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Coupled social and land use dynamics affect
dietary choice and agricultural land-use extent
Saptarshi Pal1,2, Chris T. Bauch 1 & Madhur Anand2✉

Dietary patterns have long been a driver of global land use. Increasingly, they also respond to it,

in part because of social processes that support adoption of eco-conscious diets. Here we

develop a coupled social-and-land use mathematical model parameterised for 153 countries.

We project global land use for future population, income, and agricultural yield using our

coupled dynamical model. We find that coupled social-and-land feedbacks can alter the peak

global land use for agriculture by up to 2 billion hectares, depending on the parameter regime.

Across all yield scenarios, the model projects that social dynamics will cause an increase in

eco-conscious dietary behaviour until the middle of the 21st century, after which it will decline

in response to declining land use caused by a shrinking global population. The model also

exhibits a regime of synergistic effects whereby simultaneous changes to multiple socio-

economic parameters are required to change land use projections. This research demonstrates

the value of including coupled social-and-land feedbacks in land use projections.
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From 1961 to 2013 global food demand went up threefold,
from 6.4 trillion to 19.4 trillion kilocalories (kcals) per day.
This massive increase is attributed to an increase in the

world population from 3 to 7.1 billion and an increase in average
per capita consumption of food from 1800 kcals per day to
2600 kcals per day over this period1. Land is the primary source
of the global food supply. In 2013, an estimated land equivalent of
3.5 billion hectares was consumed (72% of agricultural land in
that year) while approximately 1.4 billion hectares of land was
spent on food wastage2. Future expansion in global agricultural
land and/or increased intensity of existing farmland usage is
therefore a highly probable pathway to meet the enhanced
demands of the 21st century. However, agricultural expansion
and intensification represent major ecological threats, ranging
from the clearing of forests and habitat fragmentation3,4 to
increased greenhouse gas emissions5,6.

Agricultural intensification faces an uncertain future. From
1961 to 2013, production gains were mostly due to the steady
growth in land productivity1,5. Some studies suggest that
certain major crops are approaching their yield ceilings in rich
countries7–9. There has been a deceleration in yield growth across
the globe, primarily due to decreasing investment in agricultural
research and reduced food production prices in both higher and
lower-income countries10. Slowing intensification may trigger
agricultural land expansion if demand for food rises on account of
growing populations and per capita income and if food produc-
tion prices remain unchanged.

Mathematical models of sustainable food systems are becoming
an increasing topic of research11–17. Research on sustainable
pathways for agricultural technologies tends to focus on the supply
side of the problem. On the demand side, models often stipulate
future demand trajectories that are independent of how the model
variables evolve. For instance, sophisticated land system ensemble
models used to project land use in Intergovernmental Panel on
Climate Change (IPCC) reports use scenarios for homogenized
dietary consumption patterns as inputs and, as such do not study
the dynamics of system-induced drivers of human consumption
behaviors18–21. The importance of incentivizing sustainable,
eco-conscious consumption has been noted22. Dietary patterns
can heavily influence trajectories of global land use20,23–26 and
individuals include environmental factors while making dietary
decisions27,28, and therefore land-use dynamics and socially influ-
enced dietary choices are coupled to one another through two-way
feedback. However, there has been limited investigation into
understanding how these shifts in dietary patterns evolve within
populations due to social and economic factors, and in particular
how they respond to changing land use.

Eco-conscious consumption is an economically and socially
induced process that evolves endogenously in a population and
hence systematic study using theoretical models may help gen-
erate insights into this process. From the individual perspective,
adopting an eco-conscious diet may involve paying the cost of
losing the personal satisfaction of consuming meat29,30. However,
an individual’s choice to adopt an eco-conscious diet can promote
environmental sustainability, since scarce global land use is
reduced as a result of that choice (although we note that reduced
land use for food production does not translate automatically into
reduced pressure to convert natural land states since the land that
is spared could still be used for other forms of natural resource
extraction). Hence dietary choices represent a public goods game,
where individuals may choose to contribute to a common benefit
that all members of the group receive, even if they did not make a
contribution31–33. Modeling social behavior in public goods
games often uses models of social learning dynamics from evo-
lutionary game theory, which captures how individuals learn
behaviors from one another34–36. Interest has grown in coupling

dynamic social learning models to models of natural processes
such as the global climate system37,38 and terrestrial ecosystems39

although social learning dynamic models have not been
applied to study coupled dynamics of global land use for food
production and dietary decision-making in human populations,
to our knowledge.

Here, we introduce a modeling framework for coupling the
country-level dynamics of eco-conscious dietary decision-making
under social learning processes to country-level land-use dynamics.
Our objectives are to: (1) show how models of social dynamics and
land-use dynamics can be coupled to generate dynamics that are
not possible using approaches that treat these systems in isolation
from one another, and (2) gain insight into how potential coupled
social-and-land use processes alter both projected global land use
for food production and projected dietary trends. Our objective was
not to generate projections for policy use, but rather demonstrate
that the framework has potential for such applications in the future.
Hence, we opted for a minimal model that was easier to fit to data
and gain insight from.

Results
Model overview. Our mathematical model describes a social
learning process by which individuals learn dietary behavior from
others. Our model captures the two-way feedback between land
use and dietary practice: as dietary practices impact global land
use for food production, the resulting trends in global land use
can, in turn, stimulate behavior toward more eco-conscious diets
in a closed feedback loop, albeit modified by socio-economic
drivers. Details of the model appear in “Methods”.

We compare diets by comparing the per capita land required to
support them. For every country i, we assume a proportion pi(t)
of the population is below the poverty line (where t is time, in
years). These individuals eat a sustenance diet that requires an
amount of land cSi ðtÞ, measured in hectares per individual for
production. In contrast, the proportion 1− pi(t) of the population
above the poverty line can choose either an eco-conscious diet or
a land-intensive diet. We define a daily diet to be eco-conscious if
it uses between cSi ðtÞ and cLi ðtÞ hectares of land per capita, where
cLi ðtÞ is the land use required to support the eco-conscious EAT-
Lancet diet40. We assume that no diet requires less land than the
sustenance diet for its support. A diet is land-intensive when it
requires more than cLi ðtÞ hectares per capita to maintain. The
actual per capita land use due to the diet of an average individual
above the poverty line in country i is denoted cAi ðtÞ, and this
quantity depends on how many individuals in that country
practice eco-conscious versus land-intensive diets. Further details
on how this quantity is inferred appear in the Methods section.

We couple global land use for food production and population
dietary behavior by developing an evolutionary game theory
model that accounts for social learning and socio-economic
incentives for individuals above the poverty line to switch
between eco-conscious and land-intensive diets. Individuals shift
from a land-intensive diet to an eco-conscious when the personal
utility of the eco-conscious diet outweighs the personal utility of
the land-intensive (and vice versa). The rate of dietary change is
dictated by (a) this difference in utilities at any given time t and
(b) a social learning rate that describes how quickly social
learning of behavior occurs in country i. In particular, the
proportion xi(t) of the population eating an eco-conscious diet at
time t in country i is

dxi
dt

¼ κixið1� xiÞðβimiðtÞ þ αi þ LGðtÞÞ : ð1Þ

Here, κi is the social learning rate, and Δei= βimi(t)+ αi+ LG(t)
represents the utility difference that governs dietary change.
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When Δei > 0, the proportion xi of individuals in country i eating
an eco-conscious diet increases, but when Δei < 0, that proportion
decreases. The term LG(t) is the global land use for food
production. When LG(t) becomes sufficiently large, xi increases
since greater observed land use can stimulate a switch to eco-
conscious diets. mi(t) is the average per capita income of country i
and the parameter βi controls the impact of per capita income on
dietary decision-making. For instance, if higher per capita
incomes cause more individuals to eat land-intensive diets, then
βi may be negative, causing a decline in xi. Finally, the parameter
αi is the net utility (benefit minus cost) for an individual to adopt
an eco-conscious diet associated with all other factors not
captured by βi or LG. This is the combined effects of various
psychological, social and economic factors (and maybe negative).
When cAi > cLi , negative values for αi and βi indicate a higher net
benefit of a land-intensive diet over an eco-conscious diet. For
simplicity, we call αi and βi the net non-income benefit and the
net income benefit of adopting a land-intensive diet over an eco-
conscious diet respectively hereafter (since their inferred values
tend to be negative in most countries). The rate of dietary change
is dictated by κi, which describes how fast social learning occurs
in country i. The parameter κi acts as a control knob that
determines how often individuals ‘sample’ other individuals in
the population regarding their diet. A high value of κi can
accelerate change in either direction depending on the sign of the
utility difference. A graphical representation describing the
coupled two-way feedback model between global land use and
individual dietary behavior in populations is represented in Fig. 1.

We use a previously published model2 to generate country-
level land use data based on dietary patterns from 1961 to 2013.
The model we use to generate the country-level land-use data
takes into account that food consumed in a country may come
from imported sources. Therefore, the model computes global
land used due to dietary consumption by a country at a year by
adding the land used inside the country (accounting for locally
produced food) and land used outside the country (accounting
for imported food). We fit our model to these data to estimate κi,
βi, and αi for 153 currently existing countries (see Supplementary
Methods for methods of parameter estimation and Supplemen-
tary Note 1 for results of parameter fitting). These estimated
parameters were taken as our baseline parameter values. Under
the umbrella term “agricultural land use” we included land used
for agriculture, pasture, and feed generation. Our land calcula-
tions excluded land equivalent of food wastage: we accounted
only for the land that is used to generate the food that ends up
being consumed by the population (see “Methods” for details).
Beyond 2013 (the last available year in the Food and Agricultural
Organization data—FAOSTAT, food balance sheets1), land use
was projected under different scenarios defined by a parameter f
for future yields (a number between 0 and 1). Low values of f
represent scenarios where future global yields are higher. High
values of f represent inferior (low) yield futures (see Methods for
a mathematical representation of the scenarios).

We make projections of global land use for food production
(hereafter, simply “global land use”) for 20 scenario combinations
for 153 countries (see Supplementary Note 1 for details on
countries included for projection analysis). For country-level
population size and income projections, we use the five
SSP (“shared socio-economic pathway”) scenario markers,
SSP1–SSP541,42. Each SSP scenario represents a unique storyline
for the future that dictates the trajectory of population and
income in countries (among other things). For our main results
we assumed SSP2, where current trends of population and
income continue, and moderate progress is made by achieving
income convergence between countries. We present results for

the other four SSPs in the Supplementary Information (Supple-
mentary Fig. 8). SSP1 is characterized by relatively high income
and small population. SSP3—also called the road to regional
rivalry—is characterized by an overall high population growth
and low-income levels in developing countries. The SSP4 future
sees a high disparity in economic growth rates between high-
income and low-income countries; global growth is less rapid
compared to SSP1. In an SSP5 world, economic development is of
utmost priority, income growth is high, on average, and it is
coupled with strong improvement in education that leads to
reduced fertility and hence a relatively small but well-educated
population. See Supplementary Fig. 7 for population and income
projections under the five SSP scenarios until 2100. Although
each SSP scenario has a unique storyline for yield growth, we also
show results for four possible future agricultural yield trajectories
that differ from the baseline SSP scenario assumption: f= 0.2
(high future yields), 0.4, 0.6, and 0.8 (low future yields). Our use
of SSP scenario is selective and they only serve as a starting point
to explore parameter variations: as we only use population and
income projections from the SSP scenarios and not yield, our
projections for every SSP scenario differs from conventional
approaches to projecting land use under these scenarios.

Social-and-land dynamics at the global level. Model projections
at the global level reveal two main findings. The first main finding
is that the proportion of eco-conscious consumers (the propor-
tion of individuals above the poverty level practicing an eco-
conscious diet) is predicted to rise in response to growing global
land use until the middle of the 21st century, and then start
declining as global land use also declines (Fig. 2). The peak global
land use falls between 3.25 and 4.5 billion hectares, depending on
the yield scenario, and the proportion of eco-conscious con-
sumers peaks between 45% and 53%, depending on yield. This
effect persists in most of the other SSP scenarios (see Supple-
mentary Fig. 8) except that in SSP3 at very low future yields, there
is no decline but a saturation in the proportion of eco-conscious
consumers.

This behavior can be explained in terms of the utility function in
our model that determines decision-making (Δe, Eq. (3)). Almost
every country included in our analysis has a negative fitted value for
αi and βi (see Supplementary Data 1), meaning that there is both a
net cost for practicing an eco-conscious diet, and higher incomes
further tend to cause more individuals to adopt a land-intensive
diet. When global land use LG is close to its 2013 values, the net
utility for adopting an eco-conscious diet is negative because αi and
βi are dominant (thus, Δe < 0). However, between 2020 and 2050,
global land use LG increases substantially and dominates the utility
(Fig. 2), therefore the sign of Δe is reversed for most countries.
(More specifically, the proportion of the global population for
which Δe > 0 is greater than the proportion for which Δe < 0, see
Supplementary Fig. 9). The global proportion of eco-conscious
consumers declines after 2050 for all yield scenarios because
declining global land use causes the utility for practicing an eco-
conscious diet to become negative for a majority of the global
population. A predicted decline in the global population size in the
latter half of the century further contributes to a net decrease in
global eco-conscious consumer proportion, since global land-use
pressure is reduced as a result.

The rising and falling trend occur for all four yield scenarios.
However, in the case of lower yield (f= 0.6, 0.8), the peak in the
proportion of eco-conscious consumers occurs before the peak in
global land use. Whereas for high yield (f= 0.2, 0.4), it occurs after.
This difference occurs because land use expands rapidly under
low yield scenarios, thus stimulating a more rapid social response.
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The details of the rising and falling trend also vary considerably
depending on the SSP scenario (see Supplementary Fig. 8).

The second main finding from analyzing these global level
projections is that the social dynamics partially counteract
benefits of higher yield, or land use impacts caused by other
trends such as changing per capita income and population size.
Higher agricultural yields reduce land pressure, and thereby also
reduce the perceived need to transition to an eco-conscious diet.
As a result, the higher yield scenarios also have a lower
proportion of eco-conscious consumers (Fig. 2).

Heterogeneity in continent-level projections. Projections bro-
ken down by geopolitical region reveal notable heterogeneity
behind the global trends (Fig. 3, Supplementary Fig. 11). Only
Africa is projected to continuously increase its land use (defined
for our study as the proportion of global land use due to dietary
choices in Africa) until 2100, for all yield scenarios. Asian land
use increases until 2030 but then it falls continuously until 2100,
at first because the proportion of eco-conscious consumers rises
and then because its population size begins to decline. European
land use peaks in 2040 but, unlike Asia, it exhibits a continuous
increase in the proportion of eco-conscious consumers through
2100. Oceania and the Americas experience declining land use
through most of the time period. For Oceania, the proportion of

eco-conscious consumers always increases while for the Amer-
icas, the proportion of eco-conscious consumers may increase or
decrease depending on the yield scenario.

Heterogeneity in land use and eco-conscious behavior across
continental aggregates is a combined result of continental
variation in baseline parameters, the impact of global land use
on sustainability decision-making, and variation in continental
population size projections. For example, in certain yield
scenarios, Europe sees a constant growth of eco-conscious
consumers despite a decline in its own use of land for dietary
consumption because it adjusts its behavior according to trends of
global land use. Moreover, at the baseline level, its median value
of αi is less negative compared to other continental groups
(Supplementary Fig. 2). Due to this, there is a very low threshold
of global land use for Europe across which its preference shifts to
a more eco-conscious diet. The same behavioral pattern is seen
for Oceania and the Americas (except the highest yield scenario
f= 0.2) where an increasing or steady eco-conscious consumer
proportion across all yield scenarios is met with a steady decline
in land use. Unlike Europe, Oceania and the Americas see
constant decline in land use throughout most of the projecting
period in the baseline setting.

The population size of Africa increases steadily throughout the
21st century under the SSP2 scenario (see Supplementary Fig. 7).
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Fig. 1 A graphical representation of the coupled two-way feedback model between global land use and dietary behavior in populations. We consider
country-level populations. Each country has two subpopulations—the subpopulation below the poverty level and the subpopulation above the poverty level.
The subpopulation below the poverty level in i (which occupies a fraction of pi(t) of the total population in i at time t) consumes a sustenance diet that
requires a number of cSi ðtÞ hectares individual−1 land, globally, to be produced at time t (measured in years). The subpopulation above the poverty level in i
can choose between an eco-conscious diet or a land-intensive diet (details can be found in Methods). It requires an amount of cAi ðtÞ hectares individual−1

land at time t, globally, to produce the average dietary consumption of the population above-poverty in i. The method for calculating cAi ðtÞ can be found in
Eq. (5). The method for converting a caloric diet to equivalent amount of land required to produce the diet can be found in Methods. Global land use at t,
per-capita income in country i at t, mi(t), and social parameters in i—β0,i, α0,i, γ0,i, determine the utility advantage of an eco-conscious diet over a land-
intensive diet in i. The utility advantage Δei(t) along with the social learning rate, κ0,i, drive the social imitation dynamics that determines the rate of change
of xi(t), the proportion of above-poverty sub-population in i consuming an eco-conscious diet.
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Several African nations have positive values of βi and its median
value for the social learning rate κi is also very low (see
Supplementary Fig. 2). These result in most African countries
experiencing a net cost for shifting to an eco-conscious diet. Thus,
the proportion of eco-conscious consumers declines, or at best
remains constant, in all yield scenarios (even when global land
use increases rapidly) throughout the 21st century. This, coupled
with constant population growth, causes a massive increase in
land use in Africa at the baseline setting (an increase from 500
million to 1 billion hectares from 2013 levels).

Despite having similar land-use patterns, the trajectories of the
proportion of eco-conscious consumers for Europe and Asia
show a subtle difference. Asia starts at a higher proportion of eco-
conscious consumers than Europe but it soon saturates or goes
down to lower levels. In comparison, Europe begins at a lower
value but climbs up higher and begins to saturate near the end of
the century. Despite having the same stimulus in the utility term
from global land use, Europe reacts positively compared to Asia
because of a higher median βi (see Supplementary Fig. 2).
As countries become wealthier over the 21st century in both
Europe and Asia (under SSP2), Asian countries see a higher cost
of shifting to an eco-conscious diet compared to European
countries.

Synergies can reduce peak global land use and delay peak year.
We found that socioeconomic factors as represented in our
model—the social learning rate (κi), and the income and the

non-income associated net benefit to adopting an eco-conscious
diet (βi and αi) respectively—have very large impacts on peak
global land use, often ranging in the giga-hectares (Fig. 4). In
Fig. 4, we compare the effect of the parameter changes in high
(f= 0.2) and low (f= 0.8) yield scenarios under SSP2. (Results
comparing SSP2 and SSP3 can be found in Supplementary
Fig. 10).

When future yields are lower (f= 0.8), the peak global land use
and peak year are much more sensitive to social processes than
when future yield is higher (f= 0.2) (Fig. 4). Low yield means
rapidly expanding land use, which in turn stimulates a social
response in favor of wider adoption of an eco-conscious diet.
Hence in this scenario, changes in social parameters governing the
pace and desirability of change have large impacts on land use.
When future yields are low, population and income growth also
become determining factors in assessing the effect of changing
social parameters (see Supplementary Fig. 10 for comparison
between SSP2 vs. SSP3). In contrast, when future yield is high, peak
land use is lower even though more individuals are practicing a
land-intensive diet, and thus global land use LG is out of the range
of values where it can stimulate social change, at least under the
range of values for αi and βi we explore in Fig. 4.

The social learning rate (κi) has a limited impact on peak global
land use when βi or αi are above their baseline value (Fig. 4a, b, d, e).
But when they are below their baseline value, a sufficiently large
social learning rate causes peak land use to jump, for instance
from 3.5 (blue) to 6 giga-hectares (yellow) in the low yield
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Fig. 2 Baseline global land use and global eco-conscious consumer proportion projections till 2100 under four yield scenarios and the population and
income scenario of SSP2. Results are shown for yield scenarios ranging from high (f= 0.2) to low (f= 0.8) future yields at the SSP2 income and
population scenario. The historical data for global land use due to food consumption and the corresponding global proportion of eco-conscious consumers
(above poverty) are indicated with black lines in both the panels. The historical data is plotted from 1961 to 2013. See “Methods” and Supplementary
Methods for more details on how these data are calculated. a Projections for global land use due to food consumption till 2100 under four yield scenarios at
the income and population scenario of SSP2. b Projections for the corresponding global proportion of eco-conscious consumers till 2100 under the same
four yield scenarios and the income and population scenario of SSP2. Compiled baseline projections for all the yield scenarios under all five SSP scenarios
(a total of 20 combinations) can be found in Supplementary Fig. 8.
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scenario. This also causes the peak to occur several decades
earlier. This occurs because more negative values of αi and βi
support land-intensive diets, and in countries with a high social
learning rate, the population quickly learns to imitate a land-
intensive diet, causing a spike in global land use. Below baseline
values, increasing the social learning rate also causes the peak year
to occur earlier, for most parameter values. Hence, social learning
can only support eco-conscious diets if the underlying incentives
work in the right direction. In this vein, there are a few regions of
the parameter planes for the high yield scenario above baseline
values for κi and βi where increasing the social learning rate
delays the year of peak global land use by several decades without
causing an increase in the peak land use. This represents a
noteworthy benefit (Fig. 4a, b).

To meet sustainability goals, an optimal outcome is to reduce
peak global land use while simultaneously delaying the peak to a
later year. This is especially true for the low yield scenario, where
peak global land use is high. Achieving these two outcomes
simultaneously through variations from the baseline parameters

can be difficult. However, there is a narrow band of values in the
low yield scenario where αi and βi are slightly above their baseline
values, where peak land use is reduced without consequentially
impacting the peak year (Fig. 4f). Since our baseline values
represent the status quo, this suggests that modest improvements
in incentives to adopt an eco-conscious diet could generate large
benefits in land use, especially in a worst-case scenario where
future yields are small.

Although changes in the non-income (αi) and income (βi) net
benefits of an eco-conscious diet have symmetric effects on peak
land use, there is an asymmetry in their effects on the peak year
(provided social learning rate remains at the baseline level, Fig. 4c,
f). This asymmetry is even more stark when global populations
are very high and global incomes are low (example: the
SSP3 scenario in Supplementary Fig. 10). As a result, it is optimal
that both income and non-income net benefits are increased
simultaneously for maximum effect (in terms of peak land and
also peak year). If only one of them can be increased from the
baseline level, increasing non-income net benefits works better

3102 ot ecner ef er , noit p
musnoc esu dnal l abol g ni egnah

C
)ser atceh noilli b(

)ytr evop evoba( noitr opor p r e
musnoc suoi csnoc-oce l anoi ge

R

yearsyears

global yields increase

a. b.

Fig. 3 Baseline country-level projections when aggregated into five continental groups reveal distinct behavioral patterns of consumption. Country-
level projections for global land-use change with respect to 2013 and corresponding eco-conscious consumer proportion till 2100 are aggregated into five
continental groups. We use five continent groups to classify the 153 countries in our projection analysis (see Supplementary Data 1). Results are shown for
yield scenarios ranging from high (f= 0.2) to low (f= 0.8) future yields at the SSP2 income and population scenario. Projections for the regional
breakdown of global land-use change are shown in panel (a). Projections for corresponding eco-conscious consumer proportions in respective regions are
shown in panel (b). For regional projections under all SSP scenarios at high (f= 0.2) and low (f= 0.8) future yields scenarios, see Supplementary Fig. 11.
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than increase income-related net benefits, as this guarantees a
delayed peak (see Fig. 4f).

Discussion
Our work shows that coupled social-and-land processes can have
large impacts on land use projections, ranging in the giga-hec-
tares, and therefore should be incorporated in global land-use
modeling, along with other more established factors such as
economic forces and the impacts of climate change. Individual
diets are influenced by complex social factors such as religion,
concern for health, urbanization, female participation in labor,
food prices, and sustainability practices43–46. Here, we focused on
the effect of ballooning global land use as a stimulus for indivi-
duals to adopt more eco-conscious diets, against a backdrop
where rising incomes also permit individuals to opt for land-
intensive diets. We subsumed other factors in decision-making
into our phenomenological parameters at the social (κi, βi) and
individual (αi) levels that we inferred from the data.

We showed how coupled social-and-land dynamics can have
giga-hectare impacts on land use, especially when future yield is
low and/or population size is high, and we explored changes to
social parameters that minimize peak land use and peak year
under various scenarios for socio-economic development path-
ways and future agricultural yield. We found that increasing the
net benefits (income and non-income) of adopting eco-conscious
diets is an important way to reduce peak global land use. Redu-
cing social learning rates holds the potential to accentuate the
mitigating effect of increasing the net benefits (income and non-
income) of adopting an eco-conscious diet (a simultaneous effect
shows a reduction of 2 billion hectares in peak global land use).
Reducing social learning can be vital if future benefits to adopting
an eco-conscious diet decrease from their current baseline setting.

Many coupled human-and-natural models exhibit important
social dilemmas, such as the Prisoner’s Dilemma33,37,47. These
dilemmas capture the clash between what is socially (i.e., Pareto)
optimal, and what is in the best interest of individuals.48

For instance, in the context of our model, eco-conscious dietary

SSP2, High Yields (f = 0.2) SSP2, Low Yields (f = 0.8)

a.

b.

c.

Peak land
(billion hectares) Peak year

d.

e.

f.

Peak land
(billion hectares) Peak year

Fig. 4 Model projections with parameters deviated from the baseline setting highlight the impact of consumptional behavior and socio-economic
factors on global land-use trajectories till 2100. Model projections of peak global land use and corresponding peak year are shown for parameters
deviated from the baseline setting. Results are shown for the population and income scenario of SSP2 at the yield scenarios of f= 0.2 (panels a–c) and
f= 0.8 (panels d–f). For comparison across SSP scenarios see Supplementary Fig. 10. For each contour plot, we vary two out of three parameters from their
baseline setting while keeping the third fixed at the baseline setting. In panels a, d, we vary κi (social learning rate) and βi (income net benefits of the eco-
conscious diet) from the baseline values while keeping the values of αi (non-income benefits of the eco-conscious diet) fixed at the baseline level. For
panels b, e, the parameter values of βi are kept constant at the baseline level. In panels c, f, the parameter values of κi are kept constant at the baseline level
while the other two remaining parameters are varied. The values of parameters are changed within −100% to 100% of their baseline value. The variables
κ*, α*, and β* represent the baseline parameter values for the countries as estimated from the parameter estimation process. During projections, equivalent
change is made to the baseline parameters of all countries. The black star in each contour plot represents the baseline setting. Peak year is defined as the
year in which peak global land use is achieved during the projection.
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consumers may be interpreted as “cooperators” while land-
intensive dietary consumers may be interpreted as “defectors”
who prevent the population from attaining socially optimal tar-
gets. This aspect of dietary decision-making deserves further
thought and analysis, although we caution that any such analysis
must also take into account the fact of global inequities.

Over-fitting is a concern when attempting to infer too many
model parameter values from limited data, and this is a potential
risk for the current model, given the limited availability of social
data for inferring parameters of a coupled social-and-land use
model. This suggests a need to collect global data on social aspects
of dietary choices in a consistent way, to inform global land-use
projections. Using survey instruments may be cost-prohibitive for
such a project, but digital data is cheap and may provide a way to
infer useful information about dietary social processes and
decision-making from observational analyses49.

As a result of the over-fitting risk, we opted for a minimal
model. However, it’s simplifying assumptions could impact its
land-use projections. For instance, we did not include aquatic
sources of food, we ignored the influence of institutions, and we
assumed a simple binary classification of dietary behavior. A
future extension of our model could include aspects of population
heterogeneity such as a continuous behavioral spectrum along
with age and gender structure. Future work could also explore the
effects of social norms in order to determine how social inertia
can accelerate or decelerate behavioral changes, as well as social
learning between countries. For the purpose of simplicity in
working with country-level data, we also assumed homogeneous
behavior within each country by assigning unique parameter
values to every country, and this could be relaxed in future
research. Similarly, given the enormous greenhouse gas impacts
of livestock50, a future social process model would take into
account the perceived risk of climate change in modeling the
behavioral drivers of a population.

Our model does not explicitly address certain key effects like
the effect of changing yields (and other macroeconomic factors)
on food prices51 and thus, on dietary behavior. For instance,
increasing productivity can increase food supply and thus reduce
food prices. This can have a large effect on real income (pur-
chasing power) in low-income countries, where a sizeable pro-
portion of income is spent on food. Furthermore, a higher yield
can cause the Jevons Paradox whereby higher productivity results
in profitability leading to an expansion of agricultural area52.
As our behavioral model only accounts for differences in utilities
between the EAT-Lancet diet and an alternate diet, a weak
assumption stating that changing yields symmetrically affect
prices across all food groups can address the aforementioned
issue in our model. In future work, such effects could be modeled
by making the parameter βi a function of the yield parameter f.
We also note that our projections of reduced global land use due
to a growth in eco-conscious dietary choices does not necessarily
translate into reduced pressure on natural land states, since the
land that becomes available due to less land-intensive diets could
still be used for other forms of natural resource extraction such as
forestry or mining. Finally, our assumption that populations
adjust their dietary behavior in response to global land use for
agriculture is a crucial assumption. Although this has support in
some studies27,28, this trait could also be culturally contingent
and therefore this assumption deserves further investigation. For
example, some populations may be more sensitive to their local or
national land use, than global land use.

Future research in coupled social-and-land use models can
incorporate increasing sophistication to deepen our under-
standing of social processes around dietary choices and land-use
dynamics, as well as their interaction with other socio-economic
factors and other environmental dynamics such as climate

change. These models could inform land-use projections and
deepen our insights into relevant processes, by incorporating the
driving mechanisms behind our dietary choices and accounting
for how they respond to changes in land use and socio-economic
variables.

Methods
Coupled social-and-land use model. The proportion of the population of country
i living below the poverty line is denoted pi. This proportion consumes a suste-
nance diet requiring cSi ðtÞ hectares of global land per capita in country i in year t.
The population above the poverty line in country i consumes, on average a diet that
requires cAi ðtÞ hectares per capita land globally in year t for its support. If the
population of country i at year t is denoted by pi(t) then the total land use due to
dietary behavior is

LiðtÞ ¼ ðcSi ðtÞpiðtÞ þ cAi ðtÞð1� piðtÞÞÞPiðtÞ ð2Þ
We divide the portion of the population above the poverty line (those responsible
for using cAi ðtÞ hectares per capita per year for their diet) into those eating an eco-
conscious diet, and those eating a land-intensive diet (these will be defined in the
following paragraphs). We model the time evolution of the proportion xi(t) of
individuals consuming an eco-conscious diet using the replicator dynamics of
evolutionary game theory53. This requires specifying a net utility gain (or loss)
Δei(t) for an individual to switch from a land-intensive diet to an eco-conscious
diet (defining a fitness difference between two consumptional behavior)

ΔeiðtÞ ¼ β0;imiðtÞ þ α0;i þ γ0;iL
GðtÞ ð3Þ

where mi(t) is the average per capita income of the country i in year t, and where
κi= κ0,iγ0,i, βi= β0,i/γ0,i, αi= α0,i/γ0,i, and κi, βi, and αi are as defined in the main
text. LG(t)=∑iLi(t) is global land use due to dietary consumption. The replicator
dynamics for xi(t) are given as

dxi
dt

¼ κ0;ixið1� xiÞΔeiðtÞ ¼ κixið1� xiÞðβimiðtÞ þ αi þ LGðtÞÞ ð4Þ

We note the remaining proportion 1− xi(t) consume a land-intensive diet. The
parameter ki is called the social learning rate. It determines whether any utility
difference between two dietary behavior would lead to an effective rate of change in
the composition of behavior in the population. It varies between 0 and 1. At κi= 0,
there will be no change in the proportion of population above-poverty consuming
an eco-conscious diet even when there is a nonzero utility difference between the
two consumption behaviors.

We define an eco-conscious diet as one that requires an amount of land that is
greater than the sustenance diet cSi but less than or equal to the eco-conscious EAT
Lancet diet, which we denote cLi (and we note that 0< cSi < cLi always)40. Similarly,
we define a land-intensive diet as one that requires more than cLi hectares of land,
per capita (see Supplementary Fig. 13a). As mentioned above, we denote the
average per capita land use due to eco-conscious and land-intensive diets in a
country by cAi ðtÞ. This quantity is inferred during the model fitting procedure from
the assumption that

xiðtÞ ¼ 1� e�ðcLi ðtÞ=cAi ðtÞÞ ) cAi ðtÞ ¼ �cLi ðtÞ=ln ð1� xiðtÞÞ ð5Þ
The dependence of xi on cAi is shown in Supplementary Fig. 13b. We note that
when cAi > cLi and it increases upwards towards ∞, the proportion of people above
the poverty line that consume an eco-conscious diet (between the sustenance and
the EAT-Lancet diet) decreases toward 0. When cAi < cLi and decreases toward cSi ,
the proportion of population with an eco-conscious diet increases. This description
allows us to define eco-conscious consumption with respect to a reference point cLi
(per capita consumption at the EAT-Lancet diet). The proportion of eco-conscious
consumption goes from 1 to 0 monotonically as average per capita consumption of
the above-poverty population goes from cS to ∞. The EAT-Lancet diet can be
found summarized in Supplementary Table 2.

We use the above equations to estimate κi, αi and βi by fitting the model output
of Li(t) (Eq. (2)) to the empirical data for Li(t). The empirical data are calculated
using “Methods” from a previously published work2. The value of cAi is inferred
from the values of xi (which is generated during the fitting) and cLi using Eq. (5).
We note that the value of cAi is also used to estimate global land use due to
consumption by i at t using Eq. (2). During the fitting for each i, the time series for
pi, Pi, cL, cS, and mi are available. For more details see Supplementary Methods.

For the purpose of fitting the model to data and making projections, we also
normalize LG and mi to ensure the inferred parameters have the same order of
magnitude for all countries. More details about the normalization and the
parameter estimation method can be found in Supplementary Methods. κi is a real
number in the interval [0, 1] while the parameters βi and αi are real numbers in the
interval [−1, 1]. The estimated baseline parameters can be found included in the
Supplementary Data 1 and Supplementary Figs. 3–5.

Definition of land use: data and methods. We use the model developed in a
previously published work2 to generate the country-level time series data of average
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per capita land use between 1961 and 2013. The model is described briefly
in Supplementary Information (under Supplementary Methods). The UN FAO-
STAT (Food and Agriculture Organization1) data-set also provides country-level
data for land used on agriculture and pasture land. However, this is not the same as
our definition of ‘land use by i’. This is because countries are not entirely self-
dependent in providing for their food demand. Consume in i can be partly pro-
duced in j and vice versa. Since the aforementioned model2 accounts for differential
yields of food sources, the data for per capita land use accounts for land used from
across the globe to provide for the consumption in i. If two countries have similar
dietary consumption, the country which has a lower effective yield has a higher
value of per capita consumption than the country which has a higher value of
effective yield.

In all our projections and analysis, we consider the land that is required to
generate the food that ends up being consumed by humans. The land equivalent of
food wastage is not considered in our calculations. The data reported by UN
FAOSTAT’s land statistics division54 accounts for land used for all agricultural
purposes. This includes the land equivalent of food wastage. In Supplementary
Fig. 1, we see the quantitative difference between their time-series and our global
model output. The UN FAOSTAT estimated that 1.4 billion hectares were lost due
to food wastage in the year 200755. This number matches exactly with the
difference between the two series at 2007 in Supplementary Fig. 1.

Model projections. We include 153 countries to general country-level, continental,
and global projections to 2100. We refer to simulations using the fitted values of κi,
αi, and βi as the baseline projection or the baseline scenario. For the parameter
plane analysis (Fig. 4, we conduct projections across a range of parameter values
above and below the baseline values. Each projection is conducted under a scenario
(for more details see Methods on Population, income and yield scenarios below).
Land used for dietary purposes, Li(t), are projected using

dxi
dt

¼ κixið1� xiÞðβi ^miðtÞ þ αi þ ^LGðtÞÞ
LiðtÞ ¼ ðpiðtÞcSi ðtÞ þ ð1� piðtÞÞcAi ðtÞÞPiðtÞ
LGðtÞ ¼ ∑

i
Li

ð6Þ

where the variables ^miðtÞ and ^LGðtÞ are normalized income for i at t and normalized
global land use at t (normalized with respect to highest income achieved and global
land use at 2013, respectively). Where, cAi ðtÞ is evaluated as follows during the
projection

cAi ðtÞ ¼
� cLi ðtÞ

logeð1�xÞ if cSi ðtÞ < � cLi ðtÞ
logeð1�xÞ<c

U;max
i ðtÞ

cU;max
i ðtÞ if � cLi ðtÞ

logeð1�xÞ ≥ c
U ;max
i ðtÞ

cSi ðtÞ if � cLi ðtÞ
logeð1�xÞ ≤ c

S
i ðtÞ

8
>>>><

>>>>:

ð7Þ

Population and income projections to 2100 are taken from the SSP scenarios
(see below in “Methods”). The per capita consumption curves (cU,max, cS, and cL)
are extrapolated based on the scenarios for f, which controls yield. For every
scenario of projection, we project poverty levels to linearly change based on their
historic trend. If poverty levels reach 0 after a linear decrease during projection, it
stays at 0. During projection, we used the normalized version (Eq. (6)) of the (Eq.
(4)). For more details on this normalization see Supplementary Methods.

Method for calculating cLi ðtÞ, cU ;max
i ðtÞ, and cSi ðtÞ. The upper bound of per capita

consumption, cU,max, is calculated by assuming that diets that cause the high land use
impact are the one that allow a very high intake of items that belong in the meats and
dairy diet groups. Similarly, for cS, we assume that the sustenance diet is the one that
allows the least consumption of items in those groups. To calculate the per-capita land
use for the EAT-Lancet diet, cLi ðtÞ, we take the EAT-Lancet diet introduced in ref. 40.
The values for cU,max, cS, and cL can be calculated between 1961 and 2013 for
countries whose data is reported in FAOSTAT’s food balance sheets1.

We categorize each of the 21 food items listed in the food balance sheets into
one of the seven groups of diet—fruits, vegetables, grains, meats, dairy, oils, and
sugar. For every country i, we calculate its maximum possible land impact diet by
replacing its average consumption of items in the “meats” and “dairy” groups (in
kcals capita−1 day−1) with the consumption values of the countries that consumed
the most of those items that year. Similarly, for the sustenance diet, we replace
them with the consumption values of countries that consumed the least of those
items in that year. Values for the remainder of the diet (i.e., the other groups—
fruits, vegetables, grains, sugar, and oils), remain the same as reported data. An
example of such a construction is shown in Supplementary Table 1). The method
of evaluating these bounds is explained in more detail in Supplementary Methods.
For the Lancet diet, we map the available diet in the original paper40 to food
subgroups in our construction (see Supplementary Table 2).

Once these hypothetical diets (maximum, sustenance, and EAT-Lancet) are
constructed for a country i, we use a previously published model2 to calculate the total
land required to generate that per capita dietary demand for the population of i in t
(see Supplementary Methods for an overview of this model). We divide the output of
the model with the population of i at that year to obtain per capita land use equivalent

of the hypothetical diet (cU,max if maximum land impact diet, cS if sustenance diet and
cL if EAT-Lancet diet). A sample result of this method is shown in Supplementary
Fig. 12. The time series for cS, cL, and cU,max are shown for six sample countries.

In order to evaluate these values for years beyond 2013 (for purpose of
projections), we use an extrapolating parametric function (see “Method” section for
f scenarios).

Population, income, and f (yield) scenarios. We use the datasets available from
the SSP scenarios41 for projecting population and income to 2100. A number of
existing models are compiled in the SSP Public Database hosted by the Interna-
tional Institute for Applied System Analysis (IIASA). Among them, we choose the
OECD Env-Growth Model42 for obtaining future projected values of country-level
population and income. In Supplementary Methods, we discuss the inclusion
procedure of countries in our analysis. There we provide reasons for the exclusion
of certain countries from the analysis. The choice for OECD Env-Growth was
made because it covers projections for the maximum number of countries among
the existing models.

The bounds for land required to support the maximum diet, the sustenance diet,
and the EAT-Lancet diet (cU,max, cS, and cL) are projected into the future with a
parametric function. The parameter f, a number between 0 and 1, represents scenarios
of yield future. We now explain the meaning of a yield scenario parameterized by f. If
the trend of cU,max, cS, and cL between 1990 to 2013 is decreasing (which is more often
than increasing), the series can at least reach f times its 2013 value in the future.
Similarly, if the trend is increasing, it can reach at most 1+ f times its 2013 value in
the future. The rate at which a projected curve (either cU,max, cS, or cL) reaches
towards its bound is determined by its rate between 1990 and 2013.

Let c be the concerned time series that we wish to project till 2100 using our
parametric function. The series is always defined between 1961 and 2013. First, we
fit an exponential of form y= aebt to a truncated c series. This truncated version of
c is the time series of c from 1990 to 2013. If b < 0, we call the series trend
decreasing, and if b > 0 we call the series trend increasing. Here, a and b are
constants. We extrapolate the time series c till 2100 (starting from 2013 onward)
using the following equations

cðtÞ ¼ cð2013Þ � ðcð2013Þ � cð2013Þf Þð1� e�βðt�2013ÞÞ; if initial trend is decreasing

cð2013Þ þ cð2013Þf ð1� e�βðt�2013ÞÞ; if initial trend is increasing

(

ð8Þ
Here, f is the tune-able parameter—a real number between 0 and 1 that defines

the future yield scenario. For the above equation, t is always greater than 2013. The
exponent βi is adjusted such that continuity is maintained at 2013 between the
initial trend, aebx, and the projected trend c(t). The continuity condition assures
that the time series of cU,max, cL, and cS do not abruptly change in 2013 thus
assuring that abrupt changes in xi(t) do not occur in 2013. That is

β ¼
� 1

cð2013Þ
abe2013b
1�f ; b < 0

abe2013b
cð2013Þf ; b > 0

8
<

:
ð9Þ

In Supplementary Fig. 6, we show two examples of cU,max, cS, and cL projection
till 2100 using the above method. The two countries that are chosen as examples
are the USA and Netherlands.

If we assume that the maximum land impact diet, sustenance diet, and the EAT-
Lancet diet for countries remain constant from 2013 onward (in kcals capita−1 day−1), f
scenarios represent scenarios of yield future. Then, a low f value represents
improvement towards high yield values. A high f value represents the deceleration of
yield rates, causing them to converge to inferior future values.

Data availability
This study uses a series of publicly available datasets as inputs for the coupled social and
land-use model.

The data for country-level poverty was available from The World Bank: Shared
Prosperity: Monitoring Inclusive Growth: https://www.worldbank.org/en/topic/poverty/
brief/global-database-of-shared-prosperity.

The data for country-level population and income projections till 2100 under multiple
SSP scenarios were available from the publicly available SSP database hosted by the
International Institute for Applied Systems Analysis: https://tntcat.iiasa.ac.at/SspDb.

The country-level per-capita income (GDP PPP per capita) data used for fitting the
model was available from the public database of The World Bank: https://
data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD.

The time series country-level food consumption data were available from a publicly
accessible database of the Food and Agricultural Organization of the United Nations, the
FAOSTAT: http://www.fao.org/faostat.

All the necessary datasets mentioned here can also be found in the publicly accessible
Github repository: https://github.com/Saptarshi07/Coupled-Social-and-Land-Dynamics.

Code availability
The python scripts for (i) the parametrization of the model and (ii) land-use projections
using the parameterized model can be found in the following public Github repository:
https://github.com/Saptarshi07/Coupled-Social-and-Land-Dynamics.
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