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Training machine learning models on climate
model output yields skillful interpretable seasonal
precipitation forecasts
Peter B. Gibson 1✉, William E. Chapman1, Alphan Altinok 2, Luca Delle Monache1, Michael J. DeFlorio1 &

Duane E. Waliser2

A barrier to utilizing machine learning in seasonal forecasting applications is the limited

sample size of observational data for model training. To circumvent this issue, here we

explore the feasibility of training various machine learning approaches on a large climate

model ensemble, providing a long training set with physically consistent model realizations.

After training on thousands of seasons of climate model simulations, the machine learning

models are tested for producing seasonal forecasts across the historical observational period

(1980-2020). For forecasting large-scale spatial patterns of precipitation across the western

United States, here we show that these machine learning-based models are capable of

competing with or outperforming existing dynamical models from the North American Multi

Model Ensemble. We further show that this approach need not be considered a ‘black box’ by

utilizing machine learning interpretability methods to identify the relevant physical processes

that lead to prediction skill.
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Sources of seasonal predictability. The climatology and varia-
bility of precipitation across the western United States present a
unique seasonal forecasting challenge. Relatively low precipitation
totals combined with high year-to-year variability are often
received in the form of a relatively small number of atmospheric
rivers across winter months1. Individually, these storms have
proven challenging to forecast at lead times beyond the weather
time horizon2,3. During the recent severe California drought
(years 2012–2016), the challenges for decision-makers under
forecast uncertainty were highlighted. As widely documented, the
expected positive anomaly of precipitation across California and
the Southwest under the major El Niño event of 2015/2016 did
not eventuate as anticipated, and instead the devastating drought
continued4. Given that the economic costs of severe drought can
frequently exceed $1B annually across California5,6, improving
the skill of seasonal precipitation forecasts remains a top priority
for water resource managers.

In a seasonal forecasting context, teleconnections are best
viewed as probabilistically loading the dice in favor of a certain
outcome (i.e., dry versus wet conditions). The El Niño Southern
Oscillation (ENSO) is known to be the primary driver of seasonal
forecast skill across North America7–10, yet its signal-to-noise
ratio is such that unexpected outcomes will occasionally occur by
chance4,11,12. Other studies have shown that traditional indices
for describing ENSO variability (i.e., Niño3.4) may not be optimal
for capturing the teleconnection to western US precipitation13.
Studies using both model simulations and observations have also
shown that tropical diabatic heating anomalies in key regions
across the western tropical Pacific, at times independent from
ENSO, substantially increase the likelihood of ridging and
subsequently drought conditions across California14,15.

The Indian Ocean has been suggested to play a role in
mediating the ENSO precipitation teleconnection to North
America in certain years16. While the tropospheric mid-latitude
jet stream has a much shorter memory than tropical sea-surface
temperatures (SSTs), certain configurations of the jet have also
been shown to be predictable across subseasonal timescales,
which has particular relevance for regional precipitation predict-
ability over the western US11. In the stratosphere, both tropical
and polar stratospheric variability can have appreciable impacts
on precipitation across North America, offering a potential source
of predictability on subseasonal-to-seasonal timescales17,18. To
take full advantage of these potential sources of seasonal
predictability, forecast models must capture a wide range of
these teleconnections and their possible interactions.

Existing approaches to seasonal forecasting. Seasonal forecast-
ing methods can be broadly categorized into dynamical, empirical
(i.e., statistical or machine learning), or hybrid-based (i.e.,
dynamical models combined with empirical approaches). Seaso-
nal forecasts using dynamical models typically involve probabil-
istic forecasts derived from the spread of the ensemble members,
which relates to very small uncertainties in the model initial
conditions that grow rapidly with time. The ensemble mean of
these individual ensemble members can be used to forecast any
signal that might emerge beyond the noise of individual weather
events. The North American Model Ensemble Project
(NMME)19,20 has provided an opportunity to estimate the skill of
start-of-the-art dynamical reforecasts. Seasonal forecast skill for
precipitation across the western US has generally been found to
be low after 2-weeks lead-time, but with dry extremes better
forecasted than wet extremes21. Recently, seasonal forecast skill
has been evaluated across different suites of NMME models that
represent upgrades across model versions20. While seasonal

temperature forecast skill was shown to improve across successive
upgrades, minimal improvements were found for precipitation
suggesting a potential saturation of skill for models run at this
resolution.

Statistical seasonal forecasts of precipitation in the United
States have a long history, and often implement classical
canonical correlation analysis (CCA)7,22. This approach models
linear relationships between two sets of predictor variables,
commonly between lagged spatial fields of SST and temperature
or precipitation. Within the classical CCA framework, it is
difficult to include multiple predictor variables and their
interactions without overfitting23, the temporal nature of the
data is not explicitly modeled beyond the use of lagged
correlations, and only linear relationships through correlation
are directly captured. Despite the large ongoing investments in
developing dynamical model ensembles, a relatively small amount
of research has explored recent advances in machine learning for
improving seasonal forecast skill24.

Another important barrier to implementing empirical
approaches for seasonal forecasting is the limited sample size of
observational data needed in model training25, which impacts
both traditional statistical approaches and machine learning-
based approaches. For example, for reliable modeling of non-
linear interactions between multiple predictor variables, an
extensively large number of cases per predictor variable is
required to limit overfitting26. Since this is clearly not possible
with the limited record afforded by current observational or
reanalysis products (~40–100 years), one promising alternative
involves a hybrid-based approach of training machine learning
models on large climate models ensembles25,27,28. This approach
can greatly increase the training dataset sample size to span
several thousand seasons and has achieved skillful ENSO
predictions at lead times exceeding 1-year through training
convolutional neural networks (CNN) on historical climate
model simulations25. Other studies have also achieved skillful
seasonal forecasts through applying relatively simple regularized
regression models to climate model simulations27,28. In this
study, through testing a wider range of machine learning models,
we build upon these prior applications of training statistical and
machine learning models on long climate model simulations for
the purpose of seasonal prediction (Fig. 1). We implement cluster
analysis to target the more predictable large-scale spatial patterns
of precipitation, contributing to the observed seasonal prediction
skill. Lastly, we implement a range of interpretable machine
learning approaches to identify the relevant physical processes
that contribute to prediction skill.

Results and discussion
Classification accuracy. After training and calibrating each
machine learning model on Community Earth System Model
Large Ensemble (CESM-LENS) data (see Section “Climate model
training data”, and Fig. 1) the models’ configurations were frozen
and used to forecast seasonal precipitation clusters across the
observational record. To do so, the models are driven by input
data based on the observed atmospheric and oceanic conditions
prior to the target season (e.g., using October and earlier condi-
tions to predict November through January (NDJ)). This ‘test set’
evaluation of the models provides an estimate of future model
performance since the models are making predictions on data
unseen in the training phase. The classification accuracy of four
machine learning models tested is shown in Fig. 2a for NDJ
seasonal predictions and in Fig. 2b for January through March
(JFM) seasonal predictions. The machine learning accuracy (red
bars) is presented alongside the NMME accuracy (white bars) and
ensemble accuracy (blue bars), presented for the overlapping test
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period years. For the ensemble methods, Ens_Mode_ML is cal-
culated as the ensemble mode prediction from the four machine
learning models, Ens_Mode_NMME is calculated as the ensemble
mode prediction from the seven NMME models, and Ens_Mo-
de_Super is calculated as the ensemble mode prediction from all
NMME and machine learning models.

For the NDJ predictions, three of the machine learning models
(LSTM, NN, RF) have accuracy in the 40–50% range. While this
accuracy remains somewhat modest, it is skillful relative to both
baseline methods tested: a random guess model and the most
frequent cluster prediction. Furthermore, for NDJ, two of these
machine learning models have accuracy above or equal to each of
the NMME models tested, and the ensemble prediction accuracy
from the machine learning models (Ens_Mode_ML) exceeds that
from the NMME models (Ens_Mode_NMME). The classification
accuracy for JFM, across the latter half of the water year, is
generally found to be improved in the majority of models
compared to NDJ, consistent with the previous studies29. The
Random Forest and NN models are found to be top performers in
JFM, with classification accuracy >50%. A number of NMME
models also show skill relative to baseline methods in JFM, most
notably CanCM4 and FLORB which are also competitive with the
machine learning models.

In examining misclassifications in various models, we found a
general tendency to misclassify the cluster based on a failure to
predict the precise positioning of the anomaly dipole. For
example, a widespread dry pattern (cluster 3, Fig. 1) may have
a greater tendency to be misclassified into the wet north dry south
pattern (cluster 4). Depending on the application, this forecast
error is likely less critical as the sign of the anomaly is still
correctly forecasted across a large proportion of the Southwest
under dry conditions. On the other hand, forecasting widespread
dry (cluster 3) under a widespread wet occurrence (cluster 2) can
clearly be considered a more problematic forecast. To explore this
further, in model post-processing, we computed the accuracy in
Fig. 3 after grouping cluster 1 and cluster 2 together (wet
southwest group), and cluster 3 and 4 together (dry southwest
group). As expected, this additional cluster grouping results in
accuracy improvements in both individual models as well as the
baseline methods. In JFM, a number of individual models (both
machine learning and NMME) and their ensembles display
accuracy in the 70–80% range which is skillful relative to both
baselines. For NDJ, individual model accuracy can approach
60–70%, but in the case of NDJ, this level of accuracy is not
skillful relative to the random guess baseline. Notably, for JFM,
this highlights the increase in classification accuracy that can be

Fig. 1 Summary of methodology for seasonal cluster prediction. Panels a and b show lagged predictor variable regions from which EOFs were derived.
Panel a shows ocean-based (SST) regions, panel b shows atmosphere-based (VP200, U200, and Z500) regions, with variable names referred to in the
text. Panel c shows the four machine learning methods trained on CESM-LENS data/regions from panels (a and b). Panel d shows the predictand clusters
derived from K-means clustering of 3-month standardized precipitation anomalies over the western US. The sample size (number of seasons) is shown for
each cluster from CESM-LENS data. Models are trained separately for making seasonal predictions of November through January (NDJ) and January
through March (JFM) clusters, using previous months as predictors.
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achieved by reducing the spatial precision in the target prediction
variable. Similar results have been documented in other studies,
where aggregating over larger regions has generally been shown
to significantly increase the skill by relaxing the predictand spatial
requirement and avoiding direct predictions across the smaller
less predictable components30–32.

To investigate whether certain clusters are typically better
predicted than others, Fig. 4 presents a receiver operating
characteristic (ROC) diagram for NDJ and JFM seasons separated
by cluster. The analysis is presented for predictions from the RF
model, shown to be one of the top-performing models across JFM
(Fig. 2b, Supplementary Material Fig. S11). More predictable
clusters in the ROC diagram are indicated by larger true positive
rates and smaller false-positive rates. In both seasons, cluster 4
(wet north dry south pattern) and cluster 3 (widespread dry) are
generally found to be the most predictable patterns. In contrast,
the model very rarely predicted the occurrence of the widespread
wet cluster 2 (0% of predicted clusters in NDJ and 2.6% in JFM),
despite the occurrence of cluster 2 in both the test set (15% in

NDJ and 17.5% in JFM, Supplementary Material Table S5) and in
the training set (15.7% in NDJ and 16.4% in JFM). All other
machine learning models also displayed a reduction in skill for
predicting this cluster. Since cluster 2 was the least frequent
cluster in the training dataset (Fig. 1d), we tested various
approaches across the four machine learning models for
increasing the predicted frequency of this cluster. However,
modifying the class weights during training and stratified
sampling approaches were not found to systematically increase
the prediction skill for this cluster across models.

We suggest that the competitive machine learning accuracy
results reported here largely stem from: (1) including a large pool
of candidate predictor variables and accounting for non-linear
relationships; (2) predicting smoother more predictable compo-
nents of seasonal precipitation through the clusters obtained from
K-means clustering. The use of clusters as the predictand has
allowed investigation of skill on a per-cluster basis, providing
insight into forecast errors in terms of the spatial pattern and sign
of the precipitation field being forecast. Furthermore, we suggest

Fig. 3 Improved accuracy from combining clusters. As in Fig. 2 but here accuracy is computed after clusters have been grouped together with clusters 1,2
forming a new cluster (broadly representing a wet southwest), and clusters 3,4 forming a new cluster (broadly representing a dry southwest) for NDJ
(panel a) and JFM (panel b) seasons. Refer to Fig. 1 for cluster patterns. Here accuracy is computed across overlapping years between models, refer to
Supplementary Material Fig. S12 for accuracy across all years.

Fig. 2 Accuracy of machine learning models and NMME models. Accuracy of machine learning models (red), NMME models (white), and ensemble
models (blue) for NDJ (panel a) and JFM (panel b) seasons. Accuracy is defined as the proportion of correct predictions. The sample size (number of
predictions made) is given at the base of each bar. Baseline skill is defined here in two ways: (1) the horizontal line defined by the frequency of the most
common cluster; (2) a random model prediction repeated 1000 times with bars showing the 5th/95th percentile of the random prediction accuracy. The
Ensemble models (blue) are based on the ensemble mode cluster prediction across their respective groups, with Ens_mode_Super based on the ensemble
mode across all models. Here accuracy is computed across overlapping years between all models in the test set, refer to Supplementary Material Fig. S11
for accuracy across all years.
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that searching for skill in these larger-scale precipitation clusters,
as opposed to attempting to predict seasonal precipitation on
individual grid cells, is more closely aligned with the spatial scales
of the dominant sources of predictability, namely the general
positioning of ridges and troughs along stationary Rossby wave

trains. In the following sections, we explore the physical
plausibility of the associations learned in the model training.

Interpreting the Random Forest model. An often-cited criticism
of machine learning is the challenge of interpretability compared

Fig. 4 ROC accuracy by cluster. ROC diagram for cluster predictions of NDJ season (panel a) and JFM season (panel b) from the Random Forest model on
the test dataset (years 1980–2020). The percentage of predictions assigned to each cluster is given in the bottom right of each plot.

Fig. 5 Individual variable importance for the Random Forest model. Predictor variable importance plot for the Random Forest model predicting JFM
clusters. Three factors were considered: (1) Relative decrease accuracy—the relative penalty to accuracy from shuffling each predictor variable; (2) mean
minimum tree depth—the average minimum depth of the predictor variable across all decision trees in the Random Forest; (3) root—the number of
instances when the predictor variable is positioned at the root of the decision tree, summed across all decision trees in the Random Forest. The 15 most
important predictor variables are highlighted in red. Predictor variable labels relate to those in Fig. 1a, b. For example, SST_TP_EOF1 is the first EOF of
tropical Pacific SST (i.e., December value) and SST_TP_EOF1_Lag1 is the additional 1-month lag of the first EOF of tropical Pacific SST (November value).
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to much simpler linear models. The potential lack of interpret-
ability has implications for the perceived credibility of the model,
where machine learning models may achieve promising results
for the wrong reasons33. In this section, we present further ana-
lysis that attempts to look inside the machine learning “black
box”. We focus on the RF model, which was shown to be a top
performer in predicting JFM clusters, but note that a number
of these approaches are model-agnostic (e.g., permutation
importance, Partial dependence plots, ALE plots, and LIME) and
could be applied to the other machine learning models in
future work.

The relative importance of individual predictor variables in the
RF model is shown in Fig. 5, based on considering three variable
importance measures. Overall, based on these measures, the most
important predictor variables for JFM seasonal precipitation in
the model are tropical Pacific SST anomalies from July through
December (SST_TP_EOF1 Lag 0–5), velocity potential anomalies
in the tropics from July through December (VP200_PW_EOF1
Lag 0-5 and VP200_PW_EOF2 Lag 4), and western tropical Paci-
fic SST anomalies from September through December
(SST_WP_EOF1 Lag 0–3). There is consistency between the
three variable importance measures detailed in Fig. 5, providing
further confidence that these predictor variables are indeed
providing robust measures of importance. In particular, there is a
general negative relationship between the relative decrease
accuracy and mean minimum tree depth variables, indicating
that the variables most important to classification accuracy are
also generally positioned closer to the root of the decision tree, as
expected. It is also noteworthy that 14 of the 15 top predictor
variables correspond to EOF1. Since EOF1 by definition explains

the greatest variance, the fact that the Random Forest is capable
of distinguishing these components as being more important is
encouraging. Furthermore, the RF typically favors the lower lags
of the predictor variables (i.e., lags 0–3) as opposed to lags 11 or
12. This aligns with the intuition that conditions closer to the
target in time should carry more predictive information.

Notably, the top predictor variables highlighted in Fig. 5 are
consistent with the current physical understanding of the
dominant contributions to western US seasonal precipitation. A
substantial body of work has highlighted the importance of ENSO
as the primary driver of seasonal forecast skill over North
America4,7,8. The fact that the first empirical orthogonal function
(EOF) of tropical Pacific SST, that most closely related to ENSO
variability, is found by the Random Forest model to be the most
important predictor variable (Fig. 5) provides confidence in the
ability of the model to distinguish the most relevant teleconnec-
tions from a large pool of candidate predictor variables. Western
tropical Pacific SST variability has also been shown, in both
modeling14 and observational studies15, to be particularly
important in driving a Rossby wave train response in the mid-
latitudes and subsequently placing a ridge over the coastal
western US that is typically associated with widespread drought.
Western Pacific SST variables and their lags are prevalent among
the top predictor variables in Fig. 5. Later in this Section, we
further illustrate that the direction of the western tropcial Pacific
precipitation relationship is also consistent with past research,
and how the association can be modulated by ENSO strength and
variability.

Other studies have highlighted that the representation of ENSO
by the Niño3.4 index is likely not optimal for capturing the

Fig. 6 Most important variable interactions for the Random Forest model.Mean minimum tree depth for the top-25 pairwise variable interactions for the
Random Forest model predicting JFM clusters. The variable interactions shown are the shallowest of all possible variable interactions, suggesting overall
higher importance for influencing the probability of a prediction. Of these interactions, the shallowest and most frequent pairwise interactions are
highlighted in red.
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teleconnection to North America13,34. The use of velocity
potential in the model allows for the representation of not only
the direct influence of ENSO in the SST anomaly field but more
broadly different dipole patterns of deep convection across the
Pacific and Maritime continent and Indian ocean. These patterns
of deep convection are known drivers of the Rossby wave
response out of the tropics34 such that targeting these regions
through this variable appears to be an important predictor
variable in the model (Fig. 5). In contrast, North Pacific SSTs and
variability in the subtropical jet appear not to be as important
overall predictor variables in the trained model. However, they
can carry a small amount of predictive information relevant to
certain clusters as described in the next section.

Moving beyond individual variable importance measures,
interactions between pairs of variables are next explored in
Figs. 6–7, as well as the direction of these associations. To
examine which pairs of variables were among the most important
in the RF model, we assessed all pairwise variable interactions
across the 5000 decision trees that make up the model. These
variable interactions are assessed in terms of the mean conditional
depth of variable interactions in the decision tree, where more
important variable interactions tend to occur closer to the root of
the decision tree. Figure 6 shows the depth and frequency for the
25 most shallow pairwise variable interactions as determined by
the mean conditional depth measure. Of these 25 variable
interactions, the overall shallowest interaction was found between
the first EOF of velocity potential and the first EOF of tropical
Pacific SST at different lead times. The most frequent interaction
was found between tropical Pacific SST in December and those in
October. These specific interactions are further investigated in the
following section through partial dependence plots.

Partial dependence plots quantify the direction and strength of
influence of each variable on the probability of an individual
cluster outcome, after accounting for the mean effects of other
variables. For the overall shallowest pairwise interaction, the
partial dependence plot (Fig. 7a) illustrates that La Niña-like
conditions in November (positive values of SST_TP_EOF1_Lag1)
combined with a broad region of enhanced convection in the

Indian Ocean/Maritime continent in August (negative values of
VP200_PW_EOF1_Lag4) provides an overall increase in the
probability of occurrence of cluster 4. For the most frequent
interaction (Supplementary Material Fig. S13), the partial
dependence plot shows that La Niña-like conditions in December
(positive values of SST_TP_EOF1) and La Niña-like conditions in
October (positive values of SST_TP_EOF1_Lag2) combine to
increase the probability of occurrence of cluster 4. The direction
of this association is in close agreement with observations and
previous studies, whereby La Niña conditions tend to promote a
dry southwestern and wet northwestern United States. The
finding that La Niña conditions preceding December further
increase the strength of this association is in agreement with the
physical intuition that more persistent La Niña events are more
likely to produce the canonical La Niña teleconnection response.
Other pairwise variable interactions can also be explored in this
way to further scrutinize the model’s learned associations. For
example, in Supplementary Material Fig. S14 we show the partial
dependence plot for the interaction between tropical pacific SST
variability and western tropical Pacific SST variability. For this
interaction, we observe that the sign of the western Pacific SST
anomaly pattern can act to modulate the probability that La Niña
conditions would result in widespread dry conditions over the
western US. The importance of western tropical Pacific SST
variability for driving ridging has been found in previous studies
using both models and observations14,15.

One caveat to interpreting partial dependence plots is that they
do not compute the probability of a cluster as a function of
predictors while ignoring the effects of other predictor variables35.
Instead, partial dependence plots account for the mean effect of
other variables. This can make interpretation of partial depen-
dence plots challenging in cases where multiple predictor
variables are correlated with each other36. In contrast to partial
dependence plots, ALE plots average and accumulate differences
in the prediction across the conditional distribution to isolate the
specific unbiased effects of an individual predictor of interest.
Therefore, if individual variables in ALE plots show a clear
relationship with the cluster outcome, one can be more confident

Fig. 7 Partial dependence plot for the shallowest pairwise variable interaction. Panel a indicates that strongly negative values of VP200_PW_EOF1_Lag4
(i.e., the August value of the first EOF of VP200) combined with a strongly positive SST_TP_EOF1_Lag1 (i.e., the November value of the first EOF of tropical
Pacific SST) increases the probability (shaded colors) of a JFM Cluster-4 (panel b) precipitation anomaly occurrence. This relates to La Niña like conditions
in November and enhanced convection conditions in the Indian Ocean/Maritime continent in August (panel c). Partial dependence plots for other variable
interactions are shown in Supplementary Material Figs. S13 and S14.
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that certain variables do indeed provide a non-spurious unique
influence on that outcome.

ALE plots for particular variables of interest are given for
predicting cluster 3 (Supplementary Material Fig. S15) and cluster
4 (Fig. S16). These plots provide further evidence that, while
ENSO plays a dominant role in western US precipitation
predictability, other variables beyond ENSO can also provide
smaller independent contributions. For example, positive values
of SST_TP_EOF1, corresponding to La Niña conditions, most
strongly increase the probability of cluster 4 occurrence, which is
in agreement with the partial dependence plot from Fig. 7. The
ALE plots also confirm that velocity potential at longer lead times
is important (from Fig. 7), where a range of negative values for
this variable slightly increases the cluster 4 occurrence. As noted
earlier, a challenging component of the seasonal prediction
problem is distinguishing between cluster 3 and cluster 4, related
to the positioning of the anomaly dipole across the western US.
Comparing the ALE plots between cluster 3 (Fig. S15) and cluster
4 (Fig. S16) elucidates what information the model has used to
distinguish between these clusters when making seasonal
forecasts. Since La Niña conditions favor both clusters 3 and 4,
it is shown that SST variability in the western tropical Pacific and
the Indian Ocean, and to a lesser extent the North Pacific are used
as additional discriminants in the model. For example, while SST
variability in the North Pacific was found not to be an overall
important predictor earlier (Fig. 5), this can slightly increase the
likelihood of cluster 3 occurrence compared to cluster 4.

Explaining individual seasonal forecasts. In the previous sec-
tion, we provided evidence that the trained model has been
capable of learning physically plausible teleconnections for wes-
tern United States precipitation. In this section, we extend
interpretability to go beyond that of the general model structure
and towards explaining the model’s decision-making process for
individual seasonal forecasts. In particular, we probe what com-
bination of factors drives the model to make an incorrect or
correct seasonal forecast in a given year.

Using the LIME modeling framework, we fit simpler statistical
models around the decision point of the more complex Random

Forest model. The LIME modeling framework is applied on a
case-by-case basis (local interpretability), with one model fit to an
individual season. We present two case studies corresponding to
incorrect and correct forecasts. The 2005-JFM seasonal cluster
was correctly predicted by the model, with a Dry North Wet
South pattern (cluster 1). Estimates of individual predictor
variables and thresholds that most strongly supported or
contradicted this forecast for cluster 1 are presented in Fig. 8a.
As shown, negative values of SST_TP_EOF1, which correspond
to a warm tropical Pacific SST anomaly associated with a weak El
Niño event across October to December, most strongly favored
the prediction of cluster 1. Other variables, such as velocity
potential at longer lead times and western tropical Pacific SST
anomalies, also favored the cluster 1 forecast but these
contributed less to the outcome in this case compared to ENSO.

As noted earlier, this framework can also be applied to
investigate drivers of incorrect forecasts, with the forecast for
2016-JFM presented here as an example (Supplementary Material
Fig. S17). In this case, the model incorrectly predicted cluster 1 to
occur, whereas cluster 4 occurred. Again, weak El Niño
conditions were the main driver of this incorrect prediction.
However, patterns of SST variability in the western tropical Pacific
and the Indian Ocean presented a tug-of-war to contradict the
prediction but with overall smaller weights. This incorrect
prediction was not unique to the Random Forest model, with
all other machine learning models and NMME models analyzed
making similar incorrect forecasts. Various other studies have
concluded that this particular event was largely dominated by less
predictable atmospheric variability, making it difficult to predict
on seasonal timescales4,11,12.

It is important to note that the LIME framework is only an
approximate estimate of the machine learning model’s more
complex decision-making process at that locality. In the two cases
presented, the simple model was found to provide a reasonably
good approximation (R2= 0.4–0.5) of the model complexity, but
less explainable cases can also be found. While acknowledging
this caveat, we suggest that the ability to explain individual
forecasts in this way could be very useful. In dynamical models
used for seasonal forecasts, it is often difficult to formally quantify

Fig. 8 Explaining individual seasonal forecasts through LIME modeling. Panel a shows which variables most strongly influenced the 2005-JFM correct
prediction of Cluster 1 (panel b). Negative values of SST_TP_EOF and its lags (panel c), corresponding to a warm tropical pacific under a weak El Niño event
across October to December, most strongly favored the prediction of Cluster 1. Another LIME case study, for the incorrect 2016-JFM prediction case, is
shown in Supplementary Material Fig. S17.
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what boundary conditions have most heavily influenced an
individual forecast without running further resource-expensive
diagnostic experiments. Subsequently, in practice, it often takes
considerable time after the event for diagnostic studies to
reevaluate and quantify the physical drivers of a forecast, and
interpretation from this can be inconclusive. In contrast, here we
have illustrated how local interpretable machine learning can
provide plausible explanations for what variables contributed
most strongly to a particular forecast outcome at a negligible
computational cost. In practice, the main advantage of this is that
these local interpretability plots (Fig. 8) can rapidly be produced
and presented alongside the seasonal forecast in real-time.

Implications and future directions. The machine learning
approach to seasonal forecasting tested here shows promise both in
terms of competitive accuracy and in terms of ability to learn phy-
sically plausible teleconnections. The proposed interpretable
machine learning approach could also be applied more broadly in
future work to better understand and compare teleconnections
between different climate models, as well as assessing the possibility of
non-stationarity in certain teleconnections due to climate change.

A number of different pathways may exist for further improve-
ments in seasonal forecast skills. One major advantage is that training
machine learning models on climate model simulations can leverage
substantial existing investments in large climate model ensembles.
Indeed, the number of modeling groups performing large initial
condition model experiments has increased considerably in recent
years37, providing further opportunities to train on different climate
models and better understand different structural uncertainties that
contribute to seasonal forecast uncertainty. This large and growing set
of model simulations available for training is in contrast to the
traditional approach of training on observational data, where only a
single additional training sample becomes available each year. In
future work, we plan to assess potential skill improvement from
training on certain climate model simulations that have a reasonably
well resolved quasi-biennial oscillation (QBO), which contains a large
amount of memory and has been highlighted recently as an
important source of predictability for North American precipitation18.

It is notable that the Random Forest, one of the computation-
ally simpler machine learning models tested, ranked as one of the
top-performing models. This carries a practical advantage since
the Random Forest is typically more readily interpretable (as
explored in Figs. 5–7) and has fewer tunable parameters with
relatively little sensitivity to these parameter choices. For the
LSTM model, a simple implementation (single layer LSTM
followed by 20 neurons in a single layer) was found to achieve
competitive results compared to more complex architectures.
However, future work may explore different LSTM implementa-
tions, including testing deeper LSTM architectures and bidirec-
tional LSTM38. Transfer learning may be another approach to
further improve skill25. Transfer learning in this context involves
generating the main associations and weights from training on
large climate model simulations then updating these pretrained
weights on a separate set of observations.

Summary
This study has tested a novel approach for seasonal forecasting
western US precipitation. In particular, a range of machine
learning approaches have been trained on large climate model
simulations, and their predictions combined in an ensemble to
predict large-scale patterns of precipitation anomalies. The main
findings from this study are:

Classification accuracy is generally higher in JFM compared to
NDJ seasons. In both seasons, the machine learning models
display skillful predictions relative to baselines, and can

compete with or out-compete dynamical forecast models
from NMME.

The widespread wet pattern of precipitation (cluster 2) was
consistently the most difficult pattern to forecast in all machine
learning models. Post-processing, where different clusters are
combined, can increase the accuracy further (accuracy:
70–80%) but comes at the cost of providing a less precise
forecast (i.e., larger spatial smoothing).

Focusing on the Random Forest model, we have investigated
both global and local interpretability. In terms of global
interpretability, as expected, ENSO is the dominant source of
seasonal predictability. Other variables, namely velocity
potential anomalies across the Indian Ocean and Maritime
Continent, and SST anomalies across the western tropical
Pacific can modulate the probability that ENSO will result in a
certain precipitation cluster. The interpretability results
provide confidence that the model is capable of learning
physically plausible teleconnections from a large pool of
candidate predictor variables.

Local interpretability provides estimates of what variables have
influenced an individual seasonal forecast. Examples of local
interpretability are presented showing how, for specific
seasons, conditions beyond ENSO have influenced a specific
forecast. Presenting local interpretability plots alongside the
seasonal forecast may help build trust in the predictions from
machine learning.

We suggest that this approach to seasonal forecasting offers a
promising path forward. Compared to the traditional approach of
training statistical models on observational data, the large sample
size enabled by training on large climate model simulations helps
overcome sampling issues and allows for nonlinear interactions to
be represented. Further skill improvements may come from
training machine learning models on multiple climate models
through the same framework.

Methods
Overview of the framework for machine learning with large ensemble climate
simulations. This section provides an overview of the framework implemented
here for machine learning-based predictions from large ensemble climate simula-
tions. Figure 1 outlines this methodology, showing oceanic (Fig. 1a) and atmo-
spheric (Fig. 1b) predictor variables and regions from the CESM-LENS model,
described in Section “Climate model training data” below. The predictor variables
are based on applying EOF analysis to different regions and variables (described in
Section “Machine learning predictor variables”). Using these EOF-derived pre-
dictor variables in model training, the four machine learning models tested in this
study are shown in Fig. 1c. The predictand variable (Fig. 1d) targets widespread
spatial patterns of precipitation derived from applying K-means clustering to
CESM-LENS precipitation data (Section “Machine learning predictand variable”).
Predicting the occurrence of these larger-scale precipitation features (Fig. 1d) has
the advantage that these spatial scales are well aligned with the typical area of ridges
and troughs along Rossby wave trains that form an important source of seasonal
predictability in this region14,15,39,40. After training and calibrating each of the four
machine learning models on CESM-LENS data through this framework, the same
models are then forced by observational and reanalysis data (described in Section
“Observational and reanalysis data”) and used to make out-of-sample seasonal
forecasts for NDJ and JFM seasons across the observed record (1980–2020).

Climate model training data. The limited record length of observational data at
the seasonal time resolution leads us to explore the use of climate model data when
training various machine learning models. For this purpose, we use simulations
from the CESM-LENS single-model large ensemble41,37, comprising 40 ensemble
members spanning years 1920–2005 with historical forcing from the fifth phase of
the Coupled Model Intercomparison Project (CMIP5) design protocol. The CESM-
LENS uses the Community Earth System Model v1 (CESM1), with the Community
Atmosphere Model (CAM) v5, run at approximately 1° resolution with fully
coupled atmosphere, ocean, land, and sea-ice components. Each of the CESM-
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LENS ensemble members represents a physically plausible and unique trajectory of
the climate system (e.g., different phases of low-frequency variability will occur at
different times across the historical record) solely due to internally generated cli-
mate variability. Data from CESM-LENS used for training machine learning
models were as follows: SST, zonal and meridional wind at 200 hPa (U200, V200),
velocity potential at 200 hPa (VP200), geopotential height at 500 hPa (Z500), and
total precipitation.

A number of studies have evaluated the performance of CESM1 in terms of
simulating low-frequency variability in the tropics (i.e., including ENSO) and
related teleconnections into the North Pacific42–45. These considerations are
relevant to training machine learning on CESM1, as systematic biases in
teleconnections also have the potential to be learned during training. A primary
focus of CESM1 model development was to improve ENSO variability and
teleconnections as these were known to have large deficiencies across previous
model versions (e.g., CCSM3)45. The much-improved fidelity of ENSO variability
and teleconnections across successive versions of the model was largely the result of
targeted changes to the atmospheric deep convection parameterization46,47.
CESM1 has shown to generally perform well in terms of temporal characteristics
including the asymmetry of El Niño and La Niña duration42. However, the
amplitude and variability of ENSO events are both known to be larger than that
observed across the 20th century42.

Machine learning predictor variables. All predictor variables first underwent
dimension reduction through EOF analysis. The purpose of this was to: (1) isolate
dominant spatial modes of variability and (2) reduce the amount of potentially
redundant data by transferring from gridded data to a smaller number of principal
components more manageable in model training. A similar approach is typically
implemented as a first step in more traditional CCA for seasonal forecasting. All
predictor variables were based on monthly mean values. For each predictor vari-
able, the first four EOFs were retained which collectively explain at least 50% of its
variance. The spatial patterns of EOFs and the percent variance explained are
shown in Supplementary Material Figs. S2–S8.

As detailed in Fig. 2a, EOF-derived predictor variables for SST were chosen to
target the following regions: tropical Pacific (TP), western tropical Pacific (WP),
Indian Ocean (IO), and North Pacific (NP). These regions were targeted based on
previous studies (see Section “Sources of seasonal predictability”) indicating
plausible physical teleconnections to western US precipitation. EOF-derived
predictor variables for atmospheric circulation (Fig. 1b) target velocity potential
anomalies at 200 hPa across the wider tropical Pacific (PW) and the Indian Ocean,
zonal wind anomalies at 200 hPa across the North Pacific (NP), and geopotential
height anomalies at 500 hPa across the Eastern North Pacific (ENP). The velocity
potential field targets broad spatial patterns of anomalous deep convection that
drive a Rossby wave response in the extratropics. North Pacific subtropical jet
variability was also included because of the waveguiding influence on
tropical–extratropical teleconnections48–50 as well as the relevance to western US
precipitation through more localized jet regimes over the northeast Pacific11,51.
Other variables considered included tropical and high-latitude stratospheric
variability, including the QBO and sudden stratospheric warming events. However,
stratospheric variability is not well resolved in this low-top model version of
CESM152, and as expected, sensitivity testing found that these variables did not add
additional skill and were subsequently removed.

Machine learning predictand variable. The predictand variable is derived from
K-means clustering of standardized seasonal (3-monthly) precipitation anomalies
over the western US for two separate seasons: NDJ and JFM. Cluster analysis was
used to isolate recurrent large-scale features of precipitation variability in this
region (Fig. 1d). K-means clustering requires the user to select a specific number of
clusters, which we set as four clusters for the following reasons. Previous research
has highlighted that the first two modes of seasonal precipitation anomalies in this
region explain approximately 60% of the variance39. The first mode is associated
with widespread wet/dry conditions across the entire region, while the second
mode is associated with a north–south dipole of precipitation anomalies53. The first
four clusters from K-means (Fig. 1d) are a very close match to these dominant
modes of seasonal precipitation. Furthermore, by choosing four clusters, the
clusters trained from CESM-LENS (shown in Fig. 1d) are a close match to those
trained from observational data (Supplementary Material Fig. S1). While including
more than four clusters can provide more regional detail in precipitation, the
prediction accuracy from the machine learning methods tested was found to
decrease when additional clusters were added in sensitivity testing. This suggests
that the four clusters extracted from K-means broadly represent the main pre-
dictable components of precipitation in CESM-LENS on seasonal timescales.

Observational and reanalysis data. After training on CESM-LENS, the trained
machine learning models were taken offline and tested for making out-of-sample
predictions on observations (years 1980–2020). For this purpose, the same set of
observed predictor variables are needed as those used in model training. Specifi-
cally, SST data were obtained from ERSSTv554, all atmospheric circulation fields
were from ERA555, and the total precipitation was from CPC-Unified at 0.25°

resolution56. The dimension reduction of these predictor and predictand variables
was applied to both CESM-LENS and observations.

Random Forests. Random Forests (RF)57 is a supervised machine learning algorithm
consisting of an ensemble of decision trees. Different decision trees are developed by
taking random subsets of predictor variables and data cases, which reduces the corre-
lation between individual trees. The purpose of using multiple decision trees is that the
variance in the prediction is reduced compared to predictions from individual trees that
are often prone to overfitting on the training data. Each tree is built using a bootstrapped
sample, and records that are not used in building the decision tree are referred to as
the out-of-bag sample. In a number of settings on tabular data, RFs are often shown to
be capable of producing similar classification accuracy compared to more complex
machine learning methods, while retaining a somewhat higher degree of interpretability .
Another advantage of RFs is the relatively small number of parameters required in
model tuning and the relative insensitivity to these choices57.

Two parameters were tuned in the RF model: the number of trees set to 5000,
and the number of variables randomly sampled at each split set to 10. These
parameter choices were based on tuning across the CESM-LENS training dataset,
though sensitivity testing revealed stable results across a number of parameter
choices provided that the number of trees was sufficiently large. For the RF
training, predictor variables were lagged based on the memory of each predictor
variable (Supplementary Material Figs. S9 and 10) and through sensitivity testing to
the of out-of-bag accuracy across the CESM-LENS training to how each variable
was lagged. The first EOF of each SST variable/region was lagged at 1-month
intervals up to 12 months, and the second EOFs were lagged up to 6 months. The
exception was for SST in the North Pacific, which was not lagged, as we found very
little sensitivity to adding additional lags. The first EOF of U200 was also lagged up
to 6-months, given the memory of this variable. All other predictor variables were
not lagged, such that only October values were used to make the NDJ predictions
and only December values were used to make the JFM predictions.

XGBoost. Extreme gradient boosting (XGBoost) is a recent implementation of
gradient boosted decision trees for supervised machine learning58. XGBoost relies
on the concept of boosting—that multiple “weak” learners (i.e., underfit to the
data) can be more effectively combined to produce a single “strong” learner. The
training proceeds by iteratively growing individual decision trees that target mis-
classifications from the previous weak learners, giving them additional weight
across subsequent training iterations. Recently, XGBoost has been a consistent top
performer in terms of classification accuracy for tabular datasets across an exten-
sive range of applied machine learning problems58.

Compared to RF, XGBoost requires a larger number of parameters to be tuned
in the model training. Among the most important parameters are the number of
rounds for boosting (nrounds), how deep the trees can grow (max_depth), the
learning rate to control how conservative the boosting is performed (eta), and the
minimum loss reduction required to make a further tree partition (gamma). These
parameter values (Supplementary Material Table S1) were tuned based on
multiclass classification accuracy in the CESM-LENS validation dataset from a
random search across a range of values, performed separately for models predicting
JFM and NDJ seasons. For tuning purposes, we split the CESM-LENS dataset as
80%/20% for training and validation, respectively with the same variables and lags
were used as in the RF model, described in Section “Random Forests”.

Neural networks. Neural networks (NN) approximate nonlinear functions and
processes59 through a series of feed-forward matrix operations. NNs pass predictor
input variables through a series of hidden layers, to a specified output layer. Each
layer is described by the number of nodal points in that layer with the initial layer
being the number of input variables. Nodes from adjacent model layers are con-
nected via model weights. The hidden nodal point values are determined by the
sum of the product of associated model weights and the input values from the
previous layer. Each nodal point is then ‘activated’ by a nonlinear function before
passing the variables to the following layer. The task of training a NN is to learn the
optimal nodal weights, computed iteratively through backward optimization and
gradient descent. In particular, each iteration seeks to minimize the cost of a
specified loss function, by determining the gradient field of the weights and taking a
small step in the direction opposite this gradient. The series of multiple hidden
layers, and the optimization process, gives rise to the term Deep Learning.

A Deep Feed Forward NN was implemented in which all nodes are fully
connected, without enforcing sparsity. The final architecture and parameters were
selected through a hyperparameter search, with the minimum error on the
validation data set (20% of the CESM-LENS dataset) used to determine the final
network parameters and architecture (Supplementary Material Table S2). The NN
utilizes an Adam optimizer60, the Rectified Linear Unit (ReLU) activation function,
a 0.001 learning rate, a batch size of 100, dropout regularization, and a categorical
cross-entropy loss. The network was trained with 50 epochs and saved whenever
validation accuracy improves. All predictor variables (Section 2.3) were lagged by
12 months and used in the final model. Class imbalances were accounted for by
applying a scalar value that weights the cross-entropy loss function during training
proportionally to categorical representation in the training dataset.
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LSTM networks. Long short-term memory (LSTM) networks are a type of
recurrent NN that can learn dependence in sequential data61,62. LSTM networks
have an internal state that aims to model information about past observations
(inputs) for a variable number of steps in the sequence. The advantage of this
approach, compared to traditional feed-forward NNs, is that persistence and
memory of past information are explicitly modeled in the network and used when
making predictions. In the context of seasonal forecasting, this feature of LSTMs is
valuable since a sequence of past events (e.g., the gradual development and per-
sistence of ENSO over several months), as opposed to an individual data point/
month, is likely provides additional predictive information.

All predictor variables were used in the final model, but here the sequence
length history (i.e., how far the model looks back at past events) was treated as a
hyperparameter. Other hyperparameters were the number of LSTM neurons,
training epochs, and batch size, which were tuned across the validation data set to
determine the final network values (Supplementary Material Table S3). The
network architecture used for both JFM and NDJ models was fixed with the LSTM
layer followed by 20 neurons in a single layer. The LSTM network used an Adam
optimizer60 with categorical cross-entropy loss. Dropout regularization was
implemented to reduce overfitting, where the network nodes are probabilistically
dropped out of weight updates during model training. Further details on the
training data and software implementation for each machine learning model are
presented in Supplementary Material Table S4 and Table S5.

Interpretable machine learning. The goal of interpretable machine learning is to
quantify which predictor variables are overall most influential in the model (global
interpretation), as well as estimating how an individual classification/forecast was
made (local interpretation). In recent years, applied machine learning research has
focused heavily on developing these techniques, which are directly relevant to
applications in atmospheric science63–65. Here, we describe the implementation of
three separate approaches to target global and local interpretability, specifically
from the RF model.

First, to target global interpretation, we explore the most important individual
predictor variables used for making seasonal predictions. Three metrics were
considered as follows: relative mean decrease accuracy, mean minimum tree depth,
and root. Relative mean decrease accuracy quantifies the decrease in classification
accuracy from shuffling individual predictor variables. If shuffling results in a
relatively large decrease in the test set accuracy (i.e., larger errors across the out-of-
bag samples) then the variable is seen to be important since shuffling has now
broken a previously important relationship. Mean minimum tree depth quantifies
the average depth of a particular predictor variable across multiple decision trees.
Since more consequential variables are positioned closer to the root of the decision
tree, a lower minimum tree depth value signifies larger variable importance.
Similarly, the root metric measures variable importance by counting the number of
times a particular predictor variable is positioned at the root of a decision tree.

Second, also targeting global interpretation, we explore the most important
predictor variable interactions between all possible pairs of predictor variables. To
do so, across all decision trees, we compute the mean conditional depth of all
pairwise interactions in terms of their frequency of interaction occurrence and their
depth of interaction occurrence66,67. This enables analysis of variable interaction
importance since variables that interact closer to the root of the tree and with a
higher frequency will be more consequential overall in determining the prediction.
Partial dependence plots compute the probability of an outcome as a function of
two predictor variables after accounting for the average effects of all other
variables63,68. This analysis allows us to examine the average direction and strength
of influence for key predictor variables, as well as examining the potential influence
of nonlinear interactions on the probability of a particular outcome. Accumulated
local effects plots (ALE plots)36 are also computed, which can be considered an
extension of partial dependence plots. ALE plots are designed to limit potential
issues associated with the multicollinearity of predictor variables that can make
partial dependence plots challenging to interpret.

Third, we implement the local interpretable model-agnostic explanations modeling
framework (LIME)69 to explain why a particular cluster was forecasted on a particular
target date (i.e., local interpretation). In the context of seasonal forecasting, LIME is used
to explain and rank which predictor variables were used by the model to make a
particular forecast. The LIME modeling framework aims to explain the importance of
predictor variables by finding a simple linear solution that approximates the original
model’s decision function near to a particular case. Through perturbing input variables
across the model’s nonlinear decision function, this much simpler linear model is fit to
explain how the more complex RF model behaves locally.

Comparisons to dynamical forecast models. The output of a number of dynamical
models from the North American multi-model ensemble (NMME) phase 2 models19,20

were analyzed to compare skill with the machine learning-based models (Supplementary
Material Table S6). In particular, the 3-month forecasted standardized seasonal pre-
cipitation anomaly from each model’s ensemble mean was projected onto the K-means
clusters . This projection into cluster-space allowed direct comparisons between the
machine learning-based models and the dynamical models. Forecasts for November
through January (NDJ) were initialized in October, and forecasts for January through
March (JFM) were initialized in December, with all available hindcast years used in
each model.

Data availability
All data used in this study are publicly available. CESM-LENS 40-member ensemble data
were provided by the Climate Data Gateway at NCAR: https://www.cesm.ucar.edu/
projects/community-projects/LENS/data-sets.html NMME data were provided by the IRI
Data Library: http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/ERA5 data
were provided by the Copernicus Climate Data Store: https://cds.climate.copernicus.eu/
#!/search?text=ERA5&type=dataset ERSSTv5 data were provided by NOAA/OAR/ESRL
PSL: https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html CPC US Unified
Precipitation data were provided by NOAA/OAR/ESRL PSL: https://psl.noaa.gov/data/
gridded/data.unified.daily.conus.html
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