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Formation energy prediction of crystalline
compounds using deep convolutional network
learning on voxel image representation
Ali Davariashtiyani 1 & Sara Kadkhodaei 1✉

Emerging machine-learned models have enabled efficient and accurate prediction of com-

pound formation energy, with the most prevalent models relying on graph structures for

representing crystalline materials. Here, we introduce an alternative approach based on

sparse voxel images of crystals. By developing a sophisticated network architecture, we

showcase the ability to learn the underlying features of structural and chemical arrangements

in inorganic compounds from visual image representations, subsequently correlating these

features with the compounds’ formation energy. Our model achieves accurate formation

energy prediction by utilizing skip connections in a deep convolutional network and incor-

porating augmentation of rotated crystal samples during training, performing on par with

state-of-the-art methods. By adopting visual images as an alternative representation for

crystal compounds and harnessing the capabilities of deep convolutional networks, this study

extends the frontier of machine learning for accelerated materials discovery and optimization.

In a comprehensive evaluation, we analyse the predicted convex hulls for 3115 binary systems

and introduce error metrics beyond formation energy error. This evaluation offers valuable

insights into the impact of formation energy error on the performance of the predicted

convex hulls.
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Machine learning has emerged as an effective approach
for developing predictive models for high-throughput
screening of materials1–8. For example, machine-

learned models for formation energy prediction can construct a
convex hull for a rapid assessment of the thermodynamic stability
of compounds at a fraction of the computation cost and time
needed for density functional theory (DFT)-calculated convex
hulls with reasonable accuracy9. In materials research, a machine
learning model can be characterized by two aspects; the repre-
sentation of the material as a readable entity (or input) to the
learning algorithm and the learning algorithm itself. Several
machine learning approaches have investigated a variety of
representations as simple as a pool of physicochemical attributes
(e.g., atomic number, cohesive energy, band gap, and heat of
melting), and composition vectors10–17 up to more advanced
graph representations of composition and structure of crystal
compounds18–25. The use of image representations for machine
learning, however, has been less explored in the materials
research community. Image representation can be especially
useful because of the significant advancements that have been
made in pattern recognition (or representation learning) of visual
images in the field of computer vision (a field of computer science
that deals with processing and understanding visual data like
images or videos). These advancements are largely because of the
evolution towards more sophisticated architectures of convolu-
tional neural networks (e.g., Residual Neural Network (ResNet)26,
EfficientNet27, U-Net28) which has enabled adopting increasingly
deeper networks. Inspired by this untapped opportunity for
materials representation learning, we develop a sparse voxel
image representation of crystalline materials that is input into a
very deep convolutional neural network (CNN) with a sophisti-
cated architecture inspired by ResNet.

We use the formation energy prediction of crystalline com-
pounds as a platform for demonstrating the performance of our
deep-learning model on voxel images of crystals. Formation
energy is an ideal platform because large databases of DFT-
calculated formation energies are available (e.g., Materials
Project29 and AFLOW (Automatic Flow)30), which provide the
large amount of data needed for training our deep CNN. Addi-
tionally, there are several available machine learning approaches
for formation energy prediction with which we compare the
performance of our model. We show that our model’s formation
energy predictive performance is comparable to the state-of-the-
art machine learning models’ prediction. We present a thorough
comparison of 3115 binary convex hulls constructed from our
model’s formation energy against DFT-calculated binary convex
hulls in the Materials Project database. By introducing multiple
error metrics for assessing binary convex hulls, we showcase how
the error in the formation energy prediction is projected into the
performance of a predicted convex hull.

Among machine learning methods for formation energy pre-
diction of crystal compounds, graph neural networks have shown
promising performance because the graph data structure can
efficiently capture the physical, compositional, and structural
information of crystal compounds18–25. In their pioneering work,
Xie and Grossman developed the crystal graph convolutional
neural network (CGCNN) for an accurate, efficient formation
energy prediction18. CGCNN uses a graph representation of
crystal structures combined with physical attributes of chemical
species, where atoms in the periodic crystal structure constitute
the nodes (with each node containing the physical attributes of
the atom as a vector) and connections between atoms constitute
the edges of the graph. In a more advanced representation, the
Atomistic Line Graph Neural Network (ALIGNN)23 captures the
bond angular information of crystal compounds by utilizing the
concept of line graphs31. ALIGNN creates a graph on top of a

regular atomistic bond graph by considering bonds as nodes and
bond pairs with a shared atom as edges. It has been shown that
ALIGNN outperforms other machine learning approaches on
several benchmark datasets for predicting material properties32.

While some studies have explored image-inspired representa-
tions of crystalline materials33–38, they have not fully harnessed
sophisticated components, such as skip connections, in the
architecture of the convolutional network. Skip connections have
been shown as necessary components for making convolutional
networks deeper (with many convolutional layers), with deep
CNNs being particularly adept at learning features from image
representations. As a result, these studies generally underperform
compared to graph-based machine learning approaches. For
instance, Kaundinya et al.35 focusing exclusively on cubic struc-
tures, employ a transformed variant of an image-like repre-
sentation, inputted to a Gaussian process regression and a neural
network, achieving mean absolute errors (MAEs) of 0.329 eV per
atom and 0.350 eV per atom, respectively (over ten times higher
than ALIGNN’s MAE). Moreover, the image representations
employed in these studies are not directly input to the machine
learning model; they undergo transformation into alternative
domains before being fed into the learning algorithms. For
example, ref. 35 utilizes a 2-point spatial correlation function of
ionization energy, Pauling electronegativity, and heat of fusion
over a voxelized domain of the crystal structure. These spatial
correlations are subsequently transformed into low-dimensional
representations of the material’s internal structure using principal
component analysis (PCA) to serve as the input to the learning
algorithm. Ref. 33 also transforms image representation of crys-
tals. This study exclusively focuses on the Bi-Se system and uses
an autoencoder to transform separate voxel images of the lattice
vectors and basis points into 2-dimensional (2D) crystal graphs in
the latent space. These graphs serve as descriptors for the for-
mation energy predictive model. An earlier study by Noh et al.38

also used a 3-dimensional (3D) grid-based image representation
of vanadium oxide crystal structures as input to an autoencoder,
where its latent space forms a vector which serves as the input to
a second-step variational autoencoder. Like ref. 33, the crystal
representation in ref. 38 is decomposed into a unit cell image
(length of the cell edges and angles between them) and basis
image (atomic positions within a unit cell).

Previous studies that have used image-like representations of
materials as direct input for learning models have typically relied
on continuous density representations rather than the sparse
images used in this study. For instance, Hoffman et al.34 employ
density representations of atomic positions as 3D pixel images,
necessitating the utilization of a U-net28, an advanced auto-
encoder, for the segmentation of density fields into atoms. In
another study37, Kajita et al. introduced a generic 3D voxel
descriptor that compacts any field quantities, including the elec-
tron density field. They examined a model that input the 3D voxel
descriptor into a CNN to predict the Hartree energy and
exchange-correlation energy functionals in 680 oxides.

Our study stands apart from previous work by utilizing a
sparse voxel image representation of crystals that is directly fed
into a sophisticated deep convolutional neural network with skip
connections for feature (or repersentation) learning. Unlike ear-
lier studies, our voxel image representation solely focuses on the
visual depiction of the crystal structure itself, devoid of any
physicochemical attributes. Within a voxelized domain of the
crystal structure, we utilize normalized atomic number, periodic
group, and row numbers to color the voxels occupied by atoms,
representing them as channels in an RGB (red, green and blue)
voxel image. This straightforward color-coding scheme enables us
to differentiate between different chemical compositions of the
same crystal structure without incorporating additional attributes,
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resulting in a direct visualization of the crystal compound. We
directly input these sparse voxel images into a deep CNN. Uti-
lizing skip connections allows us to design a deep 15-layer net-
work that fully harness the power of convolutional layers to
autonomously uncover the underlying physical, chemical, and
structural features that connect the crystal structure and chem-
istry of the material to its formation energy. Apart from har-
nessing the full potential of convolutional layers, the use of an
unprocessed image representation for materials holds significant
technical importance, particularly because its ease of invertibility
makes it a suitable representation for generative machine learning
models. The materials research community is experiencing a
paradigm shift from predictive models for high-throughput
screening to generative models for discovery33,39,40. Given this
emerging shift, the image representation employed in this study
can potentially offer distinct advantages for generative models.
The sparse voxel image representation introduced here for pre-
dictive modeling, if generated via a generative machine learning
model, directly corresponds to a crystal structure, thereby elim-
inating the need for any transformation, interpretation, or
intervention.

In this study, we present new advancements in image-based
machine learning models for material property prediction. The
introduced model is not restricted to any specific type of crystal
structure or chemical space, making it generally applicable to any
crystal structure or chemical composition. By utilizing a deep
convolutional neural network enabled by skip connections, the
model achieves a significant improvement in formation energy
prediction. Additionally, the model’s consistency and rotational
invariance are improved through the employment of rotational
sampling on crystal structure data. It is worth noting that there is
ample room for enhancing the predictive performance of deep
CNN models on voxel crystal images through the design of more
advanced and efficient architectures, as this area has received
comparatively less investigation. This study lays the foundation
for exploring a new domain of learning methods for materials
prediction and discovery.

Results
Machine Learning Approach
Material Representation. To generate sparse voxel images of
crystals, we employ a series of steps. Initially, we construct a cubic
box with a fixed side length of 17Å and position the crystal unit

cell at its center. By applying 3D rigid-body rotation to the unit
cell and replicating it throughout the box, a point cloud repre-
sentation is formed. This point cloud, representing the atoms, is
then represented as a sparse voxel image using a regular voxel
grid. The voxel images adopt a color-coding scheme akin to an
RGB image, with the three channels representing the normalized
values of the atomic number, group, and period for voxels con-
taining atoms. Voxels that are unoccupied by atoms are assigned
zero values. To rotate each crystal unit cell efficiently, we have
developed a computational algorithm, the details of which can be
found in Methods and Supplementary Fig. S1.

Our voxel crystal representation differs from the image
representations used in references33,34 as it adopts a sparse
approach. These references employ a 3D density field represen-
tation around the atomic positions. For instance, in ref. 34, a
Gaussian density field centered at the atomic coordinates is
defined to determine the voxel values. In the density field
approach, voxels neighboring the atomic coordinates contain
density field values that reflect the atom sizes, while we do not
assign any values to neighboring voxels. From a technical
standpoint, the sparse voxel image provides a discrete input to
the convolutional layer, whereas the density field image offers a
continuous input. As depicted in Fig. 1, our CNN architecture,
by applying multiple convolutions in the early layers without
pooling (which we call the delayed pooling approach),
automatically forms a field around the atomic coordinates. This
means that our model’s architecture discovers the volumetric
density fields without relying on predefined functions such as the
Guassian function. We postpone the pooling operation until
after the 5th convolutional layer to ensure that the density fields
around input voxels are sufficiently large for meaningful
interactions to occur.

Convolutional Neural Network Design. Advanced deep CNN
architectures, developed in the field of computer vision, incor-
porate skip connections to enhance model performance and
enable the construction of substantially deeper networks by
mitigating optimization challenges associated with increased
network depth. One notable example is ResNet26, which utilizes
residual blocks comprising convolution layers and activation
functions like traditional CNNs, but with the addition of shortcut
highways that connect the beginning and end of each block
(referred to as identity mapping skip connections). These skip
connections enable the transfer of lower-level information from

Fig. 1 The overall design of the deep convolutional neural network and the fully connected neural network of this study. The crystal structures are
digitized into 3D colored sparse voxel images which are input to a deep convolutional neural network. The network consists of 7 residual blocks arranged in
sequence in combination with merging and pooling layers. The architecture of each residual block is shown in the inset, which consists of a skip connection
used to bypass the output of the previous block to the next. The latent features learned by the convolutional neural network are flattened and input into a
fully connected neural network which performs the final prediction of the formation energy.
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earlier layers to deeper layers, providing better conditioning for
the optimization problem and facilitating easier learning26.

In our approach, we adopt the architecture of residual blocks to
construct a 15-layer CNN with 7 skip connections. The overall
architecture, as depicted in Fig. 1, consists of a deep CNN
followed by a fully connected neural network for the prediction of
formation energy using sparse voxel images of crystals. The deep
CNN part of the architecture is employed for feature learning of
voxel crystal images. These learned features are then flattened and
passed as input to the fully connected neural network, which
performs the final prediction of the formation energy. In our
network design, we deliberately delay the introduction of pooling
layers in our CNN. The first pooling layer is introduced only after
the fifth convolutional kernel, with subsequent pooling layers
added after the eleventh and fifteenth kernels, respectively. A
detailed description of our CNN architecture can be found in
Methods. In the context of materials representation learning, the
use of skip connections in our CNN allows for the bypassing of
local atomic features discovered in the shallower layers, while
progressively learning more global features of crystal compounds
across the layers of the deep network. This hierarchical learning
approach facilitates the extraction of relevant abstractions,
enabling the model to capture both local and global features
within the crystal structures.

Our CNN, inspired by the ResNet architecture described in
ref. 26, incorporates slight modifications to better suit our specific
task. In contrast to the original design, we choose not to adopt the
batch normalization technique in our residual blocks. This
decision is based on the observation that batch normalization
hampers the training of our CNN, likely due to the intrinsic
differences between sparse crystal images and natural images
(such as those in ImageNet41). Consequently, the batch normal-
ization process may not yield the intended benefits for our crystal
image representation. Furthermore, we adjust the way in which
we handle the number of channels within our network. Instead of
doubling the number of channels after each convolution layer, as
outlined in the original ResNet design, we increase the number of
channels, after each pooling, by concatenating the side skip
connections with the output of the convolution layer. This

alternative approach allows for a more effective utilization of
information from both the skip connections and the convolu-
tional layers, promoting better feature representation within our
network. By tailoring the ResNet-inspired architecture to the
characteristics of our crystal images, we optimize the training
process and enhance the performance of our CNN for the specific
task of crystal compound formation energy prediction.

Data Sets. We obtained a data set of 139,367 crystal structures
along with their corresponding DFT-calculated formation ener-
gies (the target variables) from Materials Project (v2021.05.13)29.
From this, 15,354 structures are excluded because they either
require a high resolution or a large image (more details in
Methods). To train our model, we split the data into train (60%),
validation (20%), and test (20%) sets. During the data pre-
processing stage, we removed 9175 crystal structures from the
train set that either contain two atoms occupying the same voxel
or have a unit cell that does not fit in the 17-Å cubic box, as
described in detail in Methods. During training, we employ data
augmentation by randomly rotating each crystal image before
feeding it into the model at each epoch (see Supplementary
Fig. S1). This technique helps alleviate overfitting (see Supple-
mentary Fig. S4) and enhances the predictive performance of our
model. Data augmentation is particularly beneficial as it effec-
tively increases the size of the train data and implicitly enforces
the rotation-invariance of crystal compounds with respect to their
formation energy, as explained further below. To monitor the
training process and prevent overfitting, we use predictions on
the validation data. Once the model is trained, we evaluate its
overall performance using the test data, as outlined below. In the
Discussion section, we delve into the significance of data aug-
mentation and skip connections in our CNN architecture, high-
lighting their role in improving the model’s performance.

Formation Energy Prediction Assessment. In this section, we
examine the performance of our model’s prediction. As detailed
in Methods, we employ an ensemble averaging technique for
predicting the formation energy. Figure 2a shows the parity plot
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Fig. 2 Formation energy prediction evaluation. a The parity plot for samples in the train and test sets. The MAE of formation energy prediction for the test
and train data is reported in the legend. b, c Distribution of the prediction error of test data over different ranges of formation energy. b Box and whisker
representation of prediction error (i.e., predicted Ef - DFT Ef) for different intervals of DFT formation energy. The left side, middle line, and right side of each
box show respectively the first quartile, median, and third quartile of the error. The whisker line shows the minimum and maximum of the error. c The
scatter plot of samples in the test set showing the DFT formation energy versus prediction error.
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of the formation energy prediction of our model against the DFT-
calculated formation energies on both the train and test sets. The
results indicate an MAE of 0.042 eV per atom and 0.046 eV per
atom on the train and test sets, respectively. Over 89% of the
samples in the test set exhibit absolute errors below 0.1 eV per
atom, and only about 2% of the samples have absolute errors
exceeding 0.2 eV per atom (see Supplementary Fig. S2b). The
formation energy prediction error (i.e., predicted formation
energy - DFT formation energy) shows a slightly positive skew
normal distribution with a median and mean value of 0.003 eV
per atom and -0.003 eV per atom on the test set (see Supple-
mentary Fig. S2b). As shown in Fig. 2b, c, our model tends to
exhibit higher errors for crystal compounds with more positive
and larger formation energies. This trend has also been observed
in other studies16,42. To exemplify this trend, we analyze four
equally populated subsets of our test set sorted by the formation
energy with respective formation energy ranges of (−4.47,
−2.39), (−2.39, −1.47), (−1.47, −0.46), and (−0.46, 5.33) eV per
atom with calculated MAEs of 0.037, 0.039, 0.046, and 0.064 eV
per atom, respectively. The relatively diminished prediction per-
formance observed for larger, positive-value ranges of formation
energy can be attributed to an inherent bias in the existing
dataset. The data available in the Materials Project predominantly
comprises chemically stable structures characterized by negative
formation energies. In contrast, the occurrence of chemically
unstable crystal structures with positive formation energies
remains a minority within this dataset. Notably, less than 10% of
all samples possess positive formation energy (see Supplementary
Fig. S2a). Pandey et al.43 have elucidated how this disparity in
data distribution impacts the model’s predictive capabilities.

We conducted a comparative analysis of our model’s predictive
performance with state-of-the-art machine learning models,
including ElemNet16 and Roost (Representation Learning from
Stoichiometry)17 as the best models based on compositional
features, and ALIGNN23 and CGCNN18 as the top-performing
graph-based models. Table 1 presents a comparison of the
formation energy MAEs between different models, including two
architectures of our CNN: a 3-layer CNN without skip
connections (shallow CNN), which was utilized in our previous
work for predicting the synthesizability of crystalline
compounds36, and the 15-layer CNN with skip connections
(deep CNN). The deep CNN model in this study outperforms
Roost and ElemNet, and performs on par with CGCNN, albeit
slightly underperforms ALIGNN. It is worth mentioning that
optimizing the architecture of a CNN is an empirical process, and
as there are limited regression studies using deep CNNs on visual
images, there is potential for improvement by modifying the
CNN design. The significant improvement of the deep CNN
compared to the shallow CNN in this study (MAE of 0.046 eV
per atom versus 0.337 eV per atom on the test set) highlights the
importance of network depth and skip connections in enhancing
the predictive performance. As shown in Supplementary Fig. S3,
we compare the learning curves of our model and CGCNN with
respect to the size of the training dataset. Notably, our image-
based model demands a larger training dataset to attain an
equivalent level of accuracy compared to CGCNN. This
difference is expected considering the substantial depth of our
CNN architecture, comprising a significant number of trainable

parameters (2,678,641 parameters), thereby necessitating large
volume of training data for effective learning. It is important to
note that ALIGNN and CGCNN incorporate physical attributes
such as electronegativity, group number, covalent radius, valence
electrons, first ionization energy, electron affinity, and atomic
volume as node features in their graph representation, thereby
incorporating additional information that is more challenging to
learn from the visual image representation employed in our work.

Approximate Rotational Invariance. We mitigate overfitting in
our deep learning model by applying augmentation to the training
data through random rigid-body rotations. As shown in Supple-
mentary Fig. S4, this simple technique effectively addresses over-
fitting. This data augmentation method, when combined with an
ensemble averaging approach, also confers approximate rotation
invariance to the formation energy prediction. In our ensemble
averaging method, the formation energy is predicted by averaging
the results of 50 randomly rotated instances of the given crystal
structure (see Methods for more details). To assess the degree
of rotation invariance in our predictive model, we randomly
select 20 crystal samples from the test set and subject each sample
to 500 random rotations. Figure 3 illustrates the range of predicted
formation energies for each crystal sample across different rota-
tions. The interquartile range (IQR) for these 20 crystal structures
exhibits an average and maximum values of 0.009 and 0.018 eV per
atom, respectively. Among the distributions of predicted formation
energies for these 20 samples, the average and maximum standard
deviations are 0.007 and 0.013 eV per atom, respectively. Notably,
these values are nearly an order of magnitude smaller than the
MAE of the test set (0.046 eV per atom as shown in Fig. 2a). Since
the test set MAE measures the precision of our model relative to
DFT, the approximately tenfold reduction in prediction span for
rotated samples indicates the approximate rotation invariance of
the formation energy.

To demonstrate the impact of ensemble averaging on
improving the performance and robustness of our model, we
compare the achieved approximate rotation invariance between
ensemble-averaged predictions (ensemble size of 50) and
predictions without ensemble averaging. Supplementary Fig. S6
showcases the range of formation energy predictions for the same
crystal structures as shown in Fig. 3, but without employing
ensemble averaging. By comparing Supplementary Fig. S6 and
Fig. 3, we observe that the variation in formation energy
predictions for different rotations increases approximately 6 to
7 times when ensemble averaging is not employed. Apart from
the approximate rotation invariance, the ensemble averaging
approach also provides a valuable metric - variance of the
predictions - that can be used to assess the predictive uncertainty
of our model, enabling us to evaluate the reliability of our model .

To gain further insights into the overall effect of ensemble
averaging on the model’s performance, Supplementary Fig. S7
displays the range of formation energy MAE (prediction error
relative to DFT-calculated formation energy) for different rotated
instances of the test data. In the case without ensemble averaging,
the MAE calculated over 400 instances of the test data exhibits an
IQR value of 3.1e-04 eV per atom and a median of 0.05949 eV per
atom. In contrast, for the ensemble averaging case with 50
instances of the test set, the IQR and median values are 5.8e-05

Table 1 Benchmarking model performance against existing models.

Shallow CNN (this work) Deep CNN (this work) ALIGNN CGCNN ElemNet Roost

MAE (eV per atom) 0.337 0.046 0.022 0.039 0.1 0.06

Comparison of the formation energy MAE of different models (ElemNet16, Roost17, ALIGNN23, and CGCNN18) and this work.
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eV per atom and 0.04649 eV per atom, respectively. The
comparison between the two scenarios, as depicted in Supple-
mentary Figs. S6, S7, demonstrates that ensemble averaging
significantly reduces the variation in formation energy predic-
tions for different rotations and leads to a lower MAE overall.
These results highlight the effectiveness of ensemble averaging in
enhancing the performance and robustness of our model.

Ensemble averaging enhances the reliability of predictions and
diminishes the MAE. However, it concurrently amplifies the
computational expenses involved in the prediction process,
potentially rendering it impractical for exhaustive explorations
of extensive chemical spaces or integration into generative
models. The ensemble size for averaging serves as an adjustable
parameter in our model, enabling users to strike a balance
between computational efficiency and predictive reliability. In the
context of broader investigations, a multi-tiered screening
approach can be employed: a preliminary, low-level exploration
utilizing a reduced ensemble size for high-throughput screening,
followed by a comprehensive, high-level investigation involving a
larger ensemble size to ensure precise predictions within a limited
chemical space.

Binary Convex Hull Prediction Assessment. Formation energy
convex hulls are commonly used for rapid stability assessment of
chemical compounds based on the energy above the hull9. A
convex hull represents compounds with the lowest formation
energy at any composition within a given chemical space, with
reference to the pure end members. Figure 4 illustrates a com-
parison between the predicted convex hulls generated by the deep
CNN model in this study and the convex hulls constructed from
DFT-calculated formation energies for selected binary systems
(chosen from a set of 3115 predicted binary convex hulls). In this
section, it is important to mention that the predicted convex hulls

have been constructed solely on the basis of crystal structures for
which DFT formation energies are available. This means that no
new crystal structures for any binary chemical space outside of
the Materials Project have been taken into consideration. As
depicted in Fig. 4, the formation energy MAE exhibits significant
variation among different systems. For instance, the MAE for
Tm-Pt is 0.042 eV per atom, while for Tb-N it is 0.115 eV per
atom. However, relying solely on the MAE as a measure is
insufficient to assess the deviation of the predicted convex hull
from the DFT (or true) convex hull. Notably, the predicted
convex hull for Tm-Pt and Tb-N demonstrates good agreement
with the DFT, despite their considerably different MAEs. Tm-Pt
exhibits one of the lowest MAEs, while Tb-N has one of the
largest MAEs among the 3115 predicted binary convex hulls. To
gain a more comprehensive understanding of how errors in
formation energy impact convex hull predictions, we introduce
additional metrics such as depth error and hull accuracy, in
addition to the formation energy MAE (for more details, refer to
Methods).

The depth error is an evaluation metric that quantifies the
deviation in the depth of the predicted convex hull compared to
the true convex hull. It is computed as the difference between the
confined areas of the predicted and true convex hulls, normalized
by the true area (refer to the definition in Methods). The
confined area is defined by the zero formation energy line, which
connects the pure end members of the binary system. The depth
error takes values ranging from −1 to large positive values, where
the extremes indicate an extremely shallower (or flat line) or
deeper convex hull prediction, respectively, compared to the DFT
convex hull. In addition to the depth error, the hull accuracy
metric measures the number of correct predictions of crystal
samples that form the convex hull. As explained in more detail
below, metrics like the depth error are crucial for assessing the
accuracy of stability assessment based on the energy above the
hull.

In Fig. 4, we present several examples of binary convex hulls,
illustrating different combinations of MAE, depth error, and hull
accuracy. These examples serve to emphasize the importance of
considering these metrics together for a comprehensive evalua-
tion of the predicted convex hull. As an extreme case, consider
the Nd-Y binary system, which exhibits an MAE of 0.027 eV per
atom (among the lowest values in the set of 3115 convex hull
MAEs). However, despite the low MAE, the predicted convex hull
deviates significantly from the DFT convex hull, with a depth
error of almost 7000 percent and a hull accuracy of only 33
percent. This discrepancy arises from the extremely shallow DFT
convex hull, where even small errors in the formation energy can
lead to substantial deviations in the predicted convex hull. In
contrast, the Tb-N binary system displays a large MAE of 0.115
eV per atom, but the corresponding depth error is only −0.04 (or
−4 percent). This discrepancy is attributed to the N-rich samples,
as evident in Fig. 4c and Supplementary Table S5, where our
formation energy model exhibits poor performance (for details on
other binary systems, please refer to Supplementary
Tables S3–S8). However, because the convex hull com-
prises of only three samples and is a relatively deep (i.e., a large
range of formation energy), the large MAE does not result in a
significant change in the depth of the convex hull. Similarly,
Fig. 4d, f depict a similar scenario for the Mo-Se and V-Se
systems, where despite large MAEs for the Se-rich samples, the
depth error remains relatively low. The Tm-Pt binary system
represents a combination of low MAE, low depth error, and high
hull accuracy. The Na-Cl system demonstrates moderate values
for MAE, depth error, and hull accuracy. Notably, the Tm-Pt and
V-Se systems achieve the highest hull prediction accuracy (refer
to Fig. 4a, d), despite having different ranges of formation energy

Fig. 3 Assessing the approximate rotation invariance of the model’s
formation energy prediction. a The formation energy prediction span over
500 randomly rotated instances of each crystal sample identified by its
Materials Project’s number. The interquartile range (IQR) associated with
the length of each box is reported next to each crystal sample and
represents the spread of the data from the 25th to the 75th percentile.
b Box and whisker representation of the formation energy prediction spread
(i.e., predicted Ef - mean (predicted Ef)) among 500 random rotations of
each crystal sample.
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MAEs. This observation can be attributed to the larger number of
compounds forming the DFT hull, which leads to higher accuracy
values even if a few samples are misplaced on the hull in the
prediction. These examples highlight that a high MAE in
predicting formation energy does not necessarily result in poor
convex hull prediction, and conversely, a low MAE in predicting
formation energy does not guarantee a good agreement between
the predicted and true convex hulls. It is crucial to consider all
these metrics together to obtain a comprehensive assessment of
the predictive performance of the convex hulls.

To conduct a comprehensive evaluation of binary convex hull
prediction, we calculate the MAE and depth error for all 3115
binary systems across the entire dataset (train, validation, and
test). Figure 5a illustrates the relationship between the MAE and
depth error of these binary convex hulls. Interestingly, the
majority of convex hulls exhibit low depth errors regardless of
their MAE, encompassing both low and high MAE ranges. There
is no clear correlation observed between the MAE and depth

error. Notably, the largest depth errors tend to occur in the lower
ranges of MAE, aligning with our observation in the Nd-Y
example presented in Fig. 4e. This observation leads us to
conclude that factors such as the range of formation energy (or
the depth of the convex hull) play a more crucial role in
determining the depth error than the MAE alone. Hence, in
Fig. 5b, we depict the relationship between the depth error and
the formation energy range, represented by ΔE (i.e., ΔE=
max(DFT Ef)−min(DFT Ef)) across all binary systems. This
plot illustrates that a majority of poor predictions of binary
convex hull depths (large positive errors or close to −1) appear at
low ranges of ΔE.

To gain further insights into the binary convex hull predictions
made by our model, we group the 3115 binary systems into five
material classes: ceramics (combinations of a non-metal and a
metal), semiconductors (combinations of two metalloids), metals
(combinations of two metals), semimetals (combinations of a
metalloid and a metal), and nonmetals (combinations of two
non-metal elements). Figure 6a displays the density distribution
of the formation energy MAE for each class of binary convex
hulls. Interestingly, the MAE distribution exhibits a distinct shift
in its peak across different material classes. Metallic convex hulls
demonstrate the lowest MAE, while nonmetallic convex hulls
exhibit the highest. The MAE progressively increases as we
transition from metallic to ionic materials, with semimetallics,
semiconductors, and ceramics falling between the lowest and
highest MAE values, respectively. This analysis of convex hull
MAE for different material classes sheds light on the limitations
of our predictive model. The reason for the difference in MAE
between metallic and nonmetallic compounds can be attributed
to the fact that there is a wider range of formation energies for
nonmetallic compounds and a significantly lower number of non-
metallic compounds in the data set (see Supplementary Fig. S8 for
more details). Due to these factors, the performance of our model
is comparatively lower for non-metallic compounds. In Fig. 6b,
we observe that unlike the MAE, the depth error distribution for
binary convex hulls does not show a clear distinction among
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different material classes. The depth error range depicted in
Fig. 6b is limited to −1 to 1. Semi-metallic and ceramic materials
exhibit the best performance, with their distributions peaking
close to zero. Metallic and semiconductor materials show almost
uniform distributions without a clear peak. Non-metallic
materials display a significantly negative skewness in the depth
error distribution, indicating that the predicted convex hulls are
shallower than the true convex hulls (i.e., underprediction of the
convex hull). Semiconductors also exhibit positive skewness,
albeit to a lesser extent. Supplementary Table S1 provides further
statistics on binary convex hull predictions for different material
classes.

To gain further insights into the binary convex hull predic-
tions, we provide Supplementary Fig. S9, which showcases the
formation energy MAE for different pairs of elements in our
binary systems. It is evident that certain elements, such as C and
F, consistently exhibit high MAEs for the predicted convex hull,
regardless of the second element they pair with. For instance, the
formation energy MAEs of carbides, nitrides, and fluorides in our
study are relatively large, with respective values of 0.101, 0.096,
and 0.073 eV per atom (see Supplementary Table S2). The
average MAEs over distinct binary systems containing C, N, and
F are amongst the highest, with respective values of 0.178, 0.118,
and 0.178 eV per atom (see Supplementary Table S2 for details).
To ensure that any observed bias in our model is not due to an

uneven distribution of chemical elements in our training data, we
analyze the frequency of chemical elements in our training data,
as depicted in Supplementary Fig. S10 over the periodic table.
Notably, elements such as C, N, and F are among the more
frequent ones. Oxygen, which is the most common element in
our train data set, ranks among the top 20 in terms of binary
convex hull prediction MAEs for systems involving oxygen (see
Supplementary Table S2). Supplementary Table S2 provides a
comprehensive list of MAEs, average MAEs, and median depth
errors for pairs of elements grouped by their positions in the
periodic table. Additionally, Fig. 7 displays the MAEs and depth
errors for different pairs of elements, specifically selected based
on their frequent appearance in the binary systems that formed
the most convex hulls within the analyzed binary dataset. The
heatmaps presented in Supplementary Figs. S9, 7 reveal that
nonmetals and halogens, including C, F, H, S, N, and Cl, exhibit
elevated average MAEs. The depth error heatmap in Fig. 7 further
demonstrates that there is no one-to-one correspondence
between the MAE and depth error.

Aside from depth error and hull accuracy, we define two other
error metrics; the positional distance and the adjacency distance.
These metrics enable us to evaluate the performance of our model
in predicting the order of structures at a given composition.
Given two permutations (i.e., predicted and DFT) of the list of
crystal samples at a fixed composition, the positional distance
measures the number of elements needed to be swapped to turn
one list to the other and the adjacency distance measures the
minimum number of adjacent transpositions needed to transform
one permutation into another. For example, for two permutations
P1= [1, 2, 3] and P2= [2, 1, 3], the positional and adjacency
distances are 2 and 1, respectively. Supplementary Tables S3–S8
report the positional and adjacency distances, the MAE, and the
hull match (whether the predicted crystal structure on the hull
matches DFT) at different compositions of the example binary
systems of Fig. 4. For example, as shown in Supplementary
Table S5, on the N2 end-member of N-Tb, the predicted sample
on the hull disagrees with the DFT-calculated sample. The
predicted list of 14 crystal samples has a positional and adjacency
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distance of 8 and 10. As shown in Supplementary Table S8, the
Mo-side of Mo-Se shows a positional and adjacency distance of 8
and 4 for a list of 7 crystal samples with the predicted sample on
the hull matching the DFT-calculated sample.

Discussion
This work introduces the utilization of a sparse voxel image repre-
sentation of crystal compounds in combination with a deep 15-layer
CNN as a learning algorithm for material property regression. It
provides valuable insights into the optimal design of deep CNNs as
predictive models for material properties. While deep CNNs involve
intricate architectures with numerous (hyper)parameters, we focus
on two crucial design aspects that have significantly improved the
predictive performance of our model: data augmentation and skip
connections. We briefly discuss each aspect below.

Data augmentation plays a pivotal role in our training process,
where we employ the augmentation of rotated crystal images in
our train set. This technique effectively reduces overfitting, as
demonstrated by the narrowing gap between the validation and
training errors in Supplementary Fig. S4. In the absence of data
augmentation, the validation error plateaus at a fraction of the
total epochs while the training error continues to decrease,
indicating overfitting (as shown in Supplementary Fig. S4). By
implementing data augmentation, the training and validation
errors converge, indicating a more balanced model performance.
Additionally, data augmentation enables the deep CNN to iden-
tify general underlying features by implicitly enforcing rotation
invariance in crystals’ formation energy. Rather than “memoriz-
ing” patterns from arbitrarily oriented crystal structures, the
network “learns” general features from multiple randomly rotated
orientations of the same crystal structure (as many rotations as
the number of epochs). This approach mitigates overfitting to
specific crystal orientations and facilitates the identification of
rotation-invariant features embedded in crystal images.

Instead of relying on augmentation of rotated samples in the
training data, an alternative approach is to employ neural net-
works that explicitly enforce rotation equivariance. Euclidean
neural networks (e.g., E(3) equivariant neural networks or E(3)
NN)44–47 are an example of such networks that utilize sophisti-
cated filters, such as radial functions and spherical harmonics, to
achieve equivariance to 3D Euclidean transformations, including
rotation. While E(3)NN networks offer an explicit solution for
rotation equivariance, in our experience, we have found the data
augmentation approach to be more feasible due to the relative ease
of optimization of conventional CNNs compared to equivariant
CNNs. Nonetheless, the application of E(3)NN networks with
graph representations has shown promise in previous studies. For
example, successful utilization of E(3)NN networks with graph
representation of crystalline materials has been reported in the
literature48–51. Although data augmentation and E(3)NN differ in
their technical approaches, they both serve as regularization
methods to achieve rotation equivariance and alleviate overfitting
in the network. E(3)NN achieves this through the implementation
of sophisticated filters that effectively reduce the number of
parameters in the network, leading to a more compact and reg-
ularized model. On the other hand, data augmentation addresses
overfitting by expanding the training data size, compensating for
the large number of trainable parameters in the network. While
E(3)NN focuses on parameter reduction to enforce regularization,
data augmentation increases the diversity and variability of the
training data. Both techniques contribute to enhancing the net-
work’s generalization capabilities and improving its performance
on unseen data.

The incorporation of skip connections into the 15-layer deep
convolutional network leads to a significant improvement in the

prediction of formation energy, as demonstrated in Supple-
mentary Fig. S5. This enhancement can be attributed to the
ability of skip connections to bypass local atomic features dis-
covered in the shallower layers of the network. Simultaneously,
the deep architecture of the network facilitates the exploration
and discovery of more global features inherent in crystalline
materials. Deep neural networks often suffer from the degrada-
tion problem, where the performance deteriorates as the network
becomes deeper. This occurs because randomly initialized
weights tend to approach zero as the number of layers increases,
causing the optimizer to behave chaotically52. To address this
issue, architectures like ResNets53,54 employ skip connections.
Traditionally, skip connections are recognized for their role in
alleviating optimization challenges by producing smoother loss
functions, facilitating easier training52. However, our work sheds
light on an additional aspect of skip connections beyond their
optimization benefits. We demonstrate that skip connections
serve as a mechanism to capture the essential physicochemical
information at different levels. By allowing the outputs of dif-
ferent layers (both shallow and deep) to bypass through identity
mapping, skip connections enable the network to leverage local
atomic fingerprints from shallower layers while simultaneously
learning abstract, generalized features from deeper layers. In this
way, skip connections facilitate the integration of both local and
global information, leading to improved performance in forma-
tion energy prediction.

Methods
Data collection and voxel image preparation. We gather crystal
structure information in Crystallographic Information File (CIF)
format and the corresponding DFT-calculated formation energies
from the Materials Project database (v2021.05.13)29. To extract
the structural information, we utilize the Atomic Simulation
Environment (ASE) package55. Our in-house Python code is then
employed to generate sparse voxel images of the crystals. In the
voxelization process, we repeat the crystal unit cell (cubic or non-
cubic) in space to fill a cubic box with an edge size of 17Å. We
eliminate a crystal structure if its unit cell does not fit in the cubic
box. The box is then voxelized using a 32 × 32 × 32 grid, resulting
in images with dimensions of 32 × 32 × 32 voxels. To ensure that
each voxel contains at most one atom, we set the minimum
interatomic distance to be greater than the diagonal of a voxel, dv,
calculated as dv ¼ ð17=32Þ ´ ffiffiffi

3
p ¼ 0:92 Å. Consequently, crystal

structures with minimum interatomic distances smaller than
0.92Å are filtered out. The 3D sparse voxel images of crystals are
color-coded using three channels, similar to an RGB image. These
channels represent the normalized atomic number, group num-
ber, and period number. For lanthanides and actinides, we assign
a group number of 3.5. During training, to introduce variability
and enhance generalization, we apply a random rotation to each
crystal image at each epoch. Rather than applying a direct rota-
tion to the unit cell and subsequently executing the computa-
tionally intensive task of filling the 17Å box - a method which
becomes intractably repetitive - we initially construct a larger
‘encompassing’ box with an edge equal to the diagonal of the 17-
Å cubic box. During the data pre-processing stage, we fill the
larger box by replicating the crystal unit cell in all directions only
once. Consequently, whenever an instance of an crystal structure
input is requested, either for training or prediction, we perform a
random rigid-body rotation to the larger box, while the 17-Å box
remains unchanged and consistently populated after each rota-
tion. Thereafter, we perform the voxelization of the 17-Å box to
generate the final sparse voxel images. Supplementary Fig. S1
visually details the rotation methodology.
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Convolutional neural network. We develop a 15-convolutional-
layer network consisting of 7 residual blocks and 3 average
pooling layers, followed by a fully connected neural network (see
Supplementary Fig. S11). Each residual block consists of two
convolutional layers, each followed by a rectified linear unit
(ReLU) activation layer and a skip connection that connects the
beginning of the block to its end. In each convolutional layer, we
use a kernel of size 3 and padding of type SAME with stride 1 to
ensure that the filter is applied to all the voxels of the input. To
merge a skip connection (i.e., side stream) with the mainstream
coming from the convolutional layer, we either use addition or
concatenation. We use the concatenation of outputs only before a
pooling layer in order to double the number of channels while
reducing the image size during pooling. The addition of outputs is
used elsewhere as the method of merging in the residual blocks.

The deep convolutional network consists of three distinct
segments, each containing a different image size and ending with
a pooling layer. The first segment consists of a single convolu-
tional layer, followed by an activation layer. In this layer, we
increase the number of channels from 3 to 32. This single layer is
followed by two residual blocks, each consisting of two
convolutional and activation layers, outputting 32 channels. We
utilize concatenation to combine the outputs of the mainstream
and skip connection, rendering the number of channels of the
output of this segment equal to 64. This segment ends with an
average pooling layer, reducing the image size by half
(16 × 16 × 16). The second segment consists of three residual
blocks, followed by an average pooling. The images passing
through this segment have 64 channels, and at the end of the
segment, their size is reduced by half (8 × 8 × 8) and their
channels are doubled (128). The last segment consists of two
residual blocks and an average pooling layer, but in this case, the
last block uses addition instead of concatenation, keeping the
channels as 128 and reducing the size to 4 × 4 × 4. A detailed
schematic of the network is shown in Supplementary Fig. S11.

The last pooling layer is flattened to a vector of size
(4 × 4 × 4 × 128= 8192) and is connected to a fully connected
network with a node architecture of 16-16-1 with linear activation
functions. The Keras package56 is used to build and train this
network. The 3D images of the train set are randomly rotated in
3D space and input to the network for 500 epochs in batches of
size 32. The mean squared error (MSE) is used as the loss
function. To train the network, we use the Adam optimizer with a
learning rate of 0.001, the exponential decay rates of 0.9 and 0.999
for the first and second moment estimates, respectively, and a
machine precision threshold (or ϵ) of 1e-07.

Rotational ensemble averaging. Once the model is trained, we
employ an ensemble averaging method for predictiong the for-
mation energy. Once a crystal sample is input into the trained
model, a ensemble of 50 randomly rotated instances of the sample
is generated and the formation energy prediction is averaged over
the ensemble. The ensemble averaging methods improves the
prediction accuracy and robustness of our model, as detailed
in the Results section Fig. 3, and Supplementary Figs. S6, S7.

Error metrics. The evaluation of the formation energy prediction
and the constructed convex hull is performed using the following
error metrics:

Formation Energy Mean Absolute Error (MAE): The MAE is
calculated using the formula:

MAE ¼ 1
n
∑
n

i¼1
jyi � ŷij ð1Þ

where yi represents the true formation energy of sample i

(DFT-calculated formation energy obtained from the Materials
Project database), ŷi corresponds to the model’s prediction of the
formation energy for sample i, and the sum runs over total of n
samples. When computing the MAE for a binary convex hull
prediction, only crystal compounds (or samples) from that
specific binary system are included.

Depth error for Convex Hull: The depth error for the convex
hull measures the difference in the confined area between the
predicted and true convex hulls, and is defined as:

Depth error ¼ Apredicted � Atrue

Atrue
ð2Þ

where Apredicted and Atrue represent the areas enclosed by the
predicted and true (or DFT-calculated) convex hulls, respectively.

Accuracy of Convex Hull Prediction: The accuracy of the
convex hull prediction is calculated as the percentage of correctly
predicted crystal samples on the hull with respect to the crystal
samples on the DFT-calculated hull. In other words, the hull
accuracy measures the percentage of predictions on the hull that
matches the DFT-calculated samples on the hull. Accordingly, if
our model mistakenly predicts a crytal sample to be on the hull
while the DFT-calculated sample is above the hull, the hull
accuracy measure will not be affected (e.g., see Fig. 4a).

Data availability
The data developed or used by this study is available on our GitHub repository at: https://
github.com/kadkhodaei-research-group/XIE-SPP/tree/main/training/formation-energy/
data_sets.

Code availability
The codes developed or utilized in this study are openly accessible to support
transparency and facilitate further research. They can be found in our GitHub repository
at: https://github.com/kadkhodaei-research-group/XIE-SPP.
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