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Materials language processing (MLP) can facilitate materials science research by automating the
extraction of structured data from research papers. Despite the existence of deep learning models for
MLP tasks, there are ongoingpractical issuesassociatedwith complexmodel architectures, extensive
fine-tuning, and substantial human-labelled datasets. Here, we introduce the use of large language
models, such as generative pretrained transformer (GPT), to replace the complex architectures of prior
MLP models with strategic designs of prompt engineering. We find that in-context learning of GPT
models with few or zero-shots can provide high performance text classification, named entity
recognition andextractive question answeringwith limiteddatasets, demonstrated for various classes
ofmaterials. These generativemodels can also help identify incorrect annotated data. OurGPT-based
approach can assist material scientists in solving knowledge-intensive MLP tasks, even if they lack
relevant expertise, by offeringMLPguidelines applicable to anymaterials science domain. In addition,
the outcomes of GPT models are expected to reduce the workload of researchers, such as manual
labelling, by producing an initial labelling set and verifying human-annotations.

Materials language processing (MLP) has emerged as a powerful tool in the
realm of materials science research that aims to facilitate the extraction of
valuable information froma large number of papers and the development of
knowledgebase1–5. MLP leverages natural language processing (NLP) tech-
niques to analyse and understand the language used in materials science
texts, enabling the identification of key materials and properties and their
relationships6–9. Some researchers reported that the learningof text-inherent
chemical/physical knowledge is enabled by MLP, showing interesting
examples that text embedding of chemical elements is aligned with the
periodic table1,2,9–11. Despite significant advancements in MLP, challenges
remain that hinder its practical applicability and performance. One key
challenge lies in the availability of labelled datasets for training deep
learning-based MLP models, as creating such datasets can be time-
consuming and labour-intensive4,7,9,12,13. Additionally, developing deep
learning models for knowledge-intensive MLP tasks requires exhaustive
fine-tuning with a large number of labelled datasets to achieve satisfactory
performance, limiting their effectiveness in scenarios with limited label-
led data.

In this study, we suggest generative pretrained transformer (GPT)
models14-enabled MLP guidelines for materials scientists to employ the
power of large language models (LLMs) for solving such knowledge-
intensive tasks effectively. Recently, GPT-3, and GPT-3.5 models, the
powerful LLMs, have demonstrated remarkable performance in various

NLP tasks, such as text generation, translation, and comprehension, and has
garnered growing interest even in the materials science field15–17. We aim to
show how to use these GPTmodels (e.g., embeddings, few-shot learning or
fine-tuning) for solvingMLP tasks and investigate their characteristics, such
as reliability, and generative property, beyond the comparison of perfor-
mance with existing models. Our study focuses on two keyMLP tasks: text
classification, and information extraction, and the latter involves two sub-
tasks, i.e., named entity recognition (NER), and extractive question
answering (QA).

First, regarding a text classification task, we present a paper filtering
method that leverages the strengths of zero-shot (without training data) and
few-shot (with few training data) learning models, which show promising
performance even with limited training data. This approach demonstrates
the potential to achieve high accuracy in filtering relevant documents
without fine-tuning based on a large-scale dataset. With regard to infor-
mation extraction, we propose an entity-centric prompt engineering
method for NER, the performance of which surpasses that of previous fine-
tuned models on multiple datasets. By carefully constructing prompts that
guide the GPT models towards recognising and tagging materials-related
entities, we enhance the accuracy and efficiency of entity recognition in
materials science texts. Also, we introduce a GPT-enabled extractive QA
model that demonstrates improved performance in providing precise and
informative answers toquestions related tomaterials science. Byfine-tuning
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theGPTmodel onmaterials-science-specificQAdata,we enhance its ability
to comprehend and extract relevant information from the scientific
literature.

Throughour experiments and evaluations,we validate the effectiveness
of GPT-enabled MLPmodels, analysing their cost, reliability, and accuracy
to advance materials science research. Furthermore, we discuss the impli-
cationsofGPT-enabledmodels forpractical tasks, such as entity tagging and
annotation evaluation, shedding light on the efficacy and practicality of this
approach. In summary, our research presents a significant advancement in
MLP through the integration of GPTmodels. By leveraging the capabilities
of GPT, we aim to overcome limitations in its practical applicability and
performance, opening new avenues for extracting knowledge from mate-
rials science literature.

Results and Discussion
General workflow of MLP
Figure 1 presents a general workflow of MLP, which consists of data col-
lection, pre-processing, text classification, information extraction and data
mining18. In Fig. 1, data collection and pre-processing are close to data
engineering, while text classification and information extraction can be
aided by natural language processing. Lastly, data mining such as recom-
mendations basedon text-mined data2,10,19,20 can be conducted after the text-
mined datasets have been sufficiently verified and accumulated. Most MLP
studies proceed in a similar flow. This process is actually similar to the
process of actual materials scientists obtaining desired information from
papers. For example, if they want to get information about the synthesis
method of a certain material, they search based on some keywords in a
paper search engine and get information retrieval results (a set of papers).
Then, valid papers (papers that are likely to contain the necessary infor-
mation) are selectedbased on information such as title, abstract, author, and
journal. Next, they can read the main text of the paper, locate paragraphs
that may contain the desired information (e.g., synthesis), and organize the

information at the sentence or word level. Here, the process of selecting
papers or finding paragraphs can be conducted through a text classification
model, while the process of recognising, extracting, and organising infor-
mation can be done through an information extraction model. Therefore,
this study mainly deals with how text classification and information
extraction can be performed through LLMs.

Text classification in MLP
Text classification, a fundamental task in NLP, involves categorising textual
data into predefined classes or categories21. This process enables efficient
organisation and analysis of textual data, offering valuable insights across
diverse domains. With wide-ranging applications in sentiment analysis,
spam filtering, topic classification, and document organisation, text classi-
fication plays a vital role in information retrieval and analysis. Traditionally,
manual feature engineering coupled with machine-learning algorithms
were employed; however, recent developments in deep learning and pre-
trained LLMs, such as GPT series models, have revolutionised the field. By
fine-tuning these models on labelled data, they automatically extract fea-
tures andpatterns from text, obviating theneed for laboriousmanual feature
engineering.

In thefieldofmaterials science, text classificationhasbeen activelyused
for filtering valid documents from the retrieval results of search engines or
identifying paragraphs containing information of interest9,12,13. For example,
some researchers have attempted to classify the abstracts of battery-related
papers from the results of searching with keywords such as ‘battery’ or
‘battery materials’, which is the starting point of extracting battery-device
information from the literature22. Furthermore, paragraph-level classifica-
tion models have been developed to find paragraphs of interest using a
statistical model such as Latent Dirichlet allocation or machine-learning
models such as random forest or BERT classifier13,23,24, e.g., for solid-state
synthesis, gold-nanoparticle synthesis, multiclass of solution synthesis.

Information extraction in MLP
Information extraction is anNLP task that involves automatically extracting
structured information from unstructured text25–28. The goal of information
extraction is to convert text data into amore organized and structured form
that can be used for analysis, search, or further processing. Information
extraction plays a crucial role in various applications, including textmining,
knowledge graph construction, and question-answering systems29–33. Key
aspects of information extraction in NLP include NER, relation extraction,
event extraction, open information extraction, coreference resolution, and
extractive question answering.

Namedentity recognition inMLP. First, NER is one of the representative
NLP techniques for information extraction34. NER aims to identify and
classify named entities within text. Here, named entities refer to real-world
objects such as persons, organisations, locations, dates, and quantities35. The
task of NER involves analysing text and identifying spans of words that
correspond to named entities. NER algorithms typically use machine
learning such as recurrent neural networks or transformers to automatically
learn patterns and features from labelled training data. NER models are
trained on annotated datasets where human annotators label entities in text.
These annotations serve as the ground truth for training the model. The
model learns to recognise patterns and contextual cues to make predictions
on unseen text, identifying and classifying named entities. The output of
NER is typically a structured representation of the recognised entities,
including their type or category.

In thefield ofmaterials science,many researchers have developedNER
models for extracting structured summary-level data from unstructured
text. For example, domain-specific pretrained language models such as
SciBERT36, MatBERT8, MatSciBERT30, and MaterialsBERT37 were used to
extract specialised information from materials science literature, thereby
extracting entities on solid-state materials, doping, gold nanoparticles
(AuNPs), polymers, electrocatalyticCO2 reduction, and solid oxide fuel cells
from a large number of papers8,9,37–39.

Fig. 1 | General workflow of MLP. The process of MLP consists of five steps; data
collection, pre-processing, text classification, information extraction and data
mining. Data collection involves the web crawling or bulk download of papers with
open API services and sometime requires parsing of mark-up languages such as
HTML. Pre-processing is an essential step, and includes preserving and managing
the text encoding, identifying the characteristics of the text to be analysed (length,
language, etc.), and filtering through additional data. Data collection and pre-
processing steps are pre-requisite forMLP, requiring someprogramming techniques
and database knowledge for effective data engineering. Text classification and
information extraction steps are of ourmain focus, and their details are addressed in
Section 3,4, and 5. Data mining step aims to solve the prediction, classification or
recommendation problems from the patterns or relationships of text-mined dataset.
After the data set extracted from the paper has been sufficiently verified and accu-
mulated, the data mining step can be performed for purposes such as material
discovery.
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Extractive question answering in MLP. Extractive QA is a type of QA
system that retrieves answers directly from a given passage of text rather
than generating answers based on external knowledge or language
understanding40. It focuses on selecting and extracting the most relevant
information from the passage to provide concise and accurate answers to
specific questions. Extractive QA systems are commonly built using
machine-learning techniques, including both supervised and unsupervised
methods. Supervised learning approaches often require human-labelled
training data, where questions and their corresponding answer spans in the
passage are annotated. These models learn to generalise from the labelled
examples to predict answer spans for new unseen questions. Extractive QA
systems have been widely used in various domains, including information
retrieval, customer support, and chatbot applications. Although they pro-
vide direct and accurate answers based on the available text, they may
struggle with questions that require a deeper understanding of context or
the ability to generate answers beyond the given passage.

In the materials science field, the extractive QA task has received less
attention as its purpose is similar to theNER task for information extraction,
although battery-device-related QA models have been proposed22. Never-
theless, by enabling accurate information retrieval, advancing research in
the field, enhancing search engines, and contributing to various domains
within materials science, extractive QA holds the potential for significant
impact.

Paper classification with LLMs
To explain how to classify papers with LLMs, we used the binary classifi-
cation dataset from a previous MLP study to construct a battery database
using NLP techniques applied to research papers22.

Text classification dataset description. The authors reported a dataset
specifically designed for filtering papers relevant to battery materials
research22. Specifically, 46,663 papers are labelled as ‘battery’ or ‘non-
battery’, depending on journal information (Supplementary Fig. 1a).
Here, the ground truth refers to the papers published in the journals
related to battery materials among the results of information retrieval
based on several keywords such as ‘battery’ and ‘battery materials’. The
original dataset consists of training set (70%; 32,663), validation set (20%;
9333) and test set (10%; 4667), and its specific examples can be found in
Supplementary Table 4. The dataset was manually annotated and a
classification model was developed through painstaking fine-tuning
processes of pre-trained BERT-based models.

Despite the reported SOTA performance is an accuracy of 97.5%,
precision of 96.6%, and recall of 99.5%, such models require extensive
training data and complex structures, and thus, we attempted to develop a
simple, GPT-enabledmodel that can achieve high performance using only a
small dataset. Specifically, we tested zero-shot learning with GPT Embed-
dings model. For few-shot learning models, both GPT 3.5 and GPT-4 were
tested, while we also evaluated the performance of fine-tuning model of
GPT-3 for the classification task (Supplementary Table 1). In these
experiments, we focused on the accuracy to enhance the balanced perfor-
mance in improving the true and false accuracy rates. The choice of metrics
to prioritize in text classification tasks varies based on the specific context
and analytical goals. For example, if the goal is to maximize the retrieval of
relevant papers for a specific category, emphasizing recall becomes crucial.
Conversely, in document filtering, where reducing false positives and
ensuringhighpurity is vital, prioritizingprecisionbecomesmore significant.
When striving for comprehensive classification performance, employing
accuracy metrics might be more appropriate.

Zero-shot learning with LLMs for text classification. Zero-shot
learning with embedding41,42 allows models to make predictions or per-
form tasks without fine-tuning with human-labelled data. The zero-shot
model works based on the embedding value of a given text, which is
provided by GPT embedding modules. Using the distance between a
given paragraph and predefined labels in the embedding space, which

numerically represent their semantic similarity, paragraphs are classified
with labels (Fig. 2a). For example, if one uses the model to classify an
unseen text with the label of either ‘batteries’ or ‘solar cells’, themodel will
calculate the distance between the embedding value of the text and that of
‘batteries’ or ‘solar cells’, selecting the label with higher similarity in the
embedding space.

Below are the results of the zero-shot text classificationmodel using the
text-embedding-ada-002 model of GPT Embeddings. First, we tested the
original label pair of the dataset22, that is, ‘battery’ vs. ‘non-battery’ (‘original
labels’ of Fig. 2b). The performance of the existing label-based model was
low, with an accuracy and precision of 63.2%, because the difference
between the embedding value of two labels was small. Considering that the
true label should indicate battery-related papers and the false label would
result in the complementary dataset, we designed the label pair as ‘battery
materials’ vs. ‘diverse domains’ (‘crude labels’ of Fig. 2b). We successfully
improved the performance, achieving an accuracy of 87.3%, precision of
84.5%, and recall of 97.9%, by specifying the meaning of the false label.

To further reduce the number of false positives, we designed the labels
in an explicit manner, i.e., ‘battery materials’ vs. ‘medical and psychological
research’ (‘designated labels’ of Fig. 2b). Here, the false label was selected by
checking the titles of randomly sampled papers from the non-battery set
(refer to Supplementary Table 4). Interestingly, we obtained slightly
improved performance (accuracy, recall, and precision of 91.0%, 88.6%, and
98.3%).Wewere able to achieve even higher performance (ACC: 93.0, PRE:
90.8,REC: 98.9) if the labelsweremade evenmoreverbose: ‘papers related to
battery energy materials’ vs. ‘medical and psychological research’ (‘verbose
labels’of Fig. 2b).Although these values are relatively lower than those of the
SOTA model, it is noteworthy that acceptable text-classification perfor-
mance was achieved without exhaustive human labelling, as the proposed
model is based on zero-shot learning with embeddings. These results imply
that classifying a specific set among the paper data set in materials science
can be achieved without labelling with zero-shot methods if a proper label
corresponding to a representative embedding value for each category is
selected. When utilizing our label descriptions for zero-shot learning, some
papers may exactly fit into neither the positive nor negative labels, that is,
outliers. Nevertheless, theywill be assigned to a label that is relatively similar
to one of the given categories.

Few-shot learning and fine-tuning of LLMs for text classification.
Next, the improved performance of few-shot text classification models is
demonstrated in Fig. 2c. In few-shot learning models, we provide the
limited number of labelled datasets to themodel. We tested 2-way 1-shot
and 2-way 5-shot models, whichmeans that there are two labels and one/
five labelled data for each label are granted to the GPT-3.5 models (‘text-
davinci-003’). The example prompt is given in Fig. 2d. The 2-way 1-shot
models resulted in an accuracy of 95.7%, which indicates that providing
just one example for each category has a significant effect on the pre-
diction. Furthermore, increasing the number of examples (2-way 5-shots
models) leads to improved performance, where the accuracy, precision,
and recall are 96.1%, 95.0%, and 99.1%. Particularly, we were able to find
the slightly improved performance in using GPT-4 (‘gpt-4-0613’) than
GPT-3.5 (‘text-davinci-003’); the precision and accuracy increased from
0.95 to 0.954 and from 0.961 to 0.963, respectively.

In addition, we used the fine-tuning module of the davinci model of
GPT-3 with 1000 prompt–completion examples. The fine-tuning model
performs a general binary classification of texts by learning the examples
while no longer using the embeddings of the labels, in contrast to few-shot
learning. Inour test, thefine-tuningmodelyieldedhighperformance, that is,
an accuracyof 96.6%,precisionof 95.8%, and recall of 98.9%,which are close
to those of the SOTA model. Here, we emphasise that the GPT-enabled
models can achieve acceptable performance even with the small number of
datasets, although they slightly underperformed the BERT-based model
trained with a large dataset. The summary of our results comparing the
GPT-basedmodels against the SOTAmodels on three tasks are reported in
Supplementary Table 1.
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Fig. 2 | Results of GPT-enabled text classificationmodels. aOverall process of our
zero-shot learning for text classification. b Results of zero-shot learning with GPT
embedding. The accuracy, precision, and recall are reported. c Comparison of zero-
shot learning (GPT Embeddings), few-shot learning (GPT-3.5 and GPT-4), and
fine-tuning (GPT-3) results. The horizontal and vertical axes are the precision and

recall of each model, respectively. The node colour and size are based on the rank of
accuracy and the dataset size, respectively. d Example of prompt engineering for
2-way 1-shot learning, where the task description, one example for each category,
and input abstract are given.
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Understanding the calibration of LLMs in text classification. In
addition to the accuracy, we investigated the reliability of our GPT-based
models and the SOTAmodels in terms of calibration. The reliability can
be evaluated by measuring the expected calibration error (ECE) score43

with 10 bins. A lower ECE score indicates that themodel’s predictions are
closer to being well-calibrated, ensuring that the confidence of amodel in
its prediction is similar to the actual accuracy of the model44,45 (Refer to
Methods section). The log probabilities of GPT-enabled models were
used to compare the accuracy and confidence. The ECE score of the
SOTA (‘BatteryBERT-cased’) model is 0.03, whereas those of the 2-way
1-shotmodel, 2-way 5-shot model, and fine-tunedmodel were 0.05, 0.07,
and 0.07, respectively. Considering a well-calibrated model typically
exhibits an ECE of less than 0.1, we conclude that our GPT-enabled text
classificationmodels provide high performance in terms of both accuracy
and reliability with less cost. The lowest ECE score of the SOTA model
shows that the BERT classifier fine-tuned for the given task was well-
trained and not overconfident, potentially owing to the large and
unbiased training set. The GPT-enabled models also show acceptable
reliability scores, which is encouraging when considering the amount of
training data or training costs required. In summary, we expect the GPT-
enabled text-classification models to be valuable tools for materials sci-
entists with less machine-learning knowledge while providing high
accuracy and reliability comparable to BERT-based fine-tuned models.

Extraction of named entities with LLMs
To explain how to extract named entities frommaterials science paperswith
GPT, we prepared three open datasets, which include human-labelled
entities on solid-state materials, doped materials, and AuNPs (Supple-
mentary Table 2).

Extracting solid-state materials entities with LLMs. The solid-state
materials dataset includes 800 annotated abstracts with the following cate-
gories: inorganic materials (MAT), symmetry/phase labels (SPL), sample
descriptors (DSC), material properties (PRO), material applications (APL),
synthesis methods (SMT), and characterisation methods (CMT)38. For
example, MAT indicates inorganics solid/alloy materials or non-gaseous
elements such as ‘BaTiO3,’ ‘titania,’ or ‘Fe’. SPL indicates the name for crystal
structures and phases such as ‘tetragonal’ or a symmetry label such as ‘Pbnm’
(Supplementary Fig. 1b). The original dataset consists of training/validation/
test at a ratio of 6:2:2, which is used for fine-tuning of GPT models.

Because the fine-tuningmodel requires prompt–completion examples
as a training set, the NER datasets are pre-processed as follows: the anno-
tations for each category are marked with the special tokens46, and then, the
raw text and marked text are used as the prompt and completion, respec-
tively. For example, if the input text is “LiCoO2 and LiFePO4 are used as
cathodes of secondary batteries”, the prompt is the same as the input text,
and the completion for each category is as follows:

MAT model → Completion: “LiCoO2 and LiFePO4 are used as
cathodes of secondary batteries” / completion: “@@LiCoO2## and
@@LiFePO4## are used as cathodes of secondary batteries.”

APL model → Completion: “LiCoO2 and LiFePO4 are used as cath-
odes of secondary batteries” / completion: “LiCoO2 and LiFePO4 are
used as @@cathodes of secondary batteries##.”

One of the examples used in the training set is shown in Fig. 3d. After
pre-processing, we tested fine-tuningmodules of GPT-3 (‘davinci’) models.
The performance of ourGPT-enabledNERmodelswas comparedwith that
of the SOTA model in terms of recall, precision, and F1 score. Figure 3a
shows that the GPTmodel exhibits a higher recall value in the categories of
CMT, SMT, and SPL and a slightly lower value in the categories of DSC,
MAT, and PRO compared to the SOTAmodel. However, for the F1 score,
our GPT-based model outperforms the SOTA model for all categories
because of the superior precision of theGPT-enabledmodel (Fig. 3b, c). The
high precision of theGPT-enabledmodel can be attributed to the generative

nature of GPTmodels, which allows coherent and contextually appropriate
output to be generated. Excluding categories such as SMT, CMT, and SPL,
BERT-basedmodels exhibited slightly higher recall in other categories. The
lower recall values could be attributed to fundamental differences in model
architectures and their abilities to manage data consistency, ambiguity, and
diversity, impacting how each model comprehends text and predicts sub-
sequent tokens. BERT-based models effectively identify lengthy and intri-
cate entities through CRF layers, enabling sequence labelling, contextual
prediction, andpattern learning. The use ofCRF layers in priorNERmodels
has notably improved entity boundary recognition by considering token
labels and interactions. In contrast, GPT-based models focus on generating
text containing labelling information derived from the original text. As a
generative model, GPT doesn’t explicitly label text sections but implicitly
embeds labelling details within the generated text. This approach might
hinder GPTmodels in fully grasping complex contexts, such as ambiguous,
lengthy, or intricate entities, leading to lower recall values.

Extracting doped materials entities with LLMs. The doped materials
entity dataset8 includes 450 annotations on the base material (BASE-
MAT), the doping agent (DOPANT), and quantities associated with the
doped material such as the doping density or the charge carrier density
(DOPMODQ), with specific examples provided in Supplementary
Fig. 1c. The original dataset consists of training/validation/test set at a
ratio of 8:1:1. The SOTAmodel (‘MatBERT-uncased’) for this dataset had
F1 scores of 72, 82, and 62 for BASEMANT,DOPANT, andDOPMODQ,
respectively.We analysed this dataset using fine-tuningmodules of GPT-
3 such as the ‘davinci’ model with the same data composition.

The prompt–completion sets were constructed similarly to the previous
NER task. As reported in Fig. 4a, the fine-tuning of ‘davinci’model showed
high precision of 93.4, 95.6, and 92.7 for the three categories, BASEMAT,
DOPANT, and DOPMODQ, respectively, while yielding relatively lower
recall of 62.0, 64.4, and59.4, respectively (Fig. 4a). These results imply that the
dopedmaterials entity datasetmay have diverse entities for each category but
that there is not enough data for training to cover the diversity. In addition,
the GPT-based model’s F1 scores of 74.6, 77.0, and 72.4 surpassed or closely
approached those of the SOTA model (‘MatBERT-uncased’), which were
recorded as 72, 82, and 62, respectively (Fig. 4b).

Extracting AuNPs entities with LLMs. The AuNPs entity dataset
annotates the descriptive entities (DES) and the morphological entities
(MOR)23, where DES includes ‘dumbbell-like’ or ‘spherical’ and MOR
includes noun phrases such as ‘nanoparticles’ or ‘AuNRs’. More specific
examples are provided in Supplementary Fig. 1d. The SOTA model for
this dataset is reported as theMatBERT-basedmodel whose F1 scores for
DES and MOR are 0.67 and 0.92, respectively8.

Instead of adopting fine-tuning, we used the few-shot learning47 of the
GPT-3.5 model (‘text-davinci-003’) for the AuNPs entities dataset, as there
are not sufficient datasets (N = 85). Similar to the previous NER task, we
designed three prompts such as random retrieval, task-informed random
retrieval and kNN retrieval (Fig. 4 and Supplementary Table 2). First, we
randomly select the three ground-truth examples (i.e., pair of text and the
text with named entities) from the original training and validation set when
extracting the named entities from the given text in the test set (random
retrieval). These simple methods yield high recall performance of 63% and
97% for the DES and MOR categories, respectively. Here, it is noteworthy
that prompts with the ground-truth examples can provide improved results
on DES and MOR entity recognition, considering the recall values of 52%
and 64% reported in prior works23 (Supplementary Fig. 2). However, the
F1 score of this few-shot learning model was lower than that of the SOTA
model (‘random retrieval’ of Fig. 4c). Furthermore, we tested the effect of
adding a phrase that directly specifies the task to the existing prompt; e.g.,
‘The task is to extract the descriptive entities of materials in the given text’
(‘task-informed random retrieval’ of Fig. 4c). The example prompt is shown
in Fig. 4d. Some performance improvements, namely a 1%–2% increase in
recall and a 6%–11% increase in precision, were observed.
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Finally, to more elaborately perform the few-shot learning, ‘similar’
ground-truth examples to each test set, that is, the examples for which the
document embedding value are similar to that of each test set, were selected
for the NER extraction in the test set (‘kNN retrieval’ of Fig. 4c). Interest-
ingly, compared to the performance of the previous method (i.e., task-
informed random retrieval), we confirmed that the recall value of the kNN
method was the same or slightly lower and that the precision increased by
15%–20% (Supplementary Table 2 and Supplementary Fig. 2). Particularly,
the recall of DES was relatively low compared to its precision, which indi-
cates that providing similar ground-truth examples enables more tight
recognition of DES entities. In addition, the recall of MOR is relatively
higher than the precision, implying that giving k-nearest examples results in
the recognition of more permissive MOR entities. In summary, we con-
firmed the potential of the few-shot NER model through GPT prompt
engineering and found that providing similar examples rather than ran-
domly sampled examples and informing tasks had a significant effect on
performance improvement. In terms of the F1 score, few-shot learningwith
the GPT-3.5 (‘text-davinci-003’) model results in comparable MOR entity
recognition performance as that of the SOTA model and improved DES
recognition performance (Fig. 4c). In addition, we applied the same
prompting strategy for GPT-4 model (gpt-4-0613), and obtained the
improved performance in capturing MOR and DES entities.

Extraction of answers to questions with LLMs
To explain how to extract answer to questions with GPT, we prepared
battery device-related question answering dataset22.

Few-shot learning and fine-tuning of GPTmodels for extractive QA.
This dataset consists of questions, contexts, and answers, and the ques-
tions are related to the principal components of battery systems, i.e.,
‘What is the anode?’, ‘What is the cathode?’, and ‘What is the electrolyte?’.
For example, the context is the raw text such as “The blended slurry was
then cast onto a clean current collector (Al foil for the cathode andCu foil
for the anode) and dried at 90 °C under vacuum overnight” and the
answer to the question what a cathode is can be ‘Al foil’. This dataset was
proposed to train the deep learning models to identify the battery system
component, which can be extended based on battery literature48–50. The
publicly available dataset includes 427 annotations, which is generated by
battery experts but requires several pre-processing22. We also found
redundant or incorrect annotations, e.g., when there is nomention of the
anode in the given context, the question is about the anode and the
answer is about the cathode. In the end, we refined the given dataset into
331 QA data (anode: 90; cathode: 161; electrolyte: 80) based on the
outcomes of GPT-enabled models.

Also, we reproduced the results of prior QAmodels including the SOTA
model, ‘BatteryBERT (cased)’, to compare the performances between our
GPT-enabled models and prior models with the same measure. The per-
formances of the models were newly evaluated with the average values of
token-level precision and recall, which are usually used in QA model eva-
luation. In this way, the priormodels were re-evaluated, and the SOTAmodel
turned out to be ‘BatteryBERT (cased)’, identical to that reported (Fig. 5a).

We tested the zero-shot QA model using the GPT-3.5 model (‘text-
davinci-003’), yielding a precision of 60.92%, recall of 79.96%, and F1 score
of 69.15% (Fig. 5b and Supplementary Table 3). These relatively low

Fig. 3 | Performance of GPT-enabled NER models on solid-state materials
compared to the SOTA model (‘MatBERT-uncased’). The proposed models are
based on fine-tuning modules based on prompt–completion examples. a–c

Comparison of recall, precision, and F1 score between our GPT-enabled model and
the SOTA model for each category. d Example of prompt–completion for MAT
entity recognition.
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performance values can be derived from the domain-specific dataset, from
which it is difficult for a vanilla model to find the answer from the given
scientific literature text. Therefore, we added a task-informing phrase such
as ‘The task is to extract answers from the given text.’ to the existing prompt
consisting of thequestion, context, andanswer. Surprisingly,weobserved an
increase in performance, particularly in precision, which increased from
60.92% to 72.89%. By specifying that the task was to extract rather than
generate answers, the accuracyof the answers appeared to increase.Next, we
tested a fine-tuning module of GPT-3 models (‘davinci’). We achieved
higher performancewith anF1 score of 88.21% (compared to that of 74.48%
for the SOTA model).

Understanding the generative property of GPT. In addition to the
improved performance, we were able to examine the possibility of cor-
recting the existing annotations with our GPT-based models. As

mentioned earlier, we modified and used the open QA data set. Here, in
addition to removing duplicates or deleting unanswered data, finding
data with incorrect answers was based on the results of the GPT model
(Fig. 5c). For example, there is an incorrect question–answer pair: the
anode materials are not mentioned in the given context and ‘nano-
meshed’ is mentioned as the cathode material; however, the annotated
question is ‘what is the anodematerial?’, and the corresponding answer is
‘nano-meshed’. For this case, most BERT-based models yield the answer
‘nano-meshed’ similar to the annotation, whereas the GPT models
provide the answer ‘the anode is not mentioned in the given text’. In
addition, there were annotations that could increase the confusion of the
model by making each question–answer pair for the answer in which the
two tokens were combined by OR. For example, GPT models answered
“sulfur or air cathode”, but the original annotations annotate ‘sulfur’ and
‘air’ as different answers.

Fig. 4 | Performance of GPT-enabled NER models on doped materials and
AuNPs, compared to the SOTA model. a Doped materials entity recognition
performance of fine-tuning of GPT-3 (davinci), b dopedmaterials entity recognition
performance (F1 score) comparison between SOTA (‘MatBERT-uncased’) and fine-

tuning of GPT-3 (davinci), c AuNPs entity recognition performance (F1-score)
comparisons between GPT 3.5 davinci (random retrieval, task-informed random
retrieval, kNN retrieval) and SOTA (‘MatBERT-uncased’) model, d Example of
prompt for DES entity recognition (task informed random retrieval).
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Conclusion
This work presents a GPT-enabled pipeline for MLP tasks, providing
guidelines for text classification, NER, and extractive QA. Through an
empirical study,wedemonstrated the advantages anddisadvantages ofGPT
models in MLP tasks compared to the prior fine-tuned models based
on BERT.

In text classification, we conclude that the GPT-enabled models
exhibited high reliability and accuracy comparable to that of the BERT-
based fine-tuned models. This GPT-based method for text classification is
expected to reduce the burden of materials scientists in preparing a large
training set by manually classifying papers. Next, in NER tasks, we found
that providing similar examples improves the entity-recognition perfor-
mance in few-shot GPT-enabled NERmodels. These findings indicate that
the GPT-enabled NER models are expected to replace the complex tradi-
tionalNERmodels, which requires a relatively large amount of training data
and elaborate fine-tuning tasks. Lastly, regarding extractive QA models for
battery-device information extraction, we achieved an improved F1 score
compared with prior models and confirmed the possibility of using GPT
models for correcting incorrect QA pairs. Recently, several pioneering
studies have showed the possibility of using LLMs such as chatGPT for
extracting information frommaterials science texts15,51–53. In this regard, our
novelty lies in comparing the characteristics of GPT series models with the
BERT-based fine-tuned models in depth as well as introducing various
strategies such as embedding, zero-shot/few-shot learning, and fine-tuning
for each MLP task.

We note the potential limitations and inherent characteristics of GPT-
enabled MLP models, which materials scientists should consider when

analysing literature using GPT models. First, considering that GPT series
models are generative, the additional step of examining whether the results
are faithful to the original text would be necessary inMLP tasks, particularly
information-extraction tasks15,16. In contrast, generalMLPmodels based on
fine-tuned LLMs do not provide unexpected prediction values because they
are classified into predefined categories through cross entropy function.
Given that GPT is a closed model that does not disclose the training details
and the response generated carries an encoded opinion, the results are likely
to be overconfident and influenced by the biases in the given training data54.
Therefore, it is necessary to evaluate the reliability as well as accuracy of the
results when using GPT-guided results for the subsequent analysis. In a
similar vein, asGPT is a proprietarymodel thatwill be updated over time by
openAI, the absolute value of performance can be changed and thus con-
tinuous monitoring is required for the subsequent uses55. Finally, the GPT-
enabled model would face challenges in more domain-specific, complex,
and challenging tasks (e.g., relation extraction, event detection, and event
extraction) than those presented in this study, as it is difficult to explain the
tasks in the prompt. For example, extracting the relations of entities would
be challenging as it is necessary to explain well the complicated patterns or
relationships as text, which are inferred through black-box models in gen-
eral NLPmodels15,16,56. Nonetheless, GPTmodels will be effectiveMLP tools
by allowing material scientists to more easily analyse literature effectively
without knowledgeof the complex architecture of existingNLPmodels17.As
LLM technologies advance, creating quality prompts that consist of specific
and clear task descriptions, appropriate input text for the task, and con-
sistently labelled results (i.e., classification categories) will become more
important for materials scientists.

Fig. 5 | Performance of GPT-enabled QAmodel. a Reproduced results of BERT-
based model performances, b comparison between the SOTA and fine-tuning of
GPT-3 (davinci), c correction of wrong annotations in QA dataset, and pre-
diction result comparison of each model. Here, the difference in the cased/

uncased version of the BERT series model is the processing of capitalisation of
tokens or accent markers, which influenced the size of vocabulary, pre-pro-
cessing, and training cost.
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Methods
Data processing
We used the python library ‘openai’ to implement the GPT-enabled MLP
pipeline. We mainly used the prompt–completion module of GPT models
for training examples for text classification,NER, or extractiveQA.Weused
zero-shot learning, few-shot learningorfine-tuningofGPTmodels forMLP
task. Herein, the performance is evaluated on the same test set used in prior
studies, while small number of training data are sampled from the training
set and validation set and used for few-shot learning or fine-tuning of GPT
models.

Given a sufficient dataset of prompt–completion pairs, a fine-tuning
module of GPT-3 models such as ‘davinci’ or ‘curie’ can be used. The
prompt–completion pairs are lists of independent and identically dis-
tributed training examples concatenated together with one test input.
Herein, as open datasets used in this study had training/validation/test
separately, we used parts of training/validation for training fine-tuning
models and thewhole test set to confirm the general performanceofmodels.
Otherwise, for few-shot learning which makes the prompt consisting of the
task-informing phrase, several examples and the input of interest, can be
alternatives. Here, which examples to provide is important in designing
effective few-shot learning. Similar examples can be obtained by calculating
the similarity between the training set for each test set. That is, given a
paragraph froma test set, fewexamples similar to theparagraphare sampled
from training set and used for generating prompts. Specifically, our kNN
method for similar example retrieval is based on TF-IDF similarity (refer to
Supplementary Fig. 3). Lastly, in case of zero-shot learning, the model is
tested on the same test set of prior models.

Regarding the preparation of prompt–completion examples for fine-
tuning or few-shot learning, we suggest some guidelines. Suffix characters in
theprompt such as ‘→’ are required to clarify to thefine-tunedmodelwhere
the completion should begin. In addition, suffix characters in the prompt
such as ‘ \n\n###\n\n’ are required to specify the end of the prediction. This
is important when a trainedmodel decides on the end of its prediction for a
given input, given that GPT is one of the autoregressive models that con-
tinuously predicts the following text from the preceding text. That is, in
prediction, the same suffix should be placed at the end of the input. In
addition, prefix characters are usually unnecessary as the prompt and
completion are distinguished. Rather than using the prefix characters,
simply starting the completion with a whitespace character would produce
better results due to the tokenisation of GPT models. In addition, this
method can be economical as it reduces the number of unnecessary tokens
in the GPT model, where fees are charged based on the number of tokens.
We note that the maximum number of tokens in a single
prompt–completion is 4097, and thus, counting tokens is important for
effective prompt engineering; e.g., we used the python library ‘titoken’ to test
the tokenizer of GPT series models.

GPT model usage guidelines
After pre-processing, the splitting process of train, validation, and test set
was conducted with the same random seed and ratio used in previous
studies, that is, the training/validation set is used for fine-tuning GPT
models and test set for confirming their general performances. In the fine-
tuning of GPT models, there are some hyperparameters such as the base
model, batch size, number of epochs, learning rate multiplier, and prompt
loss weight. The base models for which fine-tuning is available are GPT-3
models such as ‘ada’, ‘babbage’, ‘curie’, and ‘davinci’, which can be tested
using the web service provided by OpenAI (https://gpttools.com/
comparisontool). For a simple prompt–completion task such as zero-shot
learning and few-shot learning, GPT-3.5 models such as ‘text-davinci-003’
canbe used.The batch size can bedynamically configuredand itsmaximum
is 256; however, we recommend 1%or 0.2% of the training set. The learning
rate multiplier adjusts the models’ weights during training, and a high
learning rate leads to a sub-optimal solution, whereas a low one causes the
model to converge too slowly or find a local minimum. The default values
are 0.05–0.2 depending on the batch size, and we set the learning rate

multiplier as 0.01. The prompt loss weight is theweight to use for loss on the
prompt tokens, which should be reduced when prompts are relatively long
to the corresponding completions to avoid giving undue priority to prompt
learning over the completion learning. We set the prompt loss
weight as 0.01.

With the fine-tuned GPT models, we can infer the completion for a
given unseen dataset that ends with the pre-defined suffix, which are not
included in training set. Here, some parameters such as the temperature,
maximumnumber of tokens, and top P can be determined according to the
purpose of analysis. First, temperature determines the randomness of the
completion generated by the model, ranging from 0 to 1. For example,
higher temperature leads to more randomness in the generated output,
which can be useful for exploring creative or new completions (e.g., gen-
erative QA). In addition, lower temperature leads to more focused and
deterministic generations, which is appropriate to obtain more common
and probable results, potentially sacrificing novelty.We set the temperature
as 0, as ourMLP tasks concern the extraction of information rather than the
creation of new tokens. The maximum number of tokens determines how
many tokens to generate in the completion. If the ideal completion is longer
than the maximum number, the completion result may be truncated; thus,
we recommend setting this hyperparameter to the maximum number of
tokens of completions in the training set (e.g., 256 in our cases). In practice,
the reason the GPTmodel stops producing results is ideally because a suffix
has been found; however, it could be that the maximum length is exceeded.
The top P is a hyperparameter about the top-p sampling, i.e., nucleus
sampling, where the model selects the next word based on the most likely
candidates, limited to a dynamic subset determined by a probability
threshold (p). This parameter promotes diversity in generated text while
allowing control over randomness.

Performance evaluation
We evaluated the performance of text classification, NER, and QA models
using different measures. The fine-tuning module provides the results of
accuracy, actually the exact-matching accuracy. Therefore, post-processing
of the prediction results was required to compare the performance of our
GPT-based models and the reported SOTA models. For the text classifi-
cation, the predictions refer to one of the pre-defined categories. By com-
paring the categorymentioned in each prediction and the ground truth, the
accuracy, precision, and recall can be measured. For the NER, the perfor-
mance such as the precision and recall can be measured by comparing the
index of ground-truth entities and predicted entities. Here, the performance
canbe evaluated strictly byusing anexact-matchingmethod,where both the
start index and end index of the ground-truth answer and prediction result
match. The boundaries of named entities are likely to be subjective or
ambiguous in practice, and thus, we recommend the boundary-relaxation
method to generously evaluate the performance,where a case that either the
start or end index is correct is considered as a true positive57,58. For the
extractiveQA, the performance is evaluated bymeasuring the precision and
recall for each answer at the token level and averaging them. Similar to the
NER performance, the answers are evaluated by measuring the number of
tokens overlapping the actual correct answers.

ECE score calculation
To compare the reliability of text classificationmodels in this study, we used
ECE score, which assesses the calibration of probabilistic predictions of
models. To calculate the ECE score, the following steps are typically taken.
First, predictions and true labels are collected. These predictions are class
probabilities, not just labels. For each data point, the predicted probability
distribution over the possible classes and the true class label are required.
Second, based on the predefined number of bins (i.e., M, typically 10-20
bins), similar predicted probabilities are grouped together to analyse cali-
bration within each bin. Next, for each bin, expected accuracy and average
confidence are calculated. The expected accuracy is the average of the true
accuracy for all data points in each bin; for example, the true accuracywould
be 1 if the predicted classmatches the true class and0otherwise. The average
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confidence is the confidence level of themodel’s predictionswithin eachbin.
Also, the relative frequency of data points should be calculated for each bin,
bydividing thenumber of datapoints in eachbinby the total numberof data
points. Finally, the ECE score is calculated as the weighted average of the
absolute difference between the expected accuracy and the average con-
fidence within each bin:

ECE ¼
XM

m¼1

Bm

�� ��
n

acc Bm

� �� conf ðBmÞ
�� ��;

where the dataset is divided into M interval bins based on confidence, and
Bm is the set of indices of samples of which the confidence scores fall into
each interval, while accðBmÞ and conf ðBmÞ are the average accuracy and
confidence for each bin, respectively.

The ECE score is ameasure of calibration error, and a lower ECE score
indicates better calibration. If theECE score is close to zero, itmeans that the
model’s predicted probabilities are well-calibrated, meaning they accurately
reflect the true likelihood of the observations. Conversely, a higher ECE
score suggests that the model’s predictions are poorly calibrated. To sum-
marise, the ECE score quantifies the difference between predicted prob-
abilities and actual outcomes across different bins of predicted probabilities.

Data availability
Data used in this study are available in https://github.com/
AIHubForScience/GPT_MLP.

Code availability
Source codes used in this study are available in https://github.com/
AIHubForScience/GPT_MLP.
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