not
sufficiently represented by the GIS-based stratification. Thus, the total sample size
of the BM region 2 dataset is 124 AGB sites.

The same clip-harvest sample protocol was used as in BM region 1; additional
samples were also taken from 12 m in every cardinal direction, thus each site had
eight AGB samples (Supplementary Fig. 9). Trees with diameter at breast height
(DBH) greater than 20 mm were measured from a 900 m2 circular plot, which
corresponds to the size of the NDVI product resolution. Large stems
(DBH > 80 mm in the forest and 40 mm at the treeline) were measured from the
whole plot, whereas smaller stems were measured from five subplots. Specifically,
the center subplot was 100 m2, and the four subplots located at 8 m to every
cardinal direction were each 12.5 m2. For the subplot observations, we used a plot
expansion factor (900/150= 6) to generalize the observations for the whole plot
assuming a homogeneous forest structure i.e., each subplot stem represents six trees
within the 900 m2 plot. A total of 98% of the measured stems were mountain birch
(Betula pubescens ssp. czerepanovii), making it the most abundant species in the
area. For predicting stem biomass, we used the average of three allometric
equations58–60, in order to reduce the uncertainty related to the transferability of an
individual allometric model. In addition, Populus tremula (1% of the observations)
were found on low-altitude south-facing slopes, and Salix caprea (1%) in moist,
nutrient-rich sites. Species-specific models61,62 were used to estimate their
respective stem biomasses. Individual pines (Pinus sylvestris) were scattered in the
area but were not present in any of the sampled plots.

The plots of above-ground tree biomass were converted to g m−2 and added to
the mean clip-harvest AGB to obtain the total vascular plant AGB for each site. The
BM region 1 and BM region 2 datasets were combined, and the NDVI value was
extracted from the site center coordinates.

Spatial autocorrelation (SAC) is a common property of any spatial dataset and
means that observations are related to one another by the geographical distance63.
SAC in the model residuals violates the independence assumption commonly
required by statistical models and can lead to inflated hypothesis testing and biased
model estimates64. To investigate whether the plot-scale AGB data are spatially

autocorrelated, we calculated semivariogram which describes the spatial
dependency between the observations as a function of distance between the point
pairs65. Semivariogram were calculated as:

γðhÞ ¼ 1
2NðhÞ ∑

Nh

i¼1
Z si
� �� Z si þ h

� �� �2 ð2Þ

where N(h) denotes the number of data pairs within distance h, and Z si
� �

is an
observation (or model residual) in location i. For the calculation, we used R
package gstat66 (version 2.0-0). A visual inspection of the semivariogram indicated
spatial autocorrelation at short distances (“AGB” in Supplementary Fig. 11).
Therefore, for the NDVI-AGB conversion, we used a generalized least squares
modeling (GLS, as implemented in R package nlme67 [version 3.1-137]) that can
explicitly account for SAC in the data. For the modeling, the AGB values were log(x
+0.1) transformed. The GLS, where AGB was modeled as a function of NDVI,
were fitted assuming an exponential spatial correlation structure:

γ hð Þ ¼ c0 þ c 1� e�h=a
� �

ð3Þ

where c0 is the difference between the intercept and origin (i.e., the “nugget”
parameter in geostatistics), c is the amount of variance (i.e., the “sill”) and a
represents the distance of spatial dependency (i.e., the “range”). The fitted GLS was
as follows:

log AGBð Þ ¼ �1:038629þ 9:725572 ´NDVI ð4Þ
The estimated spatial correlation parameters were c0= 0.516, c= 0.484 and

a= 260.605, indicating that the distance of spatial autocorrelation extends to ca.
261 m. The semivariogram for the model residuals indicated a notable reduction in
the amount of spatial autocorrelation compared to the AGB data (Supplementary
Fig. 11). The fitted model explained 70.6% of the deviance in the data. When the
predicted values were converted back to the response scale, the model explained
60.5% of the deviance. Therefore, for the subsequent analyses we use the above-
ground biomass estimated by the model.

Environmental predictors. In addition to LSP, we used climate, topography, and
soil predictors to model AGB. Gridded monthly average temperatures and pre-
cipitation data (1981–2010; spatial resolution 50 m × 50 m) based on a large col-
lection (> 950) of Fennoscandian meteorological stations were used in a spatial
interpolation scheme17. Three climate predictors—growing degree days (GDD, °C,
base temperature 5 °C), mean February air temperature (Tfeb, °C) and water
balance (WAB, mm)—were calculated from the gridded climate data. WAB is the
difference between total annual precipitation and potential evapotranspiration
(PET), which was estimated from the monthly air temperature and precipitation
data68:

PET ¼ 58:93 ´Tabove0�C=12 ð5Þ
These climatic predictors were selected to represent different aspects of climate

that are critical for tundra vegetation: heat requirements, cold tolerance and
moisture availability. In addition, two local scale topographic predictors were
calculated from a DEM (spatial resolution of 50 m × 50 m, provided by the
National Land Survey Institutes of Finland, Norway, and Sweden): topographic
wetness index69 (TWI, a proxy for soil moisture) and potential annual direct solar
radiation70 (MJ cm-2 a-1). Slope angle was initially considered as a potential
predictor for AGB but was later omitted due to the strong correlation with TWI
(-0.93, P ≤ 0.001). We also calculated peat cover (%) from a digital land cover
classification71. Here, the native resolution of 100 m was resampled at 50 m to
match the resolution of the climatic and topographic predictors, using nearest-
neighbor interpolation. The binary peat cover variable was transformed to a
continuous scale using a spatial mean filter of 3 × 3 pixels52. Finally, the topmost
soil layer of a global gridded soil database72 was used to obtain pH data. Again, the
original resolution of 250 m was also resampled to 50 m resolution using bilinear
interpolation.

Our fine-scale data revealed strong environmental gradients over the
78,000 km2 study area (Supplementary Table 1), most of which were only
moderately inter-correlated (Spearman’s correlation coefficient < [0.7];
Supplementary Table 3). All predictors showed clear spatial autocorrelation
structures (Supplementary Figs. 2–3).

Climate data for future warming scenarios. To investigate tundra AGB change
along climate warming, we prepared climate data by modifying monthly air
temperatures from +0.5 °C to +8 °C at 0.5 °C intervals. To account for the unequal
warming among different months, we calculated monthly adjustment factors
(Supplementary Table 4). The relative changes in current monthly air temperatures
were compared to those projected by an ensemble of 23 global climate models
derived from the archives of Coupled Model Intercomparison Project Phase 5
(CMIP5)73 for the period of 2070–2099, assuming a representative concentration
pathway (RCP) 8.574. The monthly precipitation data needed to be adjusted to
account for the air temperature increase. The amount of adjustment was deter-
mined by regressing the projected change in monthly precipitation (4Prec, %) by
the CMIP5 models against the projected change in the corresponding monthly air
temperature (4T, °C; Supplementary Fig. 12). The resulting relationship
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4Prec=−0.445+ 3.85 ´ 4T was used to adjust the monthly precipitation data at
each temperature scenario. Subsequently, all climate predictors (i.e., GDD, Tfeb
and WAB) were recalculated for each corresponding warming scenario.

Future LSP data. We used the recently developed statistical modeling approach17

to predict future LSP distributions at the study area. In brief, this was done by
relating each investigated LSP to climatic, topographic, and soil predictors using an
ensemble of four statistical techniques ranging from regression (generalized linear
models, generalized additive models) to machine learning (boosted regression trees,
random forest). The LSP predictions of cryoturbation, solifluction and nivation
over the study area (spatial resolution 50 m × 50 m) were produced for each cor-
responding warming scenario (i.e., from +0.5 °C to +8 °C at 0.5 °C intervals).

Statistical AGB modeling. Prior to modeling, the AGB values were log-
transformed to approximate a normal distribution. All statistical analyses were
conducted using the R statistical computing environment75. We used boosted
regression trees (BRT, as implemented in the R package “gbm”76) to link AGB to
the climatic, topo-edaphic and LSP predictors using all 2917 observations and
assuming Gaussian error distribution. BRT is a sequential machine-learning
method that combines a large number of iteratively fitted regression trees to a
single model with improved prediction accuracy29. BRTs automatically incorporate
interactions between predictors, are capable of modeling highly complex non-linear
systems, and provide an estimate of the predictors’ relative influence in the models.
We optimized BRTs using an “out-of-bag” estimator and setting the interaction
depth to six, learning rate to 0.01 and bag fraction to 0.75. In order to control for
potential differences caused by choice of modeling technique, we also ran parallel
analyses using random forest30 (RF) with the maximum number of trees set to 500.
To assess whether accounting for LSP improves the AGB predictions, the models
were fitted using two configurations:

AGB ¼ GDDþWABþ TFeb þ TWI þ Peat þ RADþ pH þ RACbase ð6Þ
[Base model]

AGB ¼ GDDþWABþ TFeb þ TWI þ Peat þ RADþ pH þ RACLSP

þCryoturbationþSolif luctionþNivation
ð7Þ

[LSP model]
where the RACBase and RACLSP refer to residual autocovariates (RAC). Following

the ref. 77, these were calculated from the BRT residuals and then added back to the
models as additional predictors to account for SAC. This was done despite a visual
inspection of the BRT residuals without the RACs did not reveal evident signs of SAC
(Supplementary Fig. 4). However, after calculating semiovariograms over very short
distances (≤ 5 km) SAC patterns in the residuals could be detected (Supplementary
Fig. 5). The two fitted exponential functions γ hð Þ ¼ 0:707ð1� e�h=162:385Þ for the
Base model step and γ hð Þ ¼ 0:699ð1� e�h=158:249Þ for the LSP model step indicated
that the SAC extends to ca. 162m and 158m, respectively. Consequently, the RACs
were calculated using the function autocov_dist() as implemented in R-package
spdep78 (version 1.1-3). For calculating the RACBase and RACLSP we used the above-
mentioned neighborhood radius of 162m and 158m, respectively, with an inverse
distance weighting scheme and symmetric weight matrix (style=“B” in the
autocov_dist -function, following ref. 79).

The predictive capability of the models was assessed with a repeated cross-
validation (CV) scheme, where the models were fitted 500 times at each round
using a random sample of 99% of the data (out of 2917, with no replacement) and
subsequently evaluated against the remaining 1%. A distance-block (hereafter h-
block, i.e., the minimum distance between calibration and evaluation data) of
158 m (panel b in Supplementary Fig. 5) was specified to omit model calibration
data located at the immediate vicinity of the evaluation data, which could lead to
overly optimistic CV-statistics due to spatial autocorrelation80. The CV procedure
yielded an average of 2873 observations available for model calibration, and 30 for
evaluation per CV round. After each CV run the predicted and observed AGB were
compared in terms of root mean squared error (RMSE) for both model steps.

To quantify the effects of LSP on AGB, the LSP models were used to predict
AGB (using all 2917 observations and 500 bootstrap sampling-rounds) under two
conditions. The first included that other environmental predictors (i.e., climate,
topography, and soil) and RACLSP were fixed to their median values (constrained
to an environmental envelope allowing each LSP occurrence), and each LSP is in
turn set to absent (0). The second condition was that environmental predictors and
RACLSP were fixed to their median values as mentioned above, but each LSP is in
turn set to present (1). The total effects of LSP on AGB over the study area were
determined by adding the mean effect sizes of each individual LSP as follows:

Total effect ¼ AGBcryot0 � AGBcryot1

� �
þ AGBsolif 0 � AGBsolif 1

� �

þ AGBnivat0 � AGBnivat1

� � ð8Þ

Effect sizes for continuous predictors were calculated over the calibration data
by comparing the predicted minimum and maximum AGB values while fixing
other predictors to their median values.

To obtain spatial estimates, we predicted AGB over the study area at a spatial
resolution of 50 m × 50 m, at each temperature scenario based on two model
configurations: Base model and LSP model, using all observations. For the

predictions, the RACs were fixed to their median values (i.e., zero). This was done
in order to avoid additional interpolation over the study area that could increase
uncertainty in the consequent analyses. Although the AGB predictions were
produced over the entire study area, all comparisons of AGB values between the
model steps were limited to areas suitable for the occurrence of LSP (i.e., the LSP
realm)17. As the AGB predictions by BRT were in close agreement with those of
RF (Spearman’s rank correlation coefficient= 0.96), we only present the BRT
results.

Data availability
The data are deposited in the Zenodo public repository81 at https://doi.org/10.5281/
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Code availability
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