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A low-cost post-processing technique improves
weather forecasts around the world
Timothy David Hewson 1✉ & Fatima Maria Pillosu 1,2

Computer-generated weather forecasts divide the Earth’s surface into gridboxes, each cur-

rently spanning about 400 km2, and predict one value per gridbox. If weather varies markedly

within a gridbox, forecasts for specific sites inevitably fail. Here we present a statistical post-

processing method for ensemble forecasts that accounts for the degree of variation within

each gridbox, bias on the gridbox scale, and the weather dependence of each. When applying

this post-processing, skill improves substantially across the globe; for extreme rainfall, for

example, useful forecasts extend 5 days ahead, compared to less than 1 day without post-

processing. Skill improvements are attributed to creation of huge calibration datasets by

aggregating, globally rather than locally, forecast-observation differences wherever and

whenever the observed “weather type” was similar. A strong focus on meteorological

understanding also contributes. We suggest that applications for our methodology include

improved flash flood warnings, physics-related insights into model weaknesses and global

pointwise re-analyses.
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Weather forecasts nowadays rely heavily on computer-
based models, i.e. numerical weather prediction
(NWP)1, and commonly an ensemble of predictions is

used, to represent uncertainties2. Due to computational power
limitations, a gridbox in the best operational global ensembles
currently spans about 20 km by 20 km in the horizontal (here-
after: “GM scales”= Global Model scales). So NWP forecasts do
not output rainfall (for example) at specific sites, that most cus-
tomers require, but instead “average rainfall” for much larger
gridboxes. This disconnect is an important forecasting problem,
which this study addresses. To elaborate, we introduce here the
notion of “sub-grid variability”, to mean the variation seen
amongst all point values observed within the same model gridbox.
If sub-grid variability is low then raw NWP forecasts can provide
accurate forecasts for points. But if sub-grid variability is high
such forecasts inevitably fail.

The most common strategies to address sub-grid variability pro-
blems are using a much higher resolution model (e.g. ∼2 km*2 km)
to minimise them3, or using calibrated post-processing (PP) techni-
ques to statistically convert from gridbox to point forecasts4–6. For
predicting rainfall, the parameter central to this article, high-
resolution models, whilst showing much more realistic-looking spa-
tial patterns, and exhibiting improvements in forecast skill7,8, have
limited geographical coverage. This is because of computational
constraints, which imply that one such model might only cover
~0.2% of the world. For global coverage PP techniques are a better
prospect, and they have historically performed well in improving
forecasts of dry weather6,9, but as previous authors themselves
acknowledge, many challenges and issues remain (Table 1). Table 1
also highlights how our brand-new approach, described in this study,
addresses these points. Ours is a non-local gridbox-analogue
approach, formulated via the principles of conditional verification10,
with some structural similarities to quantile regression forests11,12.
We call the method “ecPoint”—“ec” for ECMWF, i.e. the European
Centre for Medium-Range Weather Forecasts, and “Point” for point
forecasts.

Sub-grid variability in rainfall is itself very variable (Fig. 1) and
relates closely to the weather situation. There are clear-cut phy-
sical reasons for this. Dynamics-driven (large-scale) rainfall, often
related to atmospheric fronts, arises from steady ascent of moist
air across regions typically larger than GM scales (Fig. 1a). As
rainfall rates mirror ascent rates, rainfall rate sub-grid variability
tends to be small. Conversely instability-driven rainfall (i.e.

showers/convection) arises from localised pockets of rapid ascent,
which are typically hundreds of metres to kilometres across. So
during convection rainfall rate sub-grid variability, on GM scales,
can be very large indeed13 (Fig. 1b, c).

Rainfall totals arise from integrating rainfall rates over time.
Sub-grid variability in totals mostly reduces in proportion to
period length. Let us consider, as in many rainfall PP studies,
daily to sub-daily time periods (e.g. 6, 12, 24 h), and focus on
convection. The intensity, dimensions, density, genesis rate,
longevity, and speed of movement of convective cells all impact
upon the sub-grid variability in totals. For example, cells moving
with speed V, that retain intensity and dimensions for a period t,
will deliver stripes in a totals field of length V*t. Typical values of
V and t might be 15 m s−1 and 1 h, giving a stripe 54 km long,
which is much greater than GM scales. In such situations we thus
get sub-grid variability primarily in one dimension (Fig. 1b). In
the limiting case of slow-moving cells, where V→ 0, we retain
(large) sub-grid variability in two dimensions (Fig. 1c), and
sometimes many locations within “wet gridboxes” stay dry.

The embodiment of ecPoint is that features of the NWP gridbox
forecast output (and other global datasets) can tell us what degree of
sub-grid variability to expect. For example, NWP output commonly
subdivides rainfall into dynamics-driven and convective, and then for
convective cases shower movement speed can be approximated by
(e.g.) the 700 hPa wind speed. So by using the convective rainfall
fraction and the 700 hPa wind speed (two “governing variables”) we
can distinguish each of the three “gridbox-weather-types” on Fig. 1,
to anticipate a priori the expected sub-grid variability, and accord-
ingly convert each forecast for each gridbox into a probabilistic point
rainfall prediction (going from red to blue on Fig. 1 PDFs). To our
knowledge this general approach, based on first principles of pre-
cipitation generation, has not been used before except in a limited
way for nowcasting14 (Table 1, row 11). Another powerful feature of
our approach is that each gridbox-weather-type is also associated, via
calibration, with a gridscale bias-correction factor.

The logic outlined above could be successfully applied to a
single deterministic forecast but in NWP ensembles furnish the
most useful predictions2,15. So instead we apply separately to each
ensemble member, creating an ensemble of probabilistic realisa-
tions (or “ensemble of ensembles”) that we merge to give the final
probabilistic point forecast. Whilst Fig. 1 shows just three grid-
box-weather-types, ECMWF’s current ecPoint-Rainfall system
uses 214 such types, defined in decision tree form.

Table 1 What (previously reported) challenges/issues do classical post-processing methods often face?

Challenge/issuea Related characteristics of ecPoint

1 Calibration requires ≳20 years of observations5,6,46,48–51 Vast training datasets come from just 1 year of data
2 Calibration requires ≳20 years of ensemble re-forecastsb 6,46,49,50,52 1 year of re-forecasts, from just one (Control) run, for up to 48 h lead

times, is sufficient
3 Lack of climatological stationarity potentially a problem33,46,51,53,54 1 year of training is short enough to avoid this
4 Forecasts not possible where no training data is available46 Forecasts can be created for all locations
5 Distribution fitting often used may not mirror real data5,6,12,55 Nonparametric methods are used
6 Distribution fitting struggles to represent tails well5,6,51,55,56 There are no constraints on tail structure
7 Difficult to improve forecasts of extremes5,6,9,12,52,55–59 Forecasts of ‘extremes’ are substantially better
8 Occasional errors in training data may contaminate forecasts61 Impacts of such errors are nil or negligible
9 No pointers regarding “reasons” for model errors/biases “Mapping functions” used denote model characteristics
10 Post-processed spatial output may require smoothing9,46 Aesthetically smooth fields arise naturally
11 Large scale/convective precipitation are not disaggregated An intrinsic and valuable facet of the method
12 Can different modelling systems’ biases be compared and

addressed?62,63
Decision tree reproduction can facilitate this

13 Coverage is not globalc Coverage is global

aWhich issues are relevant depends on the method. Citations denote where an issue has been highlighted, without a clear mechanism for addressing. Studies in which an issue has been highlighted with a
mechanism for addressing are as follows: issue no. 612, issue 760,61, issue 960, issue 1114, issue 1328.
bIn the U.S. calibration is the main driving force for running re-forecasts (Tom Hamill, personal communication). ECMWF’s re-forecast strategy is different.
cBesides the one study28 no other cited work can have global coverage.
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Calibration for the post-processing is achieved not by using radar
data, but instead rain gauge observations from across the world, in
conjunction with short-range Control run re-forecasts, in an inno-
vative, inexpensive, non-local procedure (Table 1, rows 1, 2).

Applications of ecPoint include the many spheres that would
benefit from improved probabilistic point forecasts. For rainfall,
flash flood prediction is one application, given that we achieve
much improved forecasts of localised extremes, as will be shown.
ECMWF has been delivering real-time experimental ecPoint-
Rainfall products to forecasters since April 2019.

Results
Verification. To have value PP techniques must improve upon raw
NWP forecasts. So the performance of 1 year of retrospective
forecasts from both the raw NWP and ecPoint-Rainfall systems was
compared, using as truth 12 h rainfall observations from both
standard SYNOP reports (global coverage) and specialised high-
density datasets (certain countries, mainly European16). Verification
and calibration periods were separate. Although raw model output
does not pertain to point values, it is very common to verify using
them, as in ECMWF’s two headline measures for precipitation17,18.

Here we utilise categorical verification because threshold
setting is common for applications and because forecast products
reflect this (see the sections “Case study examples” and
“Methods”). In this framework, the two fundamental aspects to
assess are reliability (i.e. when x% probability is forecast is the
event observed on x% of occasions?) and the capacity to
discriminate events. For these, we use respectively, the Reliability
component of the Brier Score19, which is an integral measure of
reliability across all issued probabilities, and area under the
relative operating characteristic (ROC) curve (ROCA)15,20.

When verifying probabilistic grid-based forecasts against point
measurements one cannot achieve perfect discrimination, because
of sub-grid variability. We believe that relative to other
discrimination metrics ROCA, also used operationally18, is much
more immune to limitations placed by this. ROCA can exhibit
false skill when site climatologies differ21, so whilst the objective
here was to ascertain ecPoint’s added value, by comparing ROCA
scores, a “zero-skill” baseline was also needed, based on local

climatological probabilities (even if these were not available
everywhere). Figure 2 displays results for three 12 h accumulation
thresholds: 0.2 mm (“dry or not”), 10 mm (“wet”), and 50 mm
(“extreme, with flash flood potential”).

For both metrics and almost all lead times ecPoint out-
performs the raw ensemble. Reliability improvements are
particularly striking for the 0.2 mm threshold; this relates to use
of a zero multiplier for gridbox totals in convective rainfall
situations (e.g. Fig. 1c PDFs). The ecPoint lead-time gains22 from
ROCA, for 0, 10, and 50 mm thresholds are, respectively, about 1,
2, and 8 days (centring on day 5). The particularly large gains for
high totals relate, primarily, to weather-type-dependant inclusion
of large multipliers for the raw NWP forecast gridbox rainfall (e.g.
see blue curve tails on Fig. 1b, c PDFs). To put these results into
context, NWP improvements have historically delivered a lead-
time gain of about 1 day per decade1,23. To have more than “weak
potential predictive strength”, ROCA must be some way above
the zero-skill baseline24. So, for 0.2 and 10mm/12 h thresholds
raw ensemble and ecPoint have potential predictive strength out
to ~days 7–10. For 50 mm this limit is at least day 5 for ecPoint,
whereas the raw ensemble has limited utility even on day 1. ROC
curves show that for 10 and 50 mm thresholds the ecPoint
system’s added value, expressed as ROC area impact, stems from
a better handling of the wet tails of the inferred sub-grid point
rainfall distributions—e.g. 98th/99th percentiles (see also Supple-
mentary Discussion Section 1 and a more detailed ROC curve
presentation in Supplementary Fig. 1).

Equivalent ROCA plots for the tropics only, where site
climatologies should be more similar, indicate for point rainfall
larger absolute increases in ROCA and larger lead time gains
(ROCA climatological skill here is almost unchanged). Nonetheless
similar plots for just extratropical regions exhibit lead time gains
only ~25% less than the quoted global values. Overall, the slightly
better tropical performance arises because for convective weather
types, which are more common here, there is more value to be
added, which ecPoint does. In improving “convective precipita-
tion” we have addressed the world’s number one NWP issue25.

Reliability, particularly for the raw ensemble, is better for leads
>day 1, which may relate to ensemble perturbations being
optimised for the medium range. A model spin-up issue also

Fig. 1 Three cases of 24 h radar-derived rainfall totals (mm) in the UK illustrating different types of sub-grid variability. a–c Each denote a different
case: cells measure 2 × 2 km, black denotes coasts, full frames are 54 × 54 km; legend for 24 h rainfall (mm) applies to all. Central black boxes denote an
ECMWF ensemble gridbox (18 × 18 km), for which minimum, mean, and maximum rainfall is shown beneath. Named locations lie approximately mid-panel;
all are in regions where relatively flat topography makes radar-derived totals more reliable. Bottom row explains the synoptic situations; inset graphs show,
conceptually, how a raw ensemble member forecast (red) for the box should be converted by ecPoint into a probability density function (PDF) for point
values (blue) within the box; pink line denotes the 95th percentile; x-scale is linear. Flash floods affected the two regions with red pixel clusters in (c)64.
Radar images are from netweather.tv.
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affects the leftmost points (T+ 0–12 h). For the 50 mm threshold,
although ecPoint looks better overall, the absence of significant
reliability gains at most lead times probably relates to information
loss in the forecast distribution tail, arising because the largest
percentile verified is 99th, even though 99.98th is computed.
Although areal warnings of flash flood risk are now issued for
relatively low point probabilities, we nonetheless expected little
user interest in chances of <1 in 100, and products and
verification reflect this. Indeed, ROCA values for ecPoint (and
climatology) could both be improved, at low cost, by including
higher percentiles, but in practice impact on users would
probably be small.

The oscillations seen on all panels on Fig. 2 are a function of
UTC time, and relate to irregular observation density coupled
with outstanding systematic errors in forecasts of the diurnal
cycle of convection26,27. Ongoing work with a 6 h accumulation
period and a governing variable of local solar time is helping
ecPoint to address this deficiency.

In surveying post-processing activities worldwide (see also
Supplementary Discussion Section 2) we uncovered just one
global method for which a verification comparison with ecPoint
was meaningful. That study28 improved reliability but not
resolution for small totals (reference our Fig. 2a, b) and resolution

but not reliability for larger totals (reference our Fig. 2d, e).
Verification of very large totals was missing. The study in effect
assumes just one weather type. We attribute our much better
performance to using multiple types.

Meanwhile, in two 1-year verification comparisons with
convection-resolving limited area ensembles, with and without
modern post-processing applied, for two relatively mountainous
European regions, ecPoint performed as well or better (personal
communications: Stephan Hemri, Estibaliz Gascón).

Case study examples. On 25 February 2019 a cyclone (Fig. 3e)
delivered extreme rainfall to parts of western Crete: >75 mm/24 h
was widely reported, with up to 373 mm/24 h locally (Fig. 3f).
Extensive damage occurred, including the collapse of 2 bridges29.
In the preceding days raw ensemble rainfall forecasts (Fig. 3a)
were noisy, jumpy (“Jumpy” is a term regularly used by fore-
casters: it refers to when forecasts for a given time, produced by
consecutive model runs, are inconsistent with one another.) and
confusing, with relatively low probabilities of large totals. In
relative terms ecPoint (which of course uses the raw ensemble)
performs much better (Fig. 3b). First, fields are smoother. Second,
probabilities grow over time, are more consistent and are less
jumpy. Third, ecPoint’s largest probabilities were more focussed

Fig. 2 Category-based verification for 1 year of global gauge observations of 12 h rainfall. a–c, d–f, g–i Signify thresholds of ≥0.2, ≥10, ≥50mm/12 h,
respectively. Red/blue denote raw/point rainfall forecasts, respectively; black profiles beneath denote differences signed such that positive implies point
rainfall is better (magenta= 0), with 95% confidence intervals taken from bootstrapping with simple random replacement65 of daily datasets (1000x). a,
d, g show Brier Score reliability component, 0 is optimal; points intersecting vertical gridlines denote 12 h periods ending 00 UTC, others are for end times
(left to right) of 12, 18, 06 UTC. b, e, h show area under the ROC curve as a measure of system discrimination ability, larger is better, upper limit is 1; point
meaning as for left column; yellow denotes a “baseline”, for climatology-based forecasts (for sites where that is available); arrows denote lead time used
for right column. c, f, i show day 5 ROC curves (false alarm rate= 0–1 (x) versus hit rate= 0–1 (y)), including climatology; large spots signify probabilities
of 2% (topmost), 4%, 10% and 51%. Percentiles 1, 2, …, 99 are used for point rainfall and for climatology.
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on western Crete where floods occurred. And fourth, probabilities
are higher overall. Conversely, we expect an orographic
enhancement shortfall in the raw model (due to lower mountain
peaks, Fig. 3f) which was apparently not rectified by ecPoint.
Nonetheless, Fig. 3a, b suggest that forecasters could have pro-
vided much better warnings here using ecPoint fields, and ver-
ification results in Fig. 2 for 50 mm/12 h suggest that this
conclusion has general validity.

The probabilities for a large threshold are usually higher in
ecPoint output because PP tends to extend the wet tail, at least in
(partially) convective situations, as on the cumulative distribution
function (CDF) in Fig. 3c. This extension requires, for
mathematical reasons, some intra-ensemble consistency. In an
alternative case of wet outlier(s), probabilities within the tail can
be reduced—e.g. Fig. 3d. This is because gauge totals following
convection are most likely to be less than the forecast gridbox
value, due to the non-Gaussian structure of the expected point
total distribution (e.g. see PDFs on Fig. 1b, c).

Figure 1c illustrates smaller-scale flash flood events that were
also consistently forecast and localised much better by ecPoint
than by the raw ensemble, from 5 days out.

Another feature of ecPoint PP is illustrated in Fig. 4a, b which
is for a cyclonic, convective, winter-time case in Norway.

Typically, ecPoint’s wetter tail will cross the raw ensemble tail
around 85% (e.g. Fig. 3c). But here, even for the 95th percentile,
in the north–south chain of maxima (Fig. 4a), ecPoint values are
still lower. The reason here is not outliers; it is instead the
adjustment for an expected large over-forecasting bias: compare
green and red lines in Fig. 4b. Specifically, the main gridbox-
weather-type diagnosed here (labelled “44210”, see also Supple-
mentary Fig. 2) is itself associated with a substantial gridscale
bias-correction. Norwegian forecasters, based on experience, also
envisaged that rain in this situation would be over-forecast
(personal communication, Vibeke Thyness). Nearby gauge
observations (black dots, Fig. 4b), and radar-derived totals seem
to support better the ecPoint forecasts.

Figure 4c shows that during calibration the training data for
type “44210” came mostly from mountainous regions near coasts,
consistent with topographic convective triggering being the
rainfall generation mechanism. A likely reason for the over-
prediction is that in reality when low-CAPE airmasses impinge
on mountains convective cells take time to grow and rain out,
whilst in global NWP rainfall is immediate. ecPoint highlights
quantitatively the impact. In turn the large biases identified raise
important questions about how, for example, related latent heat
release overestimates might reduce subsequent broadscale

Fig. 3 Evolution of raw ensemble and ecPoint forecasts for a flooding event in Crete. a Forecast probabilities (%), for 12–24 UTC 25 February 2019, for
rainfall >50mm, from raw ensemble; D8, D7, …D1 (for days 8, 7,…, 1) denote data times of 00UTC on, respectively, 18, 19 … 25 February. b As a but for ecPoint.
c CDFs for 12 h rainfall from the respective D3 forecasts for site X shown on (a) and (b), for raw ensemble gridbox totals (red), bias-corrected gridbox totals
(green) and point rainfall (blue), for 12–24UTC 25th (y-axis spans 0–100% and lies at x=0mm). d As c but for D6 for site Y. e UKMet Office surface analysis
for 18UTC 25th (Crete in blue). f Gauge observations of 24 h rainfall: 00–24UTC 25 February 2019 (very few 12 h totals are available here).
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predictability. The Crete case (Fig. 3) differs because rainfall there
had a smaller convective component.

These examples show how ecPoint is rich in physically realistic
complexity, which helps deliver much better forecasts on average.
Similarly using gridbox-weather-types increases understanding of
model behaviour. Other PP methods do not generally have these
desirable characteristics.

Figures 3a, b and 4a (and Supplementary Figs. 3a–t and 4a–t)
provide examples of the operational ECMWF products. Users can
select their own thresholds, compare raw and point forecast fields,
and reference user guidelines30.

Discussion
We describe a completely new PP approach to forecasting
weather at sites—ecPoint—to meet customer need in ways that
pure global NWP cannot. Our focus has been on rainfall
(renowned to be particularly challenging31,32) but the philosophy
applies also to other variables. Verification results are very posi-
tive, even for 50 mm/12 h. Comparable techniques are very
scarce. We beat the only real competitor, and match or beat two
convection-resolving ensembles with modern post-processing
applied. New product characteristics will be appealing to users.
Uniquely amongst operational PP methods, ecPoint output cov-
ers the world.

One methodological aspect has been pivotal: the use of
gridbox-weather-types in lieu of location-specific PP. This deli-
vers, relative to other studies, vast calibration datasets that retain

physical meaning; the many other attractive features of ecPoint
stem from this (Table 1). “Weather type” importance has long
been recognised, but in the form of country-scale circulation
patterns33,34 which imposes huge constraints on training data size
compared to our gridbox-weather-type approach.

Whilst ecPoint can predict local extremes via “remote learn-
ing”, the lack of global record conditions in training data could
very occasionally be a constraint. However, using mapping
functions means that new global records can be predicted whilst
in some other PP methods they cannot12.

For specific sites alternative MOS-type techniques (model output
statistics) might provide better forecasts than ecPoint, if local
topography and/or meteorological characteristics are especially
unusual. Similarly, local verification will inevitably reveal some
regional differences in ecPoint performance. These should however
stimulate future upgrades to the governing variables and the deci-
sion tree. More complexity can certainly be included, but in time
greater observation coverage will be needed to support this. We
therefore plan to exploit more high-density observations, including
new crowdsourced data35, potentially including periods <6 h.

Whilst the simple, expert-driven creation of our decision tree
has proved very powerful, there is clearly scope for optimisation.
Carefully tailored machine learning tools36 could be exploited,
alongside more complex decision tree branching, and may even
become a necessity if governing variable count increases. How-
ever, we caution against black-box methods, and enforced sta-
tistical complexity, for fear of eroding the capacity to deliver

Fig. 4 Day 4 rainfall forecasts for a southwest Norway case, with a calibration site usage map. a 95th percentile of 12 h rainfall (mm) from data time
00UTC 22 January 2018 for 06–18 UTC on 25th, from raw ensemble (left) and ecPoint (right). b CDFs of 12 h rainfall for site Z shown on a, for same data/
valid times as a, for raw ensemble gridbox totals (red), bias-corrected gridbox totals (green) and point rainfall (blue); table inset shows: assigned weather
type as a 5-digit code, then [member number, forecast rainfall in mm]. c Locations of calibration events used to define the gridbox-weather-type “44210”.
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meaningful physical insights. It is vital for NWP development to
understand the differences between raw and bias-corrected
gridbox values. Figure 4b, c provided a clear example of why.
Such insights are a major advantage of the ecPoint approach.

ecPoint has many other diverse applications. Its output is
currently being blended with post-processed high-resolution
limited-area ensemble forecasts37, to exploit their better repre-
sentation of some topographic effects (reference Fig. 3f), to
deliver better forecasts overall and to seamlessly transition into
the medium range. Meanwhile historical probabilistic point
rainfall and point temperature re-analyses will be created from
the gridscale global re-analysis called ERA538, delivering unpar-
alleled representativeness back to 1950. The pointwise climatol-
ogies so-derived will themselves have numerous applications,
such as providing a reference point (independent of model ver-
sion/resolution) to see if ecPoint forecasts are locally extreme, via
the “extreme forecast index” philosophy39. Thereby ecPoint
forecasts become even more relevant for flash flood prediction.
Other applications include inexpensive downscaling of climate
projections40, global tests of hypotheses such as “do cities affect
rainfall”41, and quality-control of observations42 using a point-
CDF-based acceptance window. Improved bias-corrected feeds
into hydro-power and hydrological43 models are also objectives.

So why is ecPoint “low cost”? Providing the control run fore-
casts we use for calibration is orders of magnitude cheaper than
providing the multi-year ensemble re-forecasts needed by many
other PP methods. And in operations, ecPoint’s own computa-
tions are many orders of magnitude cheaper than global NWP
alternatives (which in 2021 are very far from being operationally
viable anyway). Nonetheless, PP methods would be worthless
without high-quality NWP forecasts to provide the input. Indeed,
the investment and development needs of global ensembles

remain as strong as ever. The difference now is that by simulta-
neously exploiting the strong synergistic relationship with ecPoint
we can secure much larger forecast improvements for everyone.

Methods
Calibration. In general PP methods need to be calibrated. This requires observa-
tions. For ecPoint we use (unadjusted) rain gauge data as this represents points, is
commonly used for operational verification16–18, and has extensive worldwide
coverage (over land where rainfall forecast needs are by far the greatest). Whilst
issues do exist with gauge data44 other data types would present far more limita-
tions and complications.

To calibrate we appeal to the concept of conditional verification to create a
separate ‘mapping function’ (M) for each of the m possible combinations of
governing variable ranges (i.e. the m gridbox-weather-types). Each such function
aims to represent possible outcomes, and indeed a distribution, of point rainfall
within a gridbox and so each should represent a different type of sub-grid
variability. In our very simple Fig. 1 example there would be three categories (A–C)
of “gridbox-weather-type” (or “type”) which would have governing variable
characteristics like these (Pconv= fraction of total precipitation forecast to be
convective, V700= 700 hPa wind speed):

● A: Pconv < 0.5
● B: Pconv > 0.5 and V700 > 5 m s−1

● C: Pconv > 0.5 and V700 < 5 m s−1

Then mapping functions MA, MB, MC would represent PDFs of point rainfall
within a gridbox for, respectively, types j=A–C. To create, in the general case, m
mapping functions we need to allocate, to one of the m types, each and every
observation (r0) taken during a pre-defined period—1 year is sufficient—and over a
pre-defined region, ideally the world. At the same time, we must relate these to
forecast gridbox rainfall totals (G) that inevitably differ, and to do this we introduce
a nondimensional metric, the “forecast error ratio” (FER):

FER ¼ ðr0 � GÞ=G ðrequiresG≥ 1mmÞ ð1Þ

So that M ¼ Mðx ¼ FERÞ with R1
�1Mdx ¼ 1:

Naturally we assign each r0 value to a gridbox based on location and assign a
companion type to that gridbox at that time using values of the selected governing
variables. Short-range (unperturbed) control run forecasts provide these values,

Fig. 5 Mapping function examples, and the bias correction factor distribution. a–e Mapping function examples from the current operational forecast
system shown as histograms; large digits show implicit bias correction factors C. Dark green, green, white, yellow, and red bars denote, respectively, FER
ranges for “mostly dry” (<−0.99), “over-prediction” (−0.99 to −0.25), “good forecasts” (−0.25 to 0.25), “under-prediction” (0.25–2) and “substantial
under-prediction” (2 to ∞). Bar and colour boundaries were subjectively chosen. a is for one weather type with Pconv < 0.25. b for Pconv > 0.75, moderate
CAPE (convective available potential energy), strong steering winds, (c) for Pconv > 0.75, moderate CAPE, light winds, (d) for Pconv > 0.75, large forecast
totals, moderate winds, low CAPE (=weather type identifier “44210”—see Fig. 4b, c), (e) for 0.25 < Pconv < 0.5, modest forecast totals, moderate winds,
moderate CAPE. f C value distribution for all 214 mapping functions.
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and G=Gcontrol. Then, after discarding cases with Gcontrol < 1 mm for stability/
discretization reasons, each remaining (Gcontrol, r0) pair furnishes one FER value
for the said gridbox-weather-type. By accumulating these we ultimately generate
one FER PDF for each mapping function, i.e. M1, … Mj, … Mm. These form the
calibration procedure output; five examples are shown in Fig. 5a–e. Equation (1)
indicated that NWP “over-prediction” for a rain gauge site was represented by FER
< 0 (see dark green and green bars), and “under-prediction” by FER > 0 (see yellow
and red bars).

In Fig. 5 examples, sub-grid variability magnitude depends strongly on the
gridbox-weather-type. Figure 5a–c, for example, broadly correspond, respectively,
to examples in Fig. 1a–c. Variability is lowest in Fig. 5a (distribution roughly
Gaussian) and highest, with the greatest likelihood of zeros, in Fig. 5c (distribution
roughly exponential). This correspondence supports the use of worldwide gauge
observations for our “non-local” calibration. In standard convective situations
(Fig. 5b, c) “good forecasts” (white bar) are evidently rare, whilst substantial under-
prediction (red), which could lead to “unexpected” flash floods, is relatively
common, especially when steering winds are light (Fig. 5c).

Physical reasoning and case studies suggest that gridscale bias in raw NWP
forecasts can also depend strongly on gridbox-weather-type. As well as predicting
sub-grid variability ecPoint also corrects for this bias. The grid-scale bias correction
factor (Cj) is implicit in each mapping function; it derives from the “expected
value” of the associated FER:

Cj ¼ 1þ
Z 1

�1
xMj dx

� ðmean rainfall observedÞ=ðmean rainfall forecastÞ for type j:
ð2Þ

Figure 5f shows the range of Cj values for all mapping functions currently used;
for some weather types the ECMWF model seems to markedly over-predict or
under-predict rainfall (e.g. Fig. 5d and e, respectively). This is key for ecPoint and is
informative also for forecasters and model developers. Although not a definitive
inference, Fig. 5f supports the working assumption27 that on average the ECMWF
model over-predicts rainfall (although gauge undercatch44 may be a mitigating
factor). The equivalence on line 2 of Eq. (2) assumes ∂Cj/∂G ≅ 0. The larger the
range of G values the less likely this is to be valid. We reduce ranges by using G as a
governing variable for each type j, thereby increasing the efficacy of our model bias
interpretation.

A feature of our method is the freedom for the user to select, test, and
incorporate any variable that can influence rainfall sub-grid variability and/or bias.
The following variable “classes” are included: “raw model”, “computed”,
“geographical”, “astronomical”. The first two relate directly to NWP output, the
second two to other datasets. In Supplementary Methods Sections 1–3 these classes
are discussed in detail, with examples (see also Supplementary Table 1), and we
discuss the assumptions implicit in the approach. Then in Supplementary Methods
Sections 4–6 we describe the semi-objective strategy to define governing variable
breakpoints and thus decide upon the full set of gridbox-weather-types and the
related decision tree (a portion is shown in Supplementary Fig. 2). There is also
reference to a new open source graphical user interface (GUI) for performing
ecPoint calibration and for building the decision tree.

Unlike classical methods, location is not used in the calibration. This concurs
with tests of site separation importance that allocate only 2% weight to this

factor45. Removing location facilitates the generation of immense training datasets
(matching recommendations46) that deliver on average ~104 cases for each
mapping function. An example will illustrate the powerful implications of this for
ecPoint. Consider a Swedish site experiencing a gridbox-weather-type that is a one-
in-5-year event there (e.g. including locally extreme convective available potential
energy, i.e. CAPE). Such types do occur much more often globally, enough to
deliver ~104 calibration cases for that type in 1 year of global data. Handling this is
computationally straightforward, and moreover the huge case count facilitates our
hyper-flexible non-parametric approach. To match this in a simple deterministic
MOS approach4, or a state-of-the-art ensemble approach with 50 supplementary
sites47, would conversely require the impossible—i.e. data for the last 50,000 or
1000 years, respectively.

Forecast production. ecPoint forecast production relies on converting Eq. (1) for
FER into a vector form: r0 becomes Fi(r), a probabilistic point forecast of rainfall r
from member i for the period/gridbox in question, Gi is that member’s raw rainfall
forecast, and FER becomes Mi (FER), the mapping function selected for that
member. With rearrangement:

FiðrÞ ¼ ð1þMiðFERÞÞGi where Mi 2 fM1; ¼ ;Mmg ð3Þ

The final probabilistic rainfall forecast vector F, for a point in a given gridbox, is
then simply derived using all n ensemble members:

F ¼ 1
n

∑
n

i¼1
FiðrÞ

� �
ð4Þ

The ensemble of ensembles computed operationally currently utilises m= 214
mapping functions, with the FER PDF for each simplified into 100 possible
outcomes, for computational speed. So for each gridbox/period we arrive at 5100
possible realisations (100*51 members), which are then distilled into percentiles
1,2,…,99 for forecasting. Figure 6 represents the above schematically, whilst Fig. 7
is an example of the geographical distribution of weather types for one ensemble
member.

Supplementary Methods Section 7 includes a more detailed discussion of the
computational details, and of how the challenges of operational production can be
addressed. Then in Supplementary Methods Section 8 we discuss graphical output
options and forecaster use of those. Also included there, with verifying data, are
examples of how raw ensemble and ecPoint forecast distributions differ, at various
lead times in different synoptic settings, over large extratropical and tropical
domains (Supplementary Figs. 3 and 4). Supplementary Fig. 5 then demonstrates
how significant these distribution differences can be at different leads.

Data availability
Data specific to case Figs. 1c, 3, 4, 7 and verification scores supplementary to Fig. 2 can be
found at: 10.5281/zenodo.4728765. ECMWF does not have the legal rights to re-
distribute worldwide rainfall observations as used for Fig. 2; some observational data can
be obtained from the WMO GTS (World Meteorological Organisation Global
Telecommunication System) and from some national archives. Raw model output used
in this study is stored in the ECMWF archive (https://www.ecmwf.int/en/forecasts/

Fig. 6 Schematic showing how an ecPoint (rainfall) forecast is constructed for one gridbox at one time, and outputs that can be created. Blue boxes
each show probability density functions (PDFs); bracketed set of 5 represents some ensemble member forecasts, box after “=” shows the final merged
“ensemble of ensembles” product. Input gridbox (average) values are shown by red lines and bias-corrected equivalents by dashed green lines; blue curves
show ecPoint point PDFs. Pink/purple lines denote percentiles extracted from the respective blue PDFs. Lowermost box shows together the 95th
percentiles for each member’s point PDF. The primary (single value) ecPoint outputs one can create are labelled in black: (A) the weather type identifier
index for an ensemble member, (B) bias-corrected gridbox rainfall forecast for a member, (C) the median rainfall of the 95th (or other) percentiles from all
members’ point PDFs, (D) the full ensemble’s point PDF rainfall value at a given percentile x. Output charts for forecasters currently derive from (D) with x
= 1, 2, …, 99%. The same general principles depicted here also apply for other variables (besides rainfall).
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datasets/archive-datasets), whilst global ecPoint output files are currently archived
separately at ECMWF and are available from T. D.H.

Code availability
Map-based figures were created with “metview” or “metview-python” (https://
confluence.ecmwf.int/display/METV). For the post-processing code, calibration files
and images of mapping functions see: https://github.com/ecmwf/ecPoint/releases/tag/
1.0.0, and for a link to sample data to run this version of the post-processing code see:
https://doi.org/10.5281/zenodo.3708501. The calibration software GUI (ecPoint-
Calibrate) can be downloaded from https://github.com/esowc/ecPoint-Calibrate, and
for sample data to run the software with see: https://doi.org/10.5281/zenodo.4642836.
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