
ARTICLE

Ring-originated anisotropy of local structural
ordering in amorphous and crystalline silicon
dioxide
Motoki Shiga 1,2,3✉, Akihiko Hirata 4,5,6, Yohei Onodera 6,7 & Hirokazu Masai 8

Rings comprising chemically bonded atoms are essential topological motifs for the structural

ordering of network-forming materials. Quantification of such larger motifs beyond short-

range pair correlation is essential for understanding the linkages between the orderings and

macroscopic behaviors. Here, we propose two quantitative analysis methods based on rings.

The first method quantifies rings by two geometric indicators: roundness and roughness.

These indicators reveal the linkages between highly symmetric rings and crystal symmetry in

silica and that the structure of amorphous silica mainly consists of distorted rings. The

second method quantifies a spatial correlation function that describes three-dimensional

atomic densities around rings. A comparative analysis among the functions for different

degrees of ring symmetries reveals that symmetric rings contribute to the local structural

order in amorphous silica. Another analysis of amorphous models with different orderings

reveals anisotropy of the local structural ordering around rings; this contributes to building

the intermediate-range ordering.
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Amorphous materials exhibit a disordered structure owing
to the lack of translational periodicity. Unlike crystals,
which exhibit translational periodicity, amorphous

materials do not have a long-range structural order. The forma-
tion of a short-range order, whose definition is based on the
distances between two nearest neighbor atoms, can be observed in
the pair distribution function (PDF) obtained via X-ray diffrac-
tion (XRD) and neutron diffraction (ND) measurements for both
crystals and amorphous materials. For example, the short-range
order of amorphous and crystalline silica (SiO2) under ambient
conditions is based on a regular SiO4 tetrahedron. The inter-
connection of tetrahedra with corner-sharing oxygen atoms
forms a network structure. Meanwhile, for some amorphous
materials, such as SiO2, these diffraction experiments also provide
the evidence of a structural order on a length scale larger than the
atomic bond length, i.e., the intermediate range. The formation of
intermediate-range order of amorphous SiO2 is often discussed in
terms of the first sharp diffraction peak (FSDP) observed in the
diffraction data1–4. However, the origin of FSDP3,5–8 in amor-
phous SiO2 has long been debated. It is currently established that

the length scale of FSDP is approximately 4Å ¼ 2π
qFSDP

� �
, q ¼

4π
λ

� �
sin θ with the scattering angle 2θ and X-ray or neutron

wavelength λ and that the periodicity with the coherence length is

approximately 10Å ¼ 2π
ΔqFSDP

� �
, where ΔqFSDP is the width of

FSDP9. Structural order analysis based on PDF has limitations
caused by a rapid decrease in the atomic pair correlation peak
intensity on the intermediate-range scale. Moreover, structural
units of intermediate-range orders are larger complexes than
chemical bonds, and they cannot be identified using pairwise
correlation analysis. Hence, revealing the structural orders hidden
in many-body correlations in amorphous materials remains
challenging.

Structural models of glass, based on a network structure con-
sisting of corner-sharing tetrahedral motifs, as found in SiO2, help
to investigate the intermediate-range structural orders in amor-
phous materials. The first structural model for glass was the
crystallite model proposed by Frankenheim10 in 1835, which
described glass as an aggregate of small crystallites. The crystallite
model, also known as the discrete crystalline model, presumes that
crystalline clusters are embedded in a glass matrix, owing to the
relatively sharper feature of FSDP in the diffraction data. However,
this model has been found inappropriate because the estimated
lattice constants of the crystallites are larger than those of β-
cristobalite, thereby leading to a discrepancy between the observed
and calculated densities. Subsequently, continuous crystal11 and
quasi-crystal models7 have been proposed. Meanwhile, a con-
tinuous random network model was first proposed by
Zachariasen12 in 1932, wherein short-range structural units in
glass were connected randomly. Zachariasen also addressed the
relationship between the structure and glass-forming ability and
proposed four rules for glass formation. Although Zachariasen’s
models are only based on the short-range-order characteristics,
such as chemical bonds and the coordination number, such
models have been widely used. Several structural models such as
the layer model13 and periodic boundaries of void (or cage)
models8,14, which assume larger structural units, have been
developed further. To validate such model assumptions on the
structural order for various materials, statistical analysis methods
using geometric and/or chemical structure information are useful.
A major approach for characterizing the structural order is ring
(closed-path) analysis in a chemically bonded network generated
from a structural model. In the conventional analysis, rings are
exhaustively enumerated by the shortest-path algorithms, and ring
size distributions are analyzed15–19. Recently, Onodera et al.20

reported structural orderings related to ring transformation in
densified silica glass. However, since there is no analytical method
for ring geometry, the discussion is limited to the number of
atoms constituting the ring. For deeply understanding the
intermediate-range order in amorphous materials, various analysis
methods for the geometric information of rings and their linkages
to structural order are necessary. This progress on understanding
intermediate-range structural orders entails uncovering the rela-
tionship between the orders and material properties using quan-
titative analysis methods21,22, which leads to a new path for
designing novel functional materials. Furthermore, such methods
contribute to building data-driven material design using large-
scale structural models of disordered materials23,24 generated by
computational simulations using machine learning potentials24–28,
which can realize much faster implementation without compro-
mising the theoretical accuracy compared to exact computations
based on the density functional theory.

Here, we propose extensions from conventional ring analysis
for structural order analysis: (1) quantitative characterization of
ring shapes and (2) a spatial correlation function around rings to
visualize local structural orders. The advantage of our approach is
that it enables a direct combination of the size, shape, and spatial
distribution of rings based on both atomic configuration and
network topology. The direct approach is effective for deeply
understanding intermediate-range structural orders because cru-
cial topological structures formed by chemical bonds are
embedded in the atomic configuration. Our methods are applied
to analyze amorphous and crystalline silica for a deeper under-
standing of the structural orders around rings.

Results
To reveal the contribution of the network topological order to the
intermediate-range structural order, we propose two analysis
methods based on rings: (1) ring shape characterization (Fig. 1)
and (2) spatial correlation analysis around rings (Fig. 2).

Ring shape characterization. The proposed procedure char-
acterizes the shape of a ring through computation of the eigen-
vector and eigenvalue of the covariance matrix of atomic
coordinates (so-called point cloud) in the ring, as shown in Fig. 1.
This procedure first selects a ring enumerated from a network
consisting of atoms and chemical bonds (Fig. 1a) and then
obtains a point cloud composed of atoms in the ring (Fig. 1b).
Subsequently, the eigenvectors and eigenvalues of the variance-
covariance matrix of the coordinates are computed (Fig. 1c). The
first eigenvector is computed as the direction with the largest
variance of the point cloud. Under the restriction that the first
and second eigenvectors are orthogonal with each other, the
second eigenvector is computed by maximizing the variance of
the point cloud in the vector. Furthermore, the third eigenvector
is computed as the vector orthogonal to the first and second
eigenvectors. As their eigenvalues are proportional to the var-
iances of the point cloud along these vectors, they can be used to
measure the ring shape. This approach uses eigenvectors, which
provide second-order information. This is equivalent to approx-
imating a ring by an ellipsoid, wherein the first and second
eigenvectors correspond to the directions of the major and minor
axes of the ellipse approximating the ring, respectively, whereas
the third eigenvector is the normal vector of the plane of the
ellipse. We proposed two shape indicators for a ring: roundness
and roughness, as illustrated in Fig. 1d, both of which are com-
puted from eigenvalues. Assuming a square root of the three
eigenvalues, s1, s2, and s3, the first indicator “roundness” is
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defined as

rc ¼
s2
s1
: ð1Þ

It evaluates how close the ring is to a perfect circle. The
roundness value for a perfect circle is 1. The second indicator

“roughness” is defined as

rt ¼
s3ffiffiffiffiffiffiffi
s1s2

p : ð2Þ

It evaluates the flatness of the ring. These normalizations, i.e.,
s1 for roundness and the geometric mean of s1 and s2 for the

Fig. 1 Computational procedure of ring shape characterizations. a Rings observed from top and side views. b The point cloud of atoms in the ring. c The
first, second, and third eigenvectors and eigenvalues of the variance-covariance matrix of the point cloud. d Ring shape measurements: roundness and
roughness, both of which are computed from the eigenvalues. Roundness and roughness are defined as Eqs. (1) and (2), respectively. e Examples of ring
characterizations by ring size, roundness, and roughness for various rings along with observation from the top (the third eigenvector) and that from the
side (the second eigenvector).

Fig. 2 Computational procedure of spatial correlation function around rings. a Illustration of a network topology of amorphous SiO2. Blue and red spheres
represent Si and O atoms, respectively. Only 500 enumerated rings chosen from Nring ¼ 45;423ð Þ rings at random are visualized by highlighting their edges
in green. b Eigenvectors of the variance-covariance matrix from atomic coordinates in each ring are computed. c For each ring, the new coordination
system v1; v2; v3

� �
is defined by eigenvectors. The value of vd indicates the relative position from the ring center along the d-th eigenvector. Atomic

coordinates in the system are computed by Eqs. (3) and (4). Next, for each ring r, spatial histograms for Si or O atom hSi;r v1; v2; v3
� �

, hO;r v1; v2; v3
� �

are
computed using atomic coordinates in the new system. d Spatial correlation functions of Si or O atoms around rings hSi v1; v2; v3

� �
, hO v1; v2; v3

� �
are

computed by averaging the spatial histograms, as expressed in Eq. (5).
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roughness, are included to remove the effect of the ring size.
These indicators can be generalized by weighting atoms in
computing ring centers and variance-covariance matrices.
Variances of atomic positions weighted by atomic masses, called
the radius of gyration, was proposed as a measure to evaluate ring
compactions29.

Examples in Fig. 1e demonstrate that roundness and roughness
appropriately evaluate these ring shapes. In general, there is no
direct relationship between roundness and roughness. For
example, roundness and roughness are not correlated for rings
with sizes 9 and 11, as shown in Fig. 1e. However, they are
negatively correlated for rings with sizes 6 and 8. Notably, these
numerical values of small rings are restricted due to the small
degrees of freedom in their shapes.

Spatial correlation function around rings. The second proposed
procedure (Fig. 2) is used to visualize how the symmetry and/or
anisotropy of a ring significantly contribute to the local structural
orderings in the intermediate-range scale. For the computational
procedure of the spatial correlation function, we first enumerate
all the rings (Fig. 2a). For each ring, we compute the ring center
by averaging atomic coordinates and the eigenvectors of the
variance-covariance matrix from the atomic coordinates of the

ring (Fig. 2b). Then, we obtain the center cr ¼ crx; cry; crz
� �

, and

eigenvectors er1, er2, er3 for the r-th ring, r ¼ 1; :::;Nring. Here,
Nring is the number of enumerated rings, while Natom is the
number of an element in the structural model, i.e., the number of
Si or O atoms in silica. Next, for each element, i.e., Si or O atom
in silica, we compute the spatial three-dimensional (3D) histo-
gram around each ring by three steps (Fig. 2c): (1) Atomic

coordinates of the element in the structural models xn ¼
xn; yn; zn
� �T

; n ¼ 1; :::;Natom are translated so that the ring cen-
ter is the origin, which is computed by

�xrn ¼ xn � crx; yn � cry; zn � crz
� �T

; n ¼ 1; :::;Natom ð3Þ

where �T is a transpose operator of a vector or a matrix. (2) When
the coordinate axes of the histogram around r-th ring are defined
as er1, er2, er3, the atomic coordinates in the new coordination
system are computed by

vrn ¼ vrn1; vrn2; vrn3
� �T ¼ �xTrner1; �x

T
rner2; �x

T
rner3

� �T
; n ¼ 1; :::;Natom:

ð4Þ
(3) The 3D histogram of the element around the r-th ring in

the new coordination system, hatom;r v1; v2; v3
� �

is computed using
atomic coordinates vrn; n ¼ 1; :::;Natom. After computing histo-
grams for all rings, the spatial correlation function of each
element, hatom v1; v2; v3

� �
is computed by averaging histograms

(Fig. 2d):

hatom v1; v2; v3
� � ¼ 1

Catom
∑
Nring

r¼1
hatom;r v1; v2; v3

� �
: ð5Þ

The normalization coefficient is Catom ¼ d3wNringNatomV
�1
box,

where dw is the bin width of the histogram, and Vbox is the
volume of the simulation box. Normalization is necessary to
compare structural models with different atomic densities. In
crystals, regions with large spatial correlation are point-like and
are extremely small for visualization. To improve the visibility of
the large correlation regions of crystalline materials, we used a
Gaussian filter for their computed correlation functions to
spatially expand them.

Our proposed correlation function is a generalized formulation
of the results from a recent study30. In the study, the spatial

correlation function was computed based on a structural unit
consisting of three atoms (i.e., a centered Si atom and two nearest
O atoms in silica) to determine the coordination system of the
correlation function. In contrast, our proposed approach
determines the coordination system by using a ring as a larger
unit consisting of over four atoms. This offers a more
straightforward approach for visualizing and revealing
intermediate-range structural orders in a network-forming
amorphous material, which is demonstrated by identifying
similarities in structural orders between amorphous and crystal-
line materials of silica.

Analysis of amorphous and crystalline silica structural models.
In this study, we focused on amorphous and crystalline materials
with corner-sharing tetrahedral motifs, which are represented by
a structural model of amorphous silica (a-SiO2), along with those
of nine crystalline polymorphs of silica: α-tridymite31, β-
tridymite32, α-cristobalite33, β-cristobalite34, α-quartz35, β-
quartz36, coesite I37, coesite II38, and stishovite39 (see Supple-
mentary Tables 1–3 for data IDs, space groups, and lattice
information, and Supplementary Discussion and Supplementary
Figure 1 for structural statistics). Note that the coordination
number of Si is six only in stishovite, while it is four in other
crystals analyzed in this work.

We generated a large-scale structural model of a-SiO2 by
classical molecular dynamics (MD) simulation of a melt-
quenching procedure, followed by refinement using the reverse
Monte Carlo (RMC)40 technique to reproduce XRD and ND data.
Here, the side length of the simulation box for the model was
assumed approximately 100 Å to ensure accurate statistics and
suppress artifacts caused by the periodic boundary condition (see
Methods and Supplementary Table 4 for the detailed procedure
and structural statistics). RMC was implemented with some
constraints to preserve the physically meaningful structure
generated by MD (Methods and Supplementary Discussion).
Hereafter, the generated structure is referred to as the MD–RMC
model. The X-ray and neutron total structure factors S q

� �
of the

model showed good agreement with the experimental data
(Supplementary Figures 2 and 3). The coordination numbers
around Si and O atoms, of over 99% in the first coordination
distance of the generated model, are four and two, respectively. It
was established that a well-known network structure, consisting
of an SiO4 tetrahedron sharing O atoms at the corner for SiO2

(NSi�O ¼ 4, NO�Si ¼ 2), is formed in the MD–RMC model
(Supplementary Figures 4 and 5).

Ring shape characterizations. Guttman ring15, King ring17, and
primitive ring18,19 are well-known ring definitions. We selected
the primitive ring for our investigations. A primitive ring is
defined as a ring that cannot be decomposed into two smaller
rings18,19. This is equivalent to the condition that for any node
pairs in the ring, there is no shortcut, which is a shorter path
composed of edges outside the ring. Therefore, primitive rings are
essential components in network-forming amorphous materials.
Although the primitive criterion enumerates larger rings com-
pared to Guttman’s rings, it can avoid enumerating redundant
larger rings unlike those in King’s criteria. Please see Yuan’s
paper19 for some illustrative examples of primitive rings. As a first
step, our analysis exhaustively enumerated rings in each network
of the structural models based on the shortest-path algorithms
(See Methods for the detail). Figure 3a shows the distributions of
ring sizes, i.e., the numbers of Si atoms in a ring in amorphous
and crystalline materials. Among the crystalline materials, cris-
tobalite and tridymite phases have only six-fold rings, although
the coordination number of each Si and O atom is the same in all
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crystalline materials. Therefore, these structures are topologically
ordered even while considering the network connectivity patterns
over the first coordination spheres. In contrast, other crystal
phases have rings of different sizes. Notably, the ring sizes of
coesite I and II are widely distributed, as in the amorphous
material shown in the bottom panel, thus indicating that the
structures of coesite I and II are topologically disordered, owing
to its high density. The ring size of a-SiO2 is also widely dis-
tributed, with the peak of the ring size distribution located at
approximately sizes 6 or 7, similar to the cases of phases of
cristobalite and tridymite.

For these structural models, we applied the proposed ring-
shape characterizations, as summarized in Fig. 1. Figure 3b, c
show our proposed indicators of ring shape, i.e., roundness and
roughness, in crystalline and amorphous silica materials. It was
found that β-cristobalite has only six-fold rings with the largest
roundness and smallest roughness compared to other crystals.
Thus, compared to other crystalline materials, β-cristobalite has
the highest ring symmetry, which contributes to the cubic nature
of the crystal system, as discussed later. In contrast, the rings of α-
cristobalite are less symmetric than those of β-cristobalite but
with higher symmetry than those of coesite I and II. Among these
structures, the order of the ring symmetries is identical to the
order of the ring symmetries in crystal systems.

We demonstrated that a set of three eigenvalues of a ring can
be used as an indicator of the ring’s shape. Notably, the set is also

useful for enumerating isomorphic rings in crystalline materials
because these values are identical when the ring shapes are
identical. The isomorphic rings identified in crystalline SiO2 and
their shape characterizations are summarized in Fig. 4 and
Supplementary Table 5. Both β- and α-cristobalite have only one
isomorphic ring, whereas β- and α-tridymite, β- and α-quartz,
coesite I, coesite II, and stishovite have two, three, four, five,
eleven, thirty-four, and four isomorphic rings, respectively. This
indicates that the number of isomorphic rings in a crystalline
material is a measure of its symmetry.

Next, we analyzed linkages between ring symmetries and space
groups of crystals. As a factor of the ring symmetry, the point
group of each isomorphic ring is listed in Supplementary Table 5.
The result concludes that only β-cristobalite and β-tridymite have
a direct linkage between the point group of a ring and the space
group of a crystal. For example, β-cristobalite includes only an
isomorphic ring (A6-1) with the highest symmetry evaluated by
both point group and our shape measures, as shown in
Supplementary Table 5. We found that the three-fold rotational
symmetry of the ring in β-cristobalite directly links to the three-
fold symmetry of the cubic space group, as illustrated in Fig. 5a, b.
Because β-cristobalite includes only one isomorphic ring, this
situation leads to the formation of a cubic crystal system that has
the highest symmetry among the crystalline materials of SiO2. We
also found a direct linkage in β-tridymite, as illustrated in
Fig. 5c–e. The ring with three-fold symmetry (C6-1), whose shape

Fig. 3 Ring characterizations of SiO2 materials. Proportion of the number of rings in crystalline and amorphous materials as a function of ring size (a),
roundness (b), and roughness (c). Ring size is defined by the number of Si atoms in a ring. Roundness and roughness of a ring are defined as Eqs. (1) and
(2), respectively.
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is identical to that of the ring (A6-1) in β-cristobalite, can yield
six-fold screw symmetry combined with the partial translational
operation along the screw axis. Lastly, rings in α-cristobalite, α-
tridymite, β-quartz, α-quartz, coesite I, and coesite II are
unrelated to the space groups. Although α-cristobalite includes
only an isomorphic ring similar to β-cristobalite, the point group
indicates no symmetry, small roundness, and large roughness,
resulting in a less symmetric space group than that of β-
cristobalite, as illustrated in Supplementary Fig. 6. In this case, the
configuration of rings with the lowest symmetry constructs four-
fold screw symmetry. A similar situation is also found in α-
tridymite, β-quartz, and α-quartz, as illustrated in Supplementary
Figs. 7–9. The cases of coesite I and coesite II become extremely
complicated, and it is hard to find any linkages between ring
symmetries and space groups in such cases. Overall, this analysis
concludes that there is a strong linkage between the ring
symmetry and the crystal symmetry, i.e., highly symmetric rings
build a highly symmetric crystal system.

We further investigated the linkage between ring symmetries and
crystal polymorphs based on the pressure–temperature phase
diagram, as shown in Fig. 4 in a previous paper41. Two noteworthy
findings regarding the phase diagrams are as follows: first, that high-
temperature phases are more symmetric than the low-temperature
ones. The symmetry is evaluated by the number of isomorphic rings
and ring symmetries (such as roundness, roughness, and point
group). For example, β-phases (such as β-cristobalite) are more
symmetric than α-phases (such as α-cristobalite). In addition,
cristobalites are more symmetric compared with tridymites. Second,
except for stishovite, which has different atomic coordination
numbers from other crystals, low-pressure phases are more
symmetric than the high-pressure ones. For example, phases of
cristobalite and tridymite are more symmetric than those of quartz
and coesite. These two findings are consistent with the fact that β-
cristobalite is the most symmetric among SiO2 crystal polymorphs
since the phase is located at the lowest pressure and highest
temperature in the phase diagram.

Fig. 4 Isomorphic primitive rings in crystalline SiO2. a The top view (the normal vector) of rings. b The side view (the second eigenvector). Numerical
values of ring shape characteristics and the point group of each ring are listed in Supplementary Table 5.
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The bottom panels in Fig. 3b, c show the computed results for a-
SiO2. Similar to the ring size distribution, roundness and roughness
are broadly distributed. This indicates that various rings are included
in a-SiO2. The ring-shape evaluation with two-dimensional
distributions of both measures is shown in Fig. 6. The probability
density in a-SiO2 was computed by a kernel density estimation with
Gaussian kernel, whose band width was determined using the Scott’s
rule42. Characterization results for crystalline materials are repre-
sented by symbols due to the limited number of isomorphic rings.
Figure 6 shows that these values of α-cristobalite, β-cristobalite, α-
tridymite, and β-tridymite are negatively correlated because of the
small ring sizes. However, a correlation is not generally observed,
instead, it is not adaptable for most cases. The figure shows that the
peak position of the roundness–roughness distributions in a-SiO2 is
close to those of the ring B6-1 in α-cristobalite and D6-3 in α-
tridymite among the six-fold rings. This shows a resemblance
between the major rings in a-SiO2 and those in α-cristobalite and α-
tridymite. The broad distribution of the shape indicators in a-SiO2,
covering those of all isomorphic rings in crystalline materials,
suggests that the distribution in a-SiO2 is a mixture of isomorphic
rings in crystalline materials and their variants.

Fig. 5 Symmetry with rings in β-cristobalite and β-tridymite. a The view from the direction [111]. b The side view of that in (a). In these panels, all rings
are identical to the ring A6-1 in Supplementary Table 5, some of which are colored magenta or green to visualize layers. This visualization shows the direct
linkage between point group of the ring (�3 m) to the space group of β-cristobalite (F d �3 m). c The view from the direction [001] of β-tridymite. The
magenta ring is C6-1, whose point group is �3 m. d The view from the direction [010]. The orange ring is C6-2. All rings of C6-2 are orthogonal to ring C6-1.
Si atoms are colored blue or cyan, which indicate site equivalence whether the z coordinate is lower or higher from the ring plane. e Screw symmetry 63 in
β-tridymite, which is along the direction [001] with C6-1 rings. Numbers marked in prime and double prime indicate trajectories of the screw operation,
which demonstrates the direct linkage between the point group of the ring and the space group of β-tridymite.

Fig. 6 Probability distribution of ring characteristic indicators (roundness
and roughness) of amorphous and crystalline SiO2. The probability
density of a-SiO2 was computed by a kernel density estimation with
Gaussian kernel. The band width of the kernel was determined using the
Scott’s rule42 (= n−1/(d+4)), where n is the number of rings, and d is
dimension. In the data, n= 45,423 and d= 2.
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Spatial correlation functions around rings. The influence of
ring symmetries on the local structural ordering was evaluated
using our proposed spatial correlation function. To visualize the
functions of SiO2 materials, corresponding cross-sectional map-
pings at approximately v1 ¼ 0, v2 ¼ 0, or v3 ¼ 0 were computed

by integrating the correlation function over the cross-section
thickness t, as shown in Fig. 7a–j. The cross-sectional thicknesses
t was set to 2 Å for all crystalline and amorphous models. In these
figures, the blue and red regions exhibit high densities of Si and O
atoms, respectively, as depicted by the color indicator (Fig. 7k).

Fig. 7 Cross-sectional mappings of spatial correlation functions from v1, v2, and v3-axis directions for crystalline and amorphous SiO2. a–f Cross-
sectional mappings of the spatial correlation functions of β-cristobalite (a), α-cristobalite (b), β-tridymite (c), α-tridymite (d), β-quartz (e), α-quartz (f),
coesite I (g), coesite II (h), stishovite (i), and a-SiO2 (MD-RMC) (j). k Color indicator: a region with blue/red color indicates a large density of Si/O atoms.
The cross-sectional thickness t was set to 2 Å for all models.
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These mappings also show that β-, α-cristobalite, β-tridymite, and
α-tridymite (Fig. 7a–d) have parallel planes along the v3-axis and
concentric circles on the v1-v2 plane, whereas other crystalline
materials (Fig. 7e–i) appear to be disordered. This is attributed to
the fact that phases of cristobalite and tridymite have a smaller
number of isomorphic rings with relatively larger roundness and
smaller roughness than other crystalline materials. Among all
crystalline materials, the function of β-cristobalite (Fig. 7a) is
highly oriented and are surprisingly identical due to only one
isomorphic ring (six-fold ring) with large roundness and small
roughness. In contrast, the functions for α-cristobalite, β-tridy-
mite, and α-tridymite (Fig. 7b–d) appear noisy compared to that
of β-cristobalite. This is because the three crystalline materials
have a larger number of isomorphic rings or smaller roundness
and larger roughness of rings than those of β-cristobalite. Coesite
II (Fig. 7h) is the most disordered due to the variety of non-
symmetric isomorphic rings. From another visualization of 3D
surfaces of large spatial correlations shown in Supplementary
Figure 10, we could have similar findings and discussions.

Figure 7j shows the spatial correlation function for the a-SiO2

model. These diagrams exhibit a ring around the center, which is
the average of all primitive rings. The v1-v2 plane also shows that
the averaged ring shape in a-SiO2 is not a perfect circle, but an
ellipse, which is consistent with the results of the roundness analysis
shown in Fig. 3b. As shown in Fig. 7j and Supplementary Figure 10j,
the center ring is surrounded by multiple shells in the amorphous
model. The shells of the O and Si atoms are alternately located from
the center owing to the O–Si–O–Si linkage. In addition, these
figures show planes parallel to the center ring in the upper and
lower parts of the ring along the v3-axis. They also show partially
parallel planes along the v2-axis, which is parallel to the v1-axis (the
major axis of the rings), as shown in the middle panel of Fig. 7j.
However, they do not exhibit such planes along the v1-axis. Owing
to the anisotropic shapes of the rings, it can be concluded that a-
SiO2 has anisotropic structural order around the rings. In particular,
the planes consisting of rings are parallel to each other but
orthogonal to the normal vector of a ring. Since this situation is
similar to the arrangement of lattice planes in crystals such as β-
cristobalite and β-tridymite, as shown in Fig. 5, the pseudo-Bragg
condition for diffraction could also be considered locally even in
amorphous materials. In fact, the normal vector of the ring becomes
parallel to the scattering vector. Since the spacing between the
planes (~ 4 Å) corresponds to the position of FSDP in reciprocal
space, the origin of FSDP is likely the formation of intermediate-
range structural orders containing these parallel rings.

We further investigated the consistency between the spatial
correlation functions of the amorphous and crystalline models.
Supplementary Figure 11 shows the cross-sectional mappings of
the Si correlation functions in the amorphous model together
with those in crystalline models: β-cristobalite (a), α-cristobalite
(b), β-tridymite (c), α-tridymite (d), β-quartz (e), α-quartz (f),
coesite I (g), coesite II (h), and stishovite (i). In these diagrams,
the function of the amorphous model is shown by the blue image,
whereas that of the crystal model is shown by a green image.
Supplementary Figure 12 shows correlation functions of the O
atom, wherein spatial correlations of the amorphous model and
those of crystalline models are colored red and green, respectively.
The rightmost diagrams (v1-v2 plane) show that the averaged ring
of the amorphous model is similar to that of α-cristobalite
(Supplementary Figs. 11b and 12b), which is consistent with the
roundness of rings in Fig. 3b. The averaged ring shape of α-
tridymite (Supplementary Figs. 11d and 12d) is also similar to
that of a-SiO2, whereas those of β-cristobalite (Supplementary
Figs. 11a and 12a) and β-tridymite (Supplementary Figs. 11c and
12c) are different, but both are consistent with these roundness

values. The upper and lower planes made by the large correlation
regions for a-SiO2, which are pseudo-Bragg planes, are also
consistent with those for the phases of cristobalite and tridymite.
The correlation functions for the phases of quartz and coesite
(Supplementary Figs. 11e–h and 12e–h) also contain regions
partly similar to those for a-SiO2, although they appear different
globally. The anisotropic nature of the a-SiO2 amorphous model
is consistent with the analysis results for crystalline SiO2,
especially with phases of cristobalite and tridymite.

For the amorphous SiO2, we performed an additional analysis
to find a linkage between the roundness and roughness of rings
and the symmetry of the intermediate-range atomic configuration
around rings. To confirm the linkage, the β-cristobalite, which
has the highest crystal symmetry and contains one type of
symmetric ring with large roundness and small roughness, is used
as a standard. In the analysis, we first selected four subsets of
rings using their roundness and roughness values, as shown in
Fig. 8a. The subsets (or regions in the figure) are determined by
the quantiles of roundness rc ¼ 0:73; 0:80; 0:87, and those of
roughness rt ¼ 0:24; 0:30; 0:36. For example, the range of region
I is 0:87<rc ≤ 1 and 0≤ rt ≤ 0:24. Rings in region I are more
symmetric than those in other three regions because of larger
roundness and smaller roughness of rings in the region. On the
contrary, rings in region IV are less symmetric than others. For
each region, we computed the spatial correlation function using
rings included in the region. Figure 8b shows the computed
spatial correlation functions, along with the correlation function
of β-cristobalite to discuss a symmetry of the intermediate-range
atomic configurations around the rings. Direct comparisons of
these functions of amorphous SiO2 with that of β-cristobalite in
same diagrams are shown in Supplementary Fig. 13b. These
figures demonstrate that β-cristobalite and the functions of
symmetric rings similar to a perfect circle (the spatial correlation
function for region I in Fig. 8b) and non-symmetric rings that are
dissimilar to a perfect circle (the function for region IV in Fig. 8b)
in a-SiO2. This demonstrates that atomic configurations are
locally symmetric around symmetric rings, even in a-SiO2 and
that the lesser the symmetric rings, the lesser symmetric the local
atomic configurations, as shown in spatial correlation functions
for regions II–IV in Fig. 8b and Supplementary Fig. 13b. In a-
SiO2, highly symmetric rings are scarce, while slightly less
symmetric rings are predominant in region II, which includes the
probability density mode. Therefore, the amorphous material is
mainly composed of slightly less symmetric local structures in the
present case.

Comparing amorphous models with various structural order-
ings. A series of analyses showed an anisotropic local structural
order in the amorphous silica (a-SiO2) model, whereas isotropic
halo rings were observed in the reciprocal space by macroscopic
diffraction data. A transition from anisotropic to isotropic order
prevails while transitioning from microscopic to macroscopic
viewpoints. Notably, the anisotropic local structure originates
from the rings, which is an essential topological motif in network-
forming materials. Here, we discuss the influence of the aniso-
tropic local structural order on the degree of structural order in
amorphous structures through the comparison of some additional
amorphous models.

To validate our analyses further, we generated three additional
amorphous structural models from a random configuration. The
same number of atoms and the same size of the simulation box
were used for these additional models. The first model (Rand-
Coord) was generated from a random configuration, followed by
a hard-sphere Monte Carlo (HSMC) simulation under two
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restrictions: the closest atom–atom distance and coordination
number. The closest-distance restriction avoids unreasonable
spikes in the partial pair distribution functions. The coordination
number restriction forces Si atoms to coordinate to four O atoms,
whereas O atoms coordinate to two Si atoms within a Si–O cutoff
distance of 1.90 Å. The second structural model (Rand-Tetra)
used the Rand-Coord model as the initial atomic configuration
and was then generated by implementing HSMC with restrictions
on the coordination numbers and O–Si–O bond angle distribu-
tion to create a network structure, consisting of regular SiO4

tetrahedra sharing O atoms at the corner. The third model (Rand-
RMC) used the Rand-Tetra model as the initial atomic
configuration, subsequently generated by the RMC simulation
to reproduce the X-ray and neutron S q

� �
data. Structural

statistics, such as structure factors, coordination numbers, bond
angles, and ring characters are summarized in Supplementary
Discussion and Supplementary Figs. 14–17. This structured
summary demonstrates that the randomly initialized models
(i.e., Rand-Coord, Rand-Tetra, and Rand-RMC) are more
disordered compared to the MD-RMC model. Among the
structure factors, only Rand-RMC and MD-RMC exhibit FSDP
because RMC fits the structure factors. Although all models form

a network of chemical bonds, the structural orders of these
amorphous models are highly different. Structures of three
models without MD (Rand-Coord, Rand-Tetra and Rand-RMC)
are considerably more disordered than MD-RMC models, as
demonstrated in Supplementary Figure 17, wherein all variances
of ring size, roundness, and roughness of these three models are
larger than those of the MD-RMC models. These statistics
indicate that RMC does not construct structural order, instead, it
generates disordered structures43.

Figure 9 shows the spatial correlation functions of Rand-Coord
(a), Rand-Tetra (b), Rand-RMC (c), and MD-RMC (d), wherein
all models exhibit anisotropic structural orders around the rings.
This indicates that anisotropy is related only to the network
formation of amorphous materials. A clearer shell structure was
observed in the MD-RMC model compared to other models. This
is due to the ring size distribution in the MD-RMC model,
concentrated at size 6 (see Supplementary Fig. 18), whereas other
three models showed broad distributions. Hence, the correlation
functions computed using only six-fold rings, as shown in
Supplementary Fig. 18, present clearer shell structures in all
models. The correlation functions for Rand-RMC and MD-RMC
in Fig. 9c, d and Supplementary Figs. 18c, d exhibit parallel planes

Fig. 8 Spatial correlations cross-sectional mappings of Si/O atoms using specific shapes of rings in a-SiO2. a Regions of roundness and roughness for
computing spatial correlation functions around specific rings. The probability distribution of ring characteristic indicators of amorphous SiO2 is the same as
that in Fig. 6. The regions are determined by the quantiles of roundness rc ¼ 0:73;0:80;0:87, and those of roughness rt ¼ 0:24;0:30;0:36. For example,
the range of region I is in 0:87<rc � 1 and 0 � rt � 0:24. Rings in region I, whose roundness is larger, and roughness is smaller than those in other regions,
are more symmetric than those in other three regions. On the contrary, rings in region IV are less symmetric than others. Region II includes rings of major
shapes because the region includes the mode, i.e., the point with the largest probability density. b The correlation function computed using only rings
whose shapes are in a specific region (I–IV), together with that of β-cristobalite, which is same as that in Fig. 7a. The color indicator at the bottom shows
values of spatial correlations of Si/O atom. The direct comparisons of the function of Si/O atom in each region with that of β-cristobalite are shown in
Supplementary Fig. 13.
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Fig. 9 Cross-sectional mappings of spatial correlations of a-SiO2 models. a–d Cross-sectional mappings of spatial correlations of Rand-Coord (a), Rand-
Tetra (b), Rand-RMC (c), and MD-RMC (d) models. e Color indicator: a region with blue/red color indicates a large density of Si/O atoms. The cross-
sectional thickness t is 2 Å. Green arrows indicate parallel planes above and below the rings along the v1 and v2 axes.
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above and below rings along the v3-axes indicated by green
arrows. This relates to the intermediate-range structural orders
exhibited by FSDP in the diffraction experiments. Conclusively,
the anisotropy of structural orders around rings is essential for
building intermediate-range structural orders.

Discussion
This study proposed two analysis methods for the structural
orders of rings and those around rings based on the ring shapes in
network-forming materials. The proposed analysis approach for
crystalline and amorphous SiO2 first demonstrated that the dis-
tribution of ring shape characteristics is a strong tool for ana-
lyzing the amorphous models of SiO2. The roundness–roughness
distribution showed that the major rings in amorphous SiO2 are
similar to those in two crystals, α-cristobalite and α-tridymite,
whose mass densities are similar to those of amorphous SiO2. In
addition, it was found that the rings in quartz and coesite phases
are included as minor rings in amorphous SiO2. This indicates
that various rings found in crystalline polymorphs are necessary
to form bulk amorphous materials44. Furthermore, the spatial
correlation analysis showed that the anisotropic nature of struc-
tural orders was found in both crystalline SiO2, with different
polymorphisms, and amorphous SiO2. The analysis further
showed that pseudo-Bragg planes, parallel to the rings in amor-
phous SiO2, are consistent with those of four crystals: α-cristo-
balite, α-tridymite, β-cristobalite, and β-tridymite. In addition,
this study found that rings with low roughness tend to construct
planes parallel to the central rings, as shown by the ring shape
characterization of isomorphic rings on crystalline materials. To
validate the applicability of our approaches, three amorphous
SiO2 structural models with different ordering degrees were
prepared. The corresponding anisotropic local environments, as
described above, were confirmed in all models. Although the
actual degree of order for amorphous SiO2 is still arbitrary,
observations in this study showed that even if amorphous SiO2

satisfies the experimental structure factors, it has anisotropic local
structures. Furthermore, our analysis assumed that the observed
pseudo-Bragg planes, presumably yielding the first sharp dif-
fraction peak, are correlated with the intermediate-range struc-
tural orders in amorphous SiO2.

To link structural orders and material properties and realize
data-driven material design, quantitative evaluations for various
structural models are necessary. In crystalline materials, the
macroscopic properties are linked to the lattice structure and
their symmetry because they include all structural information.
Conversely, amorphous materials do not have such linkages
because they do not have the lattice and symmetric structures.
Therefore, we should explore the linkages through another
approach using structural motifs such as rings. An example of
this approach is using different fictive temperatures45, which
revealed the linkage between the properties and ring size dis-
tributions in SiO2 glass. Various additional numerical descriptors
such as geometric information of rings like roundness and
roughness, and those of structural ordering from diverse per-
spectives are needed for finding new linkages between macro-
scopic properties and structural orders. For network-forming
materials, we developed new descriptors and demonstrated useful
applications for analyzing the structural orders of SiO2 materials,
although the applicability of the approach is not limited to SiO2.
Furthermore, the analysis of other network-forming materials
using our proposed methods and a comprehensive comparison of
the results should provide further information to help understand
intermediate-range structural orders in network-forming
materials.

Methods
Generation of a structural model of amorphous silica. Struc-
tural models of amorphous silica were generated by a melt-
quenching procedure in classical MD simulation, followed by
RMC techniques to fit the diffraction measurements of the syn-
thesized materials40. MD simulations and RMC were imple-
mented using the LAMMPS code46 and the RMC++ code47,
respectively. In the MD simulation of amorphous silica, the
simulation box was a cube with a length of 100 Å. The density of
this system was 2:2 g cm�3. The system had 66,156 atoms (22,052
Si atoms and 44,104 O atoms) within the NVT ensemble. A time
step of 1 fs was used in the Verlet algorithm. Furthermore, the
interactions were described by pair potentials with short-range
Born-Mayer repulsive and long-range Coulomb terms:

ϕij ¼ Bij exp � r
ρij

 !
þ e2

4πϵ0

ZiZj

r
; ð6Þ

where r is the interatomic distance between the atoms i and j, Bij

and ρij represent the magnitude (10�16 J) and softness (Å) of the
Born-Mayer term, respectively, Zi is the effective charge on atom i
(ZSi ¼ 2:4 and ZO ¼ �1:2), e is the elementary charge, and ϵ0 is
the permittivity of a vacuum. The coefficients used in the simu-
lation were Bij ¼ 21:39 ´ 10�16 J and ρij ¼ 0:174Å for an atomic

pair of Si and O, and Bij ¼ 0:6246 ´ 10�16 J and ρij ¼ 0:362Å for
a pair of O atoms. In the potential function, the interactions
between the Si atoms were ignored, similar to our previous
work20. Although numerous studies have investigated the
empirical potential functions for SiO2 materials, potentials that
assume Si–Si interaction are limited. One example is the reference
study48, wherein the potential function with Si–Si interactions
was determined using ab Initio quantum-chemical methods.
However, the effect of Si–Si interactions is smaller than those of
other interaction terms. A comparison of these potentials
reported in another study49 showed that the potential function
without Si–Si interactions is more accurate than that with Si–Si
interaction. Because of the discussion in previous works, we
considered an empirical potential function without Si–Si
interaction.

The atomic configuration was initialized at random, and the
system was equilibrated at 4000 K for 100,000 steps. Subse-
quently, it was cooled to 300 K for 5,000,000 steps and annealed
at 300 K for 100,000 steps. The generated model was refined via
RMC modeling using XRD and ND measurements. RMC was
implemented with the constraints of the coordination numbers,
bond angles of O–Si–O, and the partial pair-distribution
functions within the first coordination shell. The constraint of
the bond angle was performed by preserving the distribution of
the structures by the MD simulation. These constraints were
added to preserve the physically meaningful structure generated
by MD, which is discussed in detail along with some structural
statistics. This model was named MD-RMC.

Ring enumeration. Under the assumption that the first coordi-
nation distance is less than 2.0 Å for Si–O, a network was gen-
erated for each structural model of SiO2. Primitive rings can be
efficiently enumerated based on the shortest-path algorithms19.
The enumeration algorithm first computes the distances of the
node pairs in the network using the shortest path algorithm. Next,
node pairs whose distances in the network are less than the
threshold, which should be set to half of the maximum number of
atoms counting both Si and O atoms in the primitive rings, are
enumerated. Subsequently, all the shortest paths between the
enumerated node pairs are enumerated. Ring candidates are
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generated by connecting two different shortest paths that do not
share internal nodes. Upon inspecting the primitive criterion for
the generated candidates and removing candidates that do not
satisfy the criterion, the ring enumeration algorithm is termi-
nated. The ring enumerations in this study were implemented
using our in-house python package.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
Supplementary information. Additional data related to this paper may be requested from
the authors.
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