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Neural structure fields with application to crystal
structure autoencoders
Naoya Chiba 1,2, Yuta Suzuki 3,4, Tatsunori Taniai 1, Ryo Igarashi 1, Yoshitaka Ushiku 1,

Kotaro Saito5,6 & Kanta Ono 6✉

Representing crystal structures of materials to facilitate determining them via neural net-

works is crucial for enabling machine-learning applications involving crystal structure esti-

mation. Among these applications, the inverse design of materials can contribute to explore

materials with desired properties without relying on luck or serendipity. Here, we propose

neural structure fields (NeSF) as an accurate and practical approach for representing crystal

structures using neural networks. Inspired by the concepts of vector fields in physics and

implicit neural representations in computer vision, the proposed NeSF considers a crystal

structure as a continuous field rather than as a discrete set of atoms. Unlike existing grid-

based discretized spatial representations, the NeSF overcomes the tradeoff between spatial

resolution and computational complexity and can represent any crystal structure. We pro-

pose an autoencoder of crystal structures that can recover various crystal structures, such as

those of perovskite structure materials and cuprate superconductors. Extensive quantitative

results demonstrate the superior performance of the NeSF compared with the existing grid-

based approach.
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A fundamental paradigm in materials science considers
structure–property relationships assuming that the
material properties are tightly coupled with their crystal

structures. Thus, for conventional approaches in materials sci-
ence, theoretical and experimental analyses of the
structure–property relationships of materials are conducted in the
search for novel materials with superior properties1,2. However,
these conventional approaches rely on labor-intensive human
analysis and even “serendipity”.

To automate or assist material analysis and development, data-
driven approaches have been actively studied in materials science,
establishing the area of materials informatics (MI)3–6. Unlike
conventional approaches based on the deduction of physical laws,
MI aims to unveil materials knowledge (e.g., laws governing
structure–property relationships) from datasets of collected
materials via statistical and machine-learning (ML) methods. In
recent years, MI has been developed rapidly owing to technolo-
gical advances in ML and the advent of large-scale materials
databases6,7. Thus, powerful neural-network-based ML methods
are becoming key components in MI research6. Applications of
MI include the prediction of material properties from material
characteristic data such as crystal structures6,8 and
compositions9–12, automated analyses of experimental data13–15,
and natural language processing for knowledge retrieval from
scientific literature16.

Many MI studies have been focused on predicting properties of
given materials17–19, such as the bandgap, Seebeck coefficient,
and elastic modulus. When this type of task is viewed as the
discovery of structure-to-property relationships among materials,
there is yet another important type of task, namely, the discovery
of property-to-structure relationships, which constitutes an inverse
design problem20–24. Despite the great potential utility of this
inverse approach in developing materials, few studies have
addressed this20–24 or its underlying problem25–27, that is, the
estimation of crystal structures under given conditions. Regarding
MI and ML, whether to input or output crystal structures (i.e.,
encode or decode crystal structures in MI and ML terms) induces
a crucial difference. Although encoding crystal structures is sui-
tably established using graph neural networks11,17,18,28, a tech-
nical bottleneck persists in decoding crystal structures. We
addressed the bottleneck in this study.

The crystal structure of an inorganic material is a regular and
periodic arrangement of atoms in a three-dimensional (3D)
space. This arrangement is usually described by the 3D positions
and species of atoms in a unit cell and the lattice constants
defining the translations of the unit cell in 3D space. The atoms in
a unit cell have no explicit order, and their quantity varies from
one to hundreds in number. Because ML models, including
neural networks, generally accept fixed-dimensional and con-
sistently ordered tensors for processing, treating crystal structures
with ML models is not straightforward17, and determining crystal
structures via the models is even more difficult.

We propose a general representation of crystal structures that
enables neural networks to decode or determine such structures.
The key concept underlying our approach is illustrated in Fig. 1,
where a crystal structure is represented as a continuous vector
field tied to 3D space rather than as a discrete set of atoms. We
refer to our approach as neural structure fields (NeSF). The NeSF
uses two types of vector fields, namely, the position and species
fields, to implicitly represent the positions and species of the
atoms in the unit cell of the crystal structure, respectively.

To illustrate the concept of the NeSF, assume that we are given
target material information as a fixed-dimensional vector, z, and
consider the problem of recovering a crystal structure from z.
Input z may specify, for example, information on the crystal
structure of a material or some desired criteria for materials to be

produced. In the NeSF, we use neural network f as an implicit
function to indirectly represent the crystal structure embedded in
z instead of letting neural network f directly output the crystal
structure as f(z). Specifically, we treat f as a vector field on 3D
Cartesian coordinates, p, conditioned on the target material
information, z:

s ¼ f ðp; zÞ ð1Þ

In the position field, network f is trained to output a 3D vector
pointing from query point p to its nearest atom position, a, in the
crystal structure of interest. Thus, we expect output s to be a−p. If
the position field is ideally trained, we can retrieve position a of
the nearest atom at any query point p as p+ f(p, z). Mathema-
tically, the position field can be interpreted as the gradient vector
field, −∇ϕ(p), of scalar potential ϕðpÞ ¼ 1

2minijp� aij2, which
represents the squared distance to the nearest atom given atomic
positions {ai} in the crystal structure. Analogously, the species
field is trained to output a categorical probability distribution that
indicates the species of the nearest atom. Thus, the output
dimension of the species field is the number of candidate atomic
species.

The proposed NeSF is inspired by the concepts of vector fields
in classical physics and implicit neural representations29–33 in
computer vision. Implicit neural representations have recently
been proposed to handle some representation issues in 3D
computer vision applications, such as 3D shape estimation of
objects30–32 and free-viewpoint image synthesis29,33. In 3D shape
estimation, letting a neural network directly output a 3D mesh or
point cloud suffers from representation issues similar to those
occurring in crystal structures. To overcome these issues, the
signed distance function (SDF) is utilized in DeepSDF30 to model
3D shapes by letting neural network f(p) indicate whether query
point p is outside or inside the object volume with a positive or
negative sign in its scalar outputs, respectively. The NeSF follows
the basic idea of implicit neural representations and further
extends it to the estimation of crystal structures described by
atomic positions and species. The precise description of atomic
positions in crystal structures is of crucial interest in materials
science. Thus, the NeSF outputs vectors pointing to the nearest
atoms to represent atomic positions more directly than existing
implicit neural representations of 3D geometries30–32.

Our idea of representing crystal structures as continuous vector
fields has been partially and implicitly explored using grid-based
discretization (i.e., voxelization) in recent MI studies20,21,23,25–27,
but without explicit consideration as discretized vector fields. In
those studies, the 3D space within the unit cell is discretized into
voxels, and each voxel is then assigned an electron density, which
essentially represents the presence or absence of an atom around
the voxel. However, compared with one-dimensional (e.g., audio
signals) or two-dimensional (e.g., images) data, the discretization
of 3D data considerably suffers from the tradeoff between spatial
resolution and computational complexity in terms of both com-
putational time and memory space. For example, the ICSG3D
method25 uses 32 × 32 × 32 voxels to represent crystal structures
and estimates them using 3D convolutional neural networks
(CNNs). Because voxel-based 3D CNNs are computationally and
memory intensive, the resolution of 32 × 32 × 32 voxels is an
approximate limit for training a voxel-based model on a standard
computing system. Meanwhile, existing crystal structures can
contain tens or more atoms in their unit cells or have elongated or
distorted unit cells. Thus, accurately representing diverse crystal
structures with voxels requires a sufficiently high resolution.
Moreover, voxel-based models can only provide atomic positions
indirectly in representations such as peaks in a scalar field of
electron densities discretized in the voxel space.
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The proposed NeSF overcomes the limitations of voxelization.
In the NeSF, there is essentially no tradeoff between the spatial
resolution and required memory. Theoretically, the NeSF can
achieve infinitely high spatial resolution with compact (memory-
and parameter-efficient) neural networks in place of costly 3D
CNNs. In addition, the NeSF can effectively represent arbitrary
crystal structures, including those with elongated or distorted unit
cells. Furthermore, the NeSF can directly provide the Cartesian
coordinates of the atomic positions rather than peaks in a scalar
field. We believe that the proposed NeSF will break through a
technical bottleneck in MI approaches for crystal structure esti-
mation and contribute to the advancement of MI research in this
direction.

In the following section, we detail the proposed NeSF and
demonstrate its expressive power for various crystal structures
through numerical experiments. Notably, the NeSF successfully
recovers various crystal structures, from the relatively basic
structures of perovskite materials to the complex structures of
cuprate superconductors. Results from extensive quantitative
evaluations demonstrate that the NeSF outperforms the vox-
elization approach in ICSG3D25.

Results and discussion
We first describe the procedures for estimating crystal structures
with the NeSF and for training the NeSF. We then present an
autoencoder of crystal structures as an application of the NeSF. In
this autoencoder, crystal structures are embedded into vectors z
(called latent vectors) via an encoder, and then the NeSF acts as a
decoder to recover the input crystal structures from z. The per-
formance of the NeSF-based autoencoder is quantitatively ana-
lyzed by evaluating the reconstruction accuracy, outperforming
the voxelization-based ICSG3D baseline. Furthermore, we quali-
tatively analyze the space of vectors z learned by the proposed
autoencoder. This analysis shows that the learned space reflects
some similarity between crystal structures instead of merely
embedding crystal structures at random.

Crystal structure estimation with NeSF. Given the target
material information as vector z, the estimation of the crystal
structure from z amounts to estimating the positions and species
of the atoms in the unit cell along with the lattice constants. The
lattice constants are modeled as lengths a, b, and c and angles α,
β, and γ, and estimated via simple multilayer perceptrons (MLPs)
with input z. On the other hand, the atomic positions and species
are estimated by position field fp and species field fs of the NeSF,
respectively, as described in the previous section. These fields are
also implemented as simple MLPs, each taking query position p
and vector z as input and predicting a field value (i.e., 3D pointing
vector or categorical probability distribution). An overview of the
NeSF network architecture is illustrated in the right part of
Fig. 1b.

Given vector z from the encoder, the estimation of the atomic
positions and species using the NeSF is illustrated in Fig. 2 and
summarized in the five steps:

1. Initialize particles. We first estimate the lattice constants
via MLPs. Then, we regularly spread initial query points
fp0i g, which we call particles, at 3D grid points within a
bounding box. The bounding box is common to each
dataset and is given to loosely encompass the atoms of all
training samples.

2. Move particles. We update the position of each particle pti
using the position field according to ptþ1

i ¼ pti þ f pðpti ; zÞ.
We iterate this process for all particles to obtain {pi} as
candidate atomic positions. Because the position field is
expected to point to the nearest atom position, the particles
travel toward their nearest atoms through this process.

3. Score particles. We score each particle pi and filter outliers.
As the norm of the output of the position field, ∥fp(pi, z)∥,
indicates an estimated distance from pi to its nearest atom,
we score each particle pi by ∥fp(pi, z)∥ and discard the
particle if the score is above a certain threshold (set to 0.9 Å
in this study).

H Fe Co

Position field Species field

Fig. 1 Overview of the structure field and crystal structure autoencoder using the NeSF. a The structure field consists of two vector fields, namely,
position field fp and species field fs, which are defined in 3D space. Given a 3D point as a query, the position field is trained to represent the 3D vector
pointing to the nearest atom of the query. In addition, the species field is trained to represent the species of the nearest atom as a categorical probability
distribution. b Network architecture of proposed crystal structure autoencoder using the NeSF. The input crystal structure is transformed into latent vector
z via a PointNet-based encoder35,36. In the decoder using the NeSF, the position field and species field are queried to recover atomic positions and species,
respectively, from material information given as z. The lattice constants are also estimated via the lattice decoder. These encoder and decoder are
implemented as simple MLPs. See the Supplementary Note 5 for detailed definitions.
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4. Detect atoms. Until this point, the particles are expected to
form clusters around atoms. Thus, we apply a simple
clustering algorithm to detect each cluster position as an
atomic position, determining the number of atoms in the
crystal structure. Here we employ a well-known clustering
algorithm in object detection, non-max suppression.
Specifically, we initialize a list of candidate particles as
Bc= {pi} and another list of accepted particles as Ba= {}. 1)
We select the particle with the lowest score (i.e., estimated
closest to an atom) from Bc and move it to Ba. 2) We
remove particles from Bc that are within a spherical area
around the selected particle. (Here, we used the spherical
radius of 0.5Å, and if the number of particles in the sphere
is <10, we reject the candidate.) By repeating these steps
until Bc becomes empty, we obtain atomic positions {ai} as
the selected particles stored in Ba.

5. Estimate species. Finally, we use species field fs(p, z) to
estimate the atomic species at each atomic position ai. For
robust estimation against errors in ai, we spread new
particles intensively around each ai as queries to the species
field instead of using ai directly as a query. These query
particles are sampled using a local regular grid centered at
ai. Hence, we obtain multiple probability distributions, each
predicting the species of atom ai. We select the most
frequent atomic species among them as the final estimate.

Note that the presented algorithm runs deterministically
without any random process involved. The hyperparameters
used for sampling points in crystal structure estimation are
provided in Supplementary Note 6. Sampling parameters in
the Supplementary Information (SI). We also analyzed the
sensitivity of these hyperparameters in Supplementary Note 3.
Hyperparameters for crystal structure estimation in the SI.

Training of NeSF. The training of the NeSF differs from the
above estimation algorithm and is much simpler. Specifically,
we train the NeSF to directly predict the vectors pointing to the
nearest atoms and categorical distributions indicating their spe-
cies, without iterative position update. To do so, we randomly
sample 3D query points fpsig in the unit cell and compute loss
values for the field outputs at these points, thus supervising
f pðpsi ; zÞ and f sðpsi ; zÞ to indicate the position and species of the
nearest atom, respectively. However, we cannot densely sample

the query points because of practical limitations in memory
usage. Therefore, a sampling strategy for query points is required
for training. Existing implicit neural representations for 3D shape
estimation, such as DeepSDF30, sample the training query points
near the surface. Curriculum DeepSDF34 further introduces
curriculum learning, in which the sampling density intensifies
near the surface as training proceeds.

To consider a desired sampling strategy for training the
position and species fields, we consider their dynamics in the
proposed algorithm. (1) Particles iteratively move in the position
field toward their nearest atoms. Thus, the position field should
be sufficiently accurate everywhere to allow the flow of particles
to their destinations and highly accurate in the vicinity of atoms.
(2) The species field is queried only around atoms. Thus, it does
not need to be accurate everywhere but should be robust to errors
in the estimated atomic positions.

To meet the above-mentioned requirements, we introduce two
sampling methods to train the position and species fields. (1)
Global grid sampling: This method considers 3D grid points that
uniformly cover the entire unit cell and samples the points with
perturbations that follow a Gaussian distribution. (2) Local grid
sampling: This method considers local 3D grid points centred at
each atomic position and samples the points with perturbations
that follow a Gaussian distribution.

To train the position field, we combine both sampling
methods. Hence, query points are sampled uniformly over the
entire unit cell and densely around the atoms. To train the species
field, we use local grid sampling to concentrate training query
points in the neighbourhood of atoms. The parameters used for
sampling are provided in Supplementary Note 6. Sampling
parameters in the SI.

Crystal structure autoencoder. To demonstrate and evaluate the
expressive power of the NeSF, we propose an autoencoder of
crystal structures. Similar to other common autoencoders, the
proposed NeSF-based autoencoder consists of an encoder and
decoder. The encoder is a neural network that transforms an
input crystal structure (i.e., positions and species of the atoms in
the unit cell and lattice constants) into abstract latent vector z.
The decoder, for which we use the NeSF, reconstructs the input
crystal structure from the latent vector z. Autoencoders are
typically used to learn latent vector representations of data via

Fig. 2 Algorithm for crystal structure estimation with the NeSF. The algorithm consists of two stages: 1) atomic position estimation (corresponding to
steps 1–4 in “Crystal structure estimation with NeSF”) and 2) element estimation (corresponding to step 5 in “Crystal structure estimation with NeSF”).
a To detect true atomic positions (shown as red dots), we regularly place query particles in the position field. b, c Then, we iteratively infer the vectors
pointing to their nearest atoms and update the query particles until convergence. d, e We detect atoms by clustering the query particles. f, g For element
estimation, we spread new query particles around each detected atom. h Then, we query the species field to obtain categorical distributions as votes for
the atomic species. i We finally apply majority voting to determine the species of each atom.
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self-supervised learning, in which the input data can supervise the
learning via a reconstruction loss.

While we focus on decoding crystal structures, their encoding
has been studied in MI. Because a crystal structure is essentially a
set of atoms, its encoding must handle a variable number of
atoms with invariance to permutation. In ML, such encoders are
generally called set functions35,36. Among them, the family of
graph neural networks11,17,18,28 serves as popular crystal-
structure encoders. However, these networks implicitly represent
atomic positions as edges, encoding distances between atoms
while discarding the exact coordinates. Although this distance-
based graph representation is key to ensuring the invariance of
coordinate systems, its information loss in input may unin-
tentionally hinder the reconstruction performance. Thus, we
adopt the basic encoder architecture from PointNet35 and
DeepSets36. This architecture not only represents the simplest
type of set-function-based networks but can also preserve the
information of input crystal structures, thus being appropriate for
the performance evaluation of the NeSF decoder. The architecture
of the proposed autoencoder is detailed in “Neural network
architecture” and in Supplementary Note 5. Network architecture
in the SI.

Training and evaluation procedures. We trained and evaluated the
autoencoder and ICSG3D25 (baseline) on three materials datasets:
ICSG3D, limited cell size 6Å (LCS6Å), and YBCO-like datasets.
These datasets collect the crystal structures of materials from
Materials Project37 and are designed to have different difficulty
levels. The ICSG3D dataset is a materials collection used by Court
et al.25 and contains 7897 materials with limited crystal systems
(i.e., cubic) and prototypes (i.e., AB, ABX2, and ABX3), and it is
intended to be the easiest among the three datasets. The LCS6Å
dataset consists of 6005 materials with unit cell sizes of 6Å or less
along the x, y, and z axes and without restrictions on the crystal
systems and prototypes. The YBCO-like dataset consists of 100
materials with narrow unit cells along the c axis. These structures
typically include those of yttrium barium copper oxide (YBCO)
superconductors. Owing to the complexity of the structures and
relatively few samples, the YBCO-like dataset is the most chal-
lenging among the three evaluated datasets. Further details on
these datasets are provided in “Datasets”.

For training and evaluation, we randomly split each dataset
into training (90.25%), validation (4.75%), and test (5%) sets. The
training set was only used to train the ML models. The validation
set was used to preliminarily validate the trained ML model, and
the test set was used to compute the final evaluation scores after
training, validation, and hyperparameter tuning. The hyperpara-
meters were tuned based on the validation scores from the LCS6Å
dataset. To reduce the performance variation owing to random-
ness (e.g., randomness in the initialization of network weights),
we repeated training and evaluation 10 times with different
random seeds and evaluated the performance using the mean and
standard deviation of the scores. Because the YBCO-like dataset
has only 100 samples, it was treated slightly differently from the
other two evaluated datasets. To reduce the performance
variation owing to data splitting, we adopted twentyfold cross-
validation for the YBCO-like dataset and performed one trial
(instead of repeating 10 times with different random seeds). The
iterative training of the neural networks was conducted using
stochastic gradient descent with Adam38 as the optimizer.
Detailed training procedures, including the loss function defini-
tion, are provided in “Training”.

The reconstruction performance was measured in terms of
errors in the number of atoms, position, and species. The error in
the number of atoms is the rate of materials for which the

number of atoms in the unit cell is incorrectly estimated. The
position error is the average error of the reconstructed atomic
positions. Depending on the denominator of the metric, we
evaluated the position error in two ways. An actual metric was
used to evaluate the mean position errors at the actual atomic
sites of the crystal structure by computing their shortest distances
to estimated atomic sites. By contrast, a detected metric was used
to evaluate the errors at the estimated sites by computing their
shortest distances to the actual atomic sites. Formally, given sets
of actual and detected atomic positions as Pactual and Pdetected, the
actual and detected metrics are provided as m(Pactual, Pdetected)
and m(Pdetected, Pactual), respectively, with function
mðA;BÞ ¼ ∑a2A minb2B k a� b k/∣A∣. The actual metric is more
sensitive to errors related to underestimation of the number of
atoms, whereas the detected metric is more sensitive to errors
related to overestimation. The species error is the average rate of
atoms with incorrectly estimated species. Analogous to the
position error, the species error was evaluated using actual and
detected metrics. Lower values of these metrics indicate better
performance.

Quantitative performance comparisons with ICSG3D. Table 1 lists
the reconstruction errors of the proposed NeSF-based auto-
encoder and ICSG3D baseline on the test sets of the three data-
sets. We also provide the scores for the training and validation
sets in Supplementary Note 1. Reconstruction results for the
training and validation splits in the SI. Overall, the proposed
method consistently outperforms ICSG3D in all the evaluation
metrics, with substantial performance improvements for the
species error in all datasets and for all the metrics on the YBCO-
like dataset. Figure 3 shows crystal structures from the three
evaluated datasets, comparing test samples and reconstruction
results by the proposed autoencoder and ICSG3D.

For the ICSG3D dataset, which is the easiest of the three
datasets, ICSG3D achieves good performance for the error in
number of atoms and position error, but provides high species
error (~65% in both actual and detected metrics). By contrast, the
proposed method achieves slightly better position error and error
in a number of atoms and drastically lower species error
(approximately 4%). We believe that this is because ICSG3D
estimates the atomic species via electron density maps, whereas
the proposed method more directly represents atomic species as
categorical distributions. Extending ICSG3D to estimate a
categorical distribution at each voxel is impractical because it
would require approximately 100 × 323 times the memory usage
in the output (i.e., requiring 100 species categories for each of the
323 voxels in addition to one electron density map).

For the LCS6Å and YBCO-like datasets, which are more
challenging than the ICSG3D dataset, the performance advantage
of the proposed method is even clearer, especially regarding
the position error. The LCS6Å dataset contains a variety of crystal
structures (e.g., non-cubic structures, distorted crystal structures),
whereas the YBCO-like dataset contains very narrow crystal
structures. In addition, the YBCO-like dataset contains few
samples, possibly leading to model overfitting (i.e., the perfor-
mance on the test set is likely to degrade significantly). Despite
these difficulties, the proposed method can accurately estimate
the atomic positions and species.

For a detailed analysis of the relationship between the method
performance and structural complexity, Fig. 4 shows the
distributions of reconstruction errors according to the number
of atoms given as medians (points) and 68% ranges around them
(colored regions) over 10 test trials on materials from the
ICSG3D and LCS6Å datasets. The YBCO-like dataset is excluded
from this analysis because it contains only materials with 13
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atoms in their unit cells. Figure 4a, b shows the signed errors
between the numbers of detected and actual atoms. These results
indicate that both methods correctly estimate the number of
atoms for most (i.e., >68%) of the samples in the ICSG3D dataset
(Fig. 4a). However, the ICSG3D method underestimates the
number of atoms for the LCS6Å dataset (Fig. 4b). Likewise,
Fig. 4c, d show the distributions of position errors and Fig. 4e, f
show the distributions of species errors. Because the number of
atoms is either correctly estimated or underestimated by both
methods in most cases, we report the errors in the actual metrics.
Examining the distributions at x= 2 in Fig. 4e, we can determine
the trends of species errors for the diatomic structures in the
ICSG3D dataset. The proposed method provides the correct
species of both atoms for >68% of the diatomic materials, whereas
ICSG3D often misestimates the species of one of the two atoms.

Overall, although the three types of errors by both methods
tend to increase with the number of atoms, our method
outperforms ICSG3D consistently for materials with varying
numbers of atoms. Compared with our method, the performance
of ICSG3D tends to degrade more notably for materials with
many atoms. Because ICSG3D often underestimates the number
of atoms (Fig. 4b), this overall degradation trend suggests that
ICSG3D cannot capture those many-atom structures owing to its
spatial resolution limited to 32 × 32 × 32 voxels.

We believe that the notable high performance of the proposed
method is attributable to two reasons. First, our method does not
use discretization, which is advantageous over the grid-based
ICSG3D for estimating complex crystal structures. In a grid-based
method, the spatial resolution is limited by the cubically
increasing computations and memory usage. The proposed NeSF
is free from such tradeoff between resolution and computational
complexity, and it can thus effectively represent complex
structures. Second, the model size of the proposed NeSF using
MLPs is much smaller than that of the 3D CNN architecture of
ICSG3D. In general, the number of training samples required for
an ML model is correlated with the number of trainable
parameters. Grid-based methods use layers of 3D convolution
filters that involve many trainable parameters. By contrast, the
NeSF employs implicit neural representations to describe the 3D
space indirectly as a field instead of voxels. Thus, it is efficiently
implemented by MLPs with fewer parameters than a 3D CNN.
Specifically, the NeSF-based autoencoder has 0.76 million
parameters, which is only 2.24% of the number of parameters
in the 3D CNN-based ICSG3D (34 million parameters). This
difference can make the NeSF advantageous over grid-based
methods, especially on small datasets such as the YBCO-like
dataset.

Latent space interpolation. We qualitatively analyzed the char-
acteristics of the proposed NeSF-based autoencoder by inspecting
the learned latent space of the crystal structures. In general, a
good latent space should map similar items (in terms of prop-
erties, characteristics, categories, etc.) closely in the space, thus
providing latent data representations that facilitate analysis by
humans and machines. To assess the construction of the latent
space of crystal structures, we visualized transitions in the latent
space as sequences of crystal structures. If the latent space is
trained to capture relationships between materials in terms of
structural similarity, interpolating between two points in the
latent space should produce a sequence of materials with similar
crystal structures.

Interpolation analysis proceeded as follows:

1. Select two known crystal structures from the ICSG3D test
set as the source and destination materials and obtain their
latent vectors as zsrc and zdst via the trained encoder.T
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2. Interpolate between zsrc and zdst linearly in the latent space
to obtain a sequence of latent vectors.

3. Decode each latent vector via the trained decoder (NeSF) to
obtain its crystal structure.

Because the intermediate crystal structures between the source
and destination are reconstructed from the latent vectors via the
trained decoder, these structures may not appear in the dataset.

To facilitate the interpretation of the analysis, we chose the
well-known zinc-blende and rock-salt structure families as
benchmark materials. Both families have compositions given by
AX, where A is a cation, and X is an anion, and the crystal
structure is based on a cubic crystal system. Therefore, if the
source and destination materials belong to one of these families,
the characteristic composition and structural prototype should be
preserved throughout the interpolation path.

As a first example, Fig. 5 shows the results of interpolation
from ZnS (mp-10695) to CdS (mp-2469). The obtained
transition in the compositional formula is ZnS→MgZn3S4
(Mg0.25Zn0.75S)→MgZnS2 (Mg0.5Zn0.5S)→Mg3ZnS4 (Mg0.75
Zn0.25S)→MgS→MgCd3S4 (Mg0.25Cd0.75S)→CdS.

As a second example, Fig. 6 shows the results of interpolation
fromMgO (mp-1265) to NaCl (mp-22862). The obtained transition
in the compositional formula is MgO→NaMgO2 (Na0.5Mg0.5O)→-
NaO→Na2ClO (NaCl0.5O0.5)→Na4Cl3O (NaCl0.75O0.25)→NaCl.

Additionally, we provide the results of interpolation from NaCl
(mp-22862) to PbS, from MgO (mp-1265) to CaO (mp-2605),
from PbS (mp-21276) to CaO (mp-2605), and from BaTiO3

(cubic; mp-2998) to BaTiO3 (tetragonal; mp-5986) in Supple-
mentary Note 2. Additional results of latent space interpolation in
the SI.

In the interpolation examples, the composition AX and the
cubic structure are mostly preserved. Furthermore, the composi-
tions change continuously without collapsing along the

interpolation paths. These results suggest that our encoder learns
meaningful continuous representations of crystal structures by
capturing their characteristics in an abstract space, and the
proposed NeSF model successfully decodes these representations
into crystal structures.

Latent space visualization. As another qualitative analysis of the
latent space, we visualized the space using t-distributed stochastic
neighbor embedding (t-SNE)39. While the interpolation analysis
in the previous section examines the local smoothness of the
space, this t-SNE analysis inspects the space at a more global scale
to see if it maps similar structures closely, or as clusters. In Fig. 7,
we have embedded the 192-dimensional latent vectors of the
materials from the LCS6Å dataset into two-dimensional (2D)
plots via t-SNE. Each plot is colored according to the cell volume
(Fig. 7a), the number of atoms (Fig. 7b), and space group (Fig. 7c)
as structural attributes of the material. These plots form clusters
whose colors are well separated or smoothly transitioned, show-
ing that the latent space reflects the structural similarity of the
materials.

Limitations and future directions. This study was mainly
focused on developing a fundamental approach for crystal
structure estimation using implicit neural representations. To
suggest room for further improvement and important directions
in future work, we identified three main limitations of the NeSF.

First, the proposed NeSF does not explicitly consider space-
group symmetry. Thus, the local spatial arrangements of atoms in
conventional unit cells estimated by the NeSF do not necessarily
obey space-group symmetry. Although ICSG3D25 shares the
same limitation, symmetry is an important concept in crystal-
lography. Thus, incorporating the constraint of space-group
symmetry into the NeSF is an important direction of future work.
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(ICSG3D dataset)
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Fig. 3 Reconstruction examples. For the three evaluated datasets (rows), we show test samples (first column) and reconstruction results by the
proposed (second column) and ICSG3D (third column) methods. a Tm3TlC (mp-22556, ICSG3D dataset). b MnInF3 (mp-998241, LCS6Å dataset).
c ErBa2(Cu0.33Zn0.67)3O7 (mp-1214708, YBCO-like dataset).
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Second, for evaluation purposes, we adopted the autoencoder
architecture rather than generative models, such as variational
autoencoders17,26,40 and generative adversarial networks27,40–42.
These generative models intentionally perturb latent structural

representations to produce diverse structures that do not appear
in the dataset. While this aspect of the generative models is more
suitable for novel structure discovery, the lack of ground-truth
structures prevents quantitative and reliable performance

Fig. 4 Relationships between reconstruction performance and number of atoms in conventional unit cell. Three kinds of error distributions (rows) are
shown for the ICSG3D (first column) and LCS6Å (second column) datasets described by medians (points) and 68% ranges (colored regions) similar to
means ± σ ranges. a, b Distributions of signed errors between detected and actual numbers of atoms. c, d Distributions of position errors according to a
number of atoms averaged over individual structures. e, f Distributions of species errors according to number of atoms averaged over individual structures.
For statistical reliability, we omit the x axis points counting <10 materials samples from the visualization (see “Datasets” for detailed dataset statistics).
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analysis. The NeSF should be applied to generative models in
future work with appropriate performance analysis.

Third, the trained latent vectors have limited capability as
material descriptors for property prediction, as shown in an
additional analysis provided in Supplementary Note 4. Prediction
of material property in the SI. Although this result is under-
standable since the latent space is not directly trained for property
prediction, learning a latent space that effectively disentangles
material properties from structural features is another future
direction. Such a latent space will be useful not only for property
prediction but also for the inverse design of materials with desired

properties when combined with the aforementioned generative
approach.

Conclusion
We propose the NeSF to estimate crystal structures using neural
networks. Determining crystal structures directly using neural
networks is challenging because these structures are essentially
represented as an unordered set with varying numbers of atoms.
NeSF overcomes this difficulty by treating the crystal structure as
a continuous vector field rather than as a discrete set of atoms.

ZnS
Lengths: 3.86, 3.86, 3.86
Angles: 119.99, 119.99, 90.01

Mg3ZnS4
Lengths: 5.70, 5.70, 5.70
Angles: 90.00, 90.00, 90.00

MgZn3S4
Lengths: 5.68, 5.68, 5.68
Angles: 90.00, 90.00, 90.00

MgZnS2
Lengths: 4.03, 4.03, 5.70
Angles: 90.00, 90.00, 90.00

MgS
Lengths: 4.05, 4.05, 4.05
Angles: 119.99, 119.99, 90.01

MgCd3S4
Lengths: 5.74, 5.74, 5.74
Angles: 90.00, 90.00, 90.00

CdS
Lengths: 4.19, 4.19, 4.19
Angles: 119.97, 119.97, 90.03

Fig. 5 Results of interpolation from ZnS to CdS. To verify the smoothness of the latent vector space, we examine an interpolation of the latent vectors. It
shows that the latent space is smoothly interpolated into two structures.

MgO
Lengths: 3.02, 3.02, 3.02
Angles: 119.98, 119.98, 90.01

Na2ClO
Lengths: 3.33, 3.33, 4.72
Angles: 90.00, 90.00, 89.88

NaMgO2
Lengths: 3.23, 3.23, 4.57
Angles: 90.00, 90.00, 90.18

Na4Cl3O
Lengths: 4.72, 4.73, 4.73
Angles: 90.00, 90.00, 90.00

NaO
Lengths: 3.28, 3.28, 3.28
Angles: 119.89, 119.89, 90.16

NaCl
Lengths: 4.00, 4.00, 4.00
Angles: 119.99, 119.99, 90.01

Fig. 6 Results of interpolation from MgO to NaCl. To verify the smoothness of the latent vector space, we examine an interpolation of the latent vectors. It
shows that the latent space is smoothly interpolated into two structures.

Fig. 7 t-SNE visualizations of the latent space. Each 2D plot represents the latent vector of material from the LCS6Å dataset. The plot colors visualize
a cell volume, b number of atoms in the cell, and c space group as structural attributes of the materials.
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We borrow the idea of the NeSF from vector fields in physics and
the recent implicit neural representations in computer vision. An
implicit neural representation is an ML technique to represent 3D
geometries using neural networks. The NeSF extends this tech-
nique by introducing the position and species fields to estimate
the atomic positions and species of crystal structures, respectively.
Unlike existing grid-based approaches for representing crystal
structures, the NeSF is free from the tradeoff between spatial
resolution and computational complexity and can represent any
crystal structure.

The NeSF was applied as an autoencoder for crystal structures
and demonstrated its performance and expressive power on
datasets with diverse crystal structures. Quantitative performance
analysis showed a clear advantage of the NeSF-based autoencoder
over an existing grid-based method, especially for estimating
complex crystal structures. Furthermore, a qualitative analysis of
the learned latent space revealed that the autoencoder captures
similarities between crystal structures rather than mapping crystal
structures randomly.

In materials science, the design and construction of crystal
structures are fundamental processes when searching for mate-
rials with the desired properties. ML is advancing rapidly with the
development of neural networks, and representing arbitrary
crystal structures using those networks is essential for the next-
generation development of materials. For instance, the NeSF can
be applied to powerful deep generative models, such as variational
autoencoders and generative adversarial networks, to discover
novel crystal structures. Such generative models for crystal
structures will be important for the inverse design of materials,
which is a major challenge in MI. We believe that the NeSF can
overcome the technical bottleneck of ML for crystal structure
estimation and pave the way for the next-generation development
of materials.

Methods
Datasets. We evaluated the proposed NeSF-based autoencoder
using datasets from the Materials Project37.

● ICSG3D dataset: To compare with the ICSG3D baseline, we
reproduced the dataset used in the original paper25.
Unfortunately, the proponents of ICSG3D did not specify
the identifiers of the materials used for their experiments.
Therefore, by following the procedures described in their
paper, we crawled the three material classes with cubic
structures, namely, binary alloys (AB), ternary perovskites
(ABX3), and Heusler compounds (ABX2), from the
Materials Project37. Then, we split the dataset into training
(7194 samples), validation (342 samples), and test

(360 samples) sets. The numbers of atoms per unit cell
are listed in Table 2.

● LCS6Å dataset: From Materials Project37, we collected all
the materials samples with unit cell sizes of 6 Å or less
along the x, y, and z axes. Unlike the ICSG3D dataset, the
LCS6Å dataset has no restriction on material classes and
prototypes and covers 4.31% of the Materials Project
database. This dataset was also split into training (5418
samples), validation (286 samples), and test (301 samples)
sets, and the numbers of atoms in the samples are listed in
Table 3.

● YBCO-like dataset: From the Materials Project37, we
extracted 100 samples with structures similar to YBCO
(YBa2Cu3O7), that is, narrow crystal structures along the c
axis. The structures of these materials have narrow and
anisotropic unit cells and contain various elements. Given
the complexity of the structures and the limited number of
samples, this dataset is considered the hardest and most
practical among the three evaluated datasets. This dataset
was also split into training (90 samples), validation
(5 samples), and test (5 samples) sets. The numbers of
atoms in the samples are listed in Table 4.

All the crystal structures were described by a conventional cell
for the input and output of the autoencoders.

Neural-network architecture. The proposed NeSF-based auto-
encoder consists of simple MLPs. Specifically, the encoder first
transforms the atomic position and species of each atom into a
512-dimensional feature vector. These feature vectors per atom
are then aggregated into a single feature vector via a max pooling
and converted into a 192-dimensional feature vector, which
represents latent vector z of the input crystal structure. Given z as
the input, the decoder estimates four types of structural infor-
mation features using four separate MLPs. The atomic positions
are estimated via the position field implemented as an MLP with
nine fully connected layers. The atomic species are estimated via
the species field implemented as an MLP with three fully con-
nected layers. Lattice lengths (a, b, c) and angles (α, β, γ) are
estimated using the corresponding MLPs with two fully con-
nected layers. More details on the architecture are provided in
Supplementary Note 5. Network architecture in the SI.

Training. During training, the four types of outputs from the
decoder (i.e., atomic position, species, lattice lengths, and angles)
were evaluated using the following loss function:

L ¼ λposLpos þ λspeLspe þ λlenLlen þ λangLang ð2Þ
where Lpos is the mean squared error between the estimated and
true atomic positions, Lspe is the cross-entropy loss function for
the atomic species distributions, and Llen and Lang are the mean
squared error of the lattice lengths and angles, respectively. The
total loss function, L, is given by the weighted sum of these loss
functions with weights (λpos, λspe, λlen, λang)= (10, 0.1, 1, 1). We
optimized the loss function using stochastic gradient descent with
a batch size of 128. We used Adam as the optimizer with an initial
learning rate of 10−3, decaying every 640 epochs by a factor of
0.5. For each dataset, we conducted iterative training for 3200

Table 2 Numbers of atoms per unit cell in ICSG3D dataset.

No. atoms per
cell

2 5 6 8 12 15 16 20 32 40

Training 484 1413 7 572 1 12 4616 17 18 54
Validation 18 66 32 223 1 2
Test 24 61 34 237 4

Table 3 Numbers of atoms per unit cell in LCS6Å dataset.

No. atoms per cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 22 24 28

Training 21 599 44 1411 1325 244 69 686 58 137 9 352 9 24 4 402 5 6 1 2 9 1
Validation 35 2 80 81 14 3 41 4 5 13 2 20 1
Test 30 3 83 68 17 2 35 5 19 1 23
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epochs for all the material samples in the dataset. We applied
early stopping based on the validation score for both the pro-
posed method and ICSG3D, except for the YBCO-like dataset, for
which the few validation samples may lead to unreliable valida-
tion scores. The training of the NeSF model took approximately
11 hours on the ICSG3D dataset, 9 hours on the LCS6Å dataset,
and 1 hour on the YBCO-like dataset using a computer equipped
with a single Quadro RTX8000 graphics processor. For details
regarding our strategies for validating the trained models and
tuning the hyperparameters (e.g., latent dimensionality, number
of network layers, training batch size), see Supplementary Note 7.
Hyperparameter search in the SI.

Data availability
The dataset generation procedure is available in Supplementary Note 1. Reconstruction
results for the training and validation splits in the SI. Datasets will be available online
here: https://github.com/omron-sinicx/neural-structure-field and also available from the
corresponding author upon reasonable request.

Code availability
The implementation details are available in Supplementary Note 5. Network architecture
in the SI. The code will be available online here: https://github.com/omron-sinicx/neural-
structure-field and also available from the corresponding author upon reasonable
request.
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