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Integrating stability metrics with high-throughput
computational screening of metal–organic
frameworks for CO2 capture
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Metal–organic frameworks (MOFs) have been considered a unique class of hybrid materials

for a wide variety of potential applications. With the existence of almost infinite MOFs, high-

throughput computational screening (HTCS) is a robust technique to accelerate the search

for promising MOFs. However, conventional HTCS studies reported in the literature neglect

the stability of MOFs, which must be considered for practical applications. Here we integrate

four stability metrics (thermodynamic, mechanical, thermal, and activation) with HTCS to

identify top-performing, synthesizable, and stable hypothetical MOFs for CO2 capture. The

thermodynamic and mechanical stabilities are evaluated through molecular dynamics

simulations, while the activation and thermal stabilities are predicted using machine learning

models. Finally, we identify top-performing hypothetical MOFs satisfying all these stability

metrics. This study underlines the central importance of integrating stability metrics when

screening MOFs for applications.
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W ith readily tunable structures and functionalities,
metal–organic frameworks (MOFs) have received
considerable attention for many potential applications.

However, it is technically challenging to select promising MOFs
as the chemical space is tremendously large. To date, over 100,000
MOFs have been experimentally synthesized, and in principle,
infinite MOFs can be constructed by varying building blocks and
topologies1. Experimentally identifying suitable candidates from
the enormous number of MOFs for applications is economically
inviable. In this context, high-throughput computational screen-
ing (HTCS) is a powerful technique to assist in establishing
quantitative structure-property relationships and identifying top
MOFs.

We have witnessed great success in using HTCS to identify top
MOFs for different applications2–4, particularly CO2 capture5. For
instance, the Computationally-Ready Experimental (CoRE)
MOFs6 were screened for post-combustion CO2 capture and
natural gas purification7. The separation of hexane and heptane
isomers was simulated in CoRE MOFs, then one candidate was
synthesized and characterized8. The latest version of the CoRE
MOF database (2019)9 with over 10,000 structures was screened
to isolate unique MOFs for paraffin/olefin separation10,11. The
Cambridge Structural Database (CSD) MOFs12 were also
screened for CO2 capture and H2 purification, and a handful of
MOFs were identified to possess selective adsorption and mole-
cular sieving capabilities13. The identified experimental MOFs by
HTCS are synthesizable, regardless of possible difficulties that
might be encountered, but crucial stability measures are scarcely
considered in HTCS, which might lead to the utilization of
unstable MOFs for applications.

Meanwhile, hypothetical MOFs (hMOFs) have also been
widely examined by HTCS. The adsorption of CO2, N2 and CH4

in over 137,953 hMOFs was simulated, and the relationships
between structural characteristics, as well as chemical func-
tionality, with adsorbent evaluation criteria were proposed for
CO2 separation14. Based on the adsorption, diffusion and per-
meation of CO2, N2 and CH4, 137,953 hMOFs were screened for
a single-step membrane separation of CO2/N2/CH4 mixture15.
Among over 300,000 hMOFs, different strong CO2-binding sites
were classified, and hydrophobic MOFs with high CO2/N2

selectivity in wet flue gases were identified and further
synthesized16. A database of ∼20,000 hMOFs with diverse metal
nodes, organic linkers, functional groups and pore geometries
was designed and assessed for post-combustion CO2 capture
and H2 storage17. However, most HTCS studies of hMOFs were
not accompanied or followed by experimental validation, hence
the identified hMOFs might not be synthesizable and stable.
Therefore, the synthetic likelihood and stability metrics must be
incorporated in HTCS, along with performance metrics, to
identify possible candidates that are potentially synthesizable
and stable.

In this study, for the first time, we integrate crucial stability
metrics with HTCS to screen hMOFs for CO2 capture. A col-
lection of 15,219 hMOFs is obtained from the ARC-MOF
database18, along with their computed adsorption data. As shown
in Fig. 1, separation performance metrics are first used to shortlist
top-performing hMOFs, and then four stability metrics (ther-
modynamic, mechanical, thermal, and activation) are integrated.
Specifically, the thermodynamic stability (i.e., synthetic like-
lihood) is evaluated from free energies based on molecular
dynamics (MD) simulations. The mechanical stability is calcu-
lated from elastic constants also obtained through MD simula-
tions. Moreover, the activation and thermal stabilities are
predicted using machine learning (ML) models. Finally, all the
stability metrics are integrated to identify synthesizable, stable,
and top-performing hMOFs for CO2 capture.

Results and discussion
Separation performance. Different metrics can be used to evaluate
the separation performance of a gas mixture in MOFs. Particularly,
uptake and selectivity are widely used in HTCS studies, though
there are other metrics such as working capacity19, purity, recovery,
productivity20, and general evaluation metric21. For CO2 capture in
this study, CO2 uptake (mmol/g) and CO2/N2 selectivity were
chosen. As plotted in Fig. 2a, 148 out of 15,219 hMOFs in DB5
subset exhibit CO2 uptake ≥4mmol/g and CO2/N2 selectivity ≥200,
which were set as the thresholds. It is interesting to examine the
metal node chemistry of the hMOFs. Figure 2b shows the per-
centages of five different metal node types among 15,219 hMOFs
and among the 148 top-performing hMOFs for CO2 capture. Those
with Zn4O metal node represent 33.5% in the entire DB5 subset,
but this percentage drops to 0.7% among the 148 top-performing
hMOFs. By contrast, V3O3 metal node is minority in DB5 (12.4%)
but prevailing in the top-performing hMOFs (46.6%). This metal
node, which resembles a one-dimensional rod, is able to promote
CO2 adsorption as favorable adsorption sites exist near the bridging
oxygen in V3O3

16. Indeed, higher CO2 uptake for V3O3 metal node
is observed in Supplementary Fig. 1a, which shows the count of
hMOFs for each metal node type versus CO2 uptake. The per-
centages of pillared Zn- and Cu-paddlewheel metal nodes are
found to not be much different between DB5 and the top-
performing hMOFs. Lastly, a few hMOFs with Zr6O6 metal node
exist in DB5 (0.1%) but are not among the top-performing MOFs.
Figure 2c shows ranked CO2 uptake in 148 top-performing hMOFs
by different metal node types. There is no unique pattern to
describe the distribution of metal nodes. This is because, aside from
metal nodes, organic linkers also play an important role in CO2

adsorption. Among 148 top-performing hMOFs, the highest CO2

uptake (8.47 mmol/g) is found in a hMOF with V3O3 metal node.
As shown in Fig. 2d, the notable CO2 uptake in this hMOF can be
attributed to the presence of strong adsorbaphore16, which origi-
nated from parallel aromatic rings separated by a distance of 6.8 Å,
in addition to the V3O3 metal node.

Subsequently, the stabilities of 148 top-performing hMOFs
are evaluated. We should note that the sequence of screening is
not unique. One may first evaluate the stabilities, and for those
deemed to be stable, then the separation performance can be
determined. The order of these two screening steps depends on
their computational cost. In the present study, the adsorption
data are readily available in the ARC-MOF database and hence
used at the first stage; consequently, there is no need to
evaluate the stabilities of 15,219 hMOFs in the entire DB5
subset.

Thermodynamic stability. The thermodynamic stability is
assessed by free energies (F) at ambient temperature, calculated
using the FL method22–24. Figure 3a shows the free energies
versus the percentage of metal atoms in 148 hMOFs. To judge the
synthetic likelihood, we need to set a criterion and label those
crossing the criterion as thermodynamically unstable. As such,
the free energies of experimental MOFs were calculated and used
for benchmarking. For this purpose, 79 CoRE MOFs with four
different metal node types: pillared Cu-paddlewheel, pillared Zn-
paddlewheel, Zn4O and V3O3 were considered. For each type, the
CoRE MOFs were selected to have close similarity in metal nodes
to the hMOFs using the revised autocorrelation functions
(RACs)25,26. The calculated free energies of the hMOFs and
selected CoRE MOFs are plotted in Fig. 3b. For each metal node
type, the free energies of CoRE MOFs are fitted against the per-
centage of metal atoms, acting as a reference line24. By sub-
tracting the corresponding value of the reference line (FLM) from
the true F, the relative free energies ΔLMF are obtained. As
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presented in Fig. 3c, all the CoRE MOFs are capped within ΔLMF
of ~4.2 kJ/mol, which is then taken as an upper bound for ther-
modynamic stability. This value is close to 4.4 kJ/mol reported by
Anderson et al.24 Among 148 hMOFs, 41 have ΔLMF higher than
the upper bound, thus considered thermodynamically unstable
and not recommended for synthesis. We should note, practically,
that kinetic factors (e.g., solvent, modulator, pH, and tempera-
ture) may affect the synthesis process27,28, which is not simply
governed by thermodynamic stability.

Mechanical stability. MOFs should retain integrity during
synthesis, activation, pelletization, and gas adsorption. Typically,
post-combustion CO2 capture is operated at low pressure
(~1 bar), and hence no significant pressure on MOFs is expected
to arise during CO2 capture. Nevertheless, stress is applied during
pelletization to shape MOFs, which in many cases leads to a
significant loss of surface area, and such structural collapse can be
mitigated by loading solvents into MOFs and stabilizing
frameworks29. Therefore, structural degradation by mechanical
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Fig. 1 High-throughput computational screening (HTCS) of hMOFs for CO2 capture. in which stability metrics (thermodynamic, mechanical, thermal, and
activation) are integrated with separation performance metrics.

Fig. 2 Separation performance of hMOFs. a Top- and low-performing hMOFs for CO2 capture at 298 K, 0.9 bar and feed composition of 17%/83% in a
CO2/N2 mixture, the data were taken from the ARC-MOF database18. b Percentages of five different metal node types among 15,219 hMOFs in DB5 subset
and among 148 top-performing hMOFs for CO2 capture. Metal node labels: (i) Zn4O, (ii) pillared Zn-paddlewheel, (iii) pillared Cu-paddlewheel, (iv) V3O3,
and (v) Zr6O6. c Ranked CO2 uptake in 148 top-performing hMOFs by different metal node types. d hMOF with the highest CO2 uptake, showing V3O3

metal node and parallel organic linkers composed of aromatic rings (adsorbaphore).
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stress at this stage is a resolvable issue. Rather, we need to
determine the intrinsic mechanical stability of unstressed MOFs.
MD simulations were conducted at two different temperatures (0
and 298 K) to calculate elastic properties, including bulk (K),
shear (G) and Young (E) moduli, which can be used to quantify
the rigidity of MOFs.

Figure 4a shows the distributions of elastic moduli of 148
hMOFs at 0 K. Many hMOFs exhibit low moduli, which might be
inappropriately classified as unstable (not robust) and lack of
practical significance. A handful of experimentally synthesized
MOFs have elastic moduli of even less than 5 GPa30,31. They are
commonly known as flexible MOFs, and their flexibility may
bring favorable adsorptive characteristics. These flexible MOFs
cannot be simply discarded by labeling them as unstable; thus, the
elastic moduli alone are not adequate to judge mechanical
stability. Instead, the Born stability criterion32,33 can be used to
more reliably determine mechanical stability. Based on this
criterion, all the eigenvalues of elastic matrix must be positive to
declare a structure as stable, and the smallest eigenvalue can
differentiate stable and unstable structures34. As shown in Fig. 4b,
at 0 K, only a few hMOFs do not satisfy the criterion and are
marked as unstable. Nevertheless, several stable hMOFs show
eigenvalues very close to zero, indicating these hMOFs possess a
soft deformation mode35 and may become unstable under stress
or at a higher temperature. As presented in Fig. 4c, at 298 K, the
number of unstable hMOFs increases. Consequently, it is

important to assess the mechanical stability at a relevant
temperature, as the calculations at 0 K might be misleading.

Activation stability. Removal of solvent, modulator and
unreacted substance is a prerequisite to activate MOFs for
applications. On many occasions of activation, MOFs collapse to
a dense amorphous phase, as commonly attributed to capillary
force arising from evaporation or evacuation of solvent36. But
still, there is no coherent understanding of this phenomenon that
would enable computational prediction of collapse events (for
instance, using molecular simulation). Though there is a relation
between collapse likelihood and mechanical properties, with the
collapsed MOFs always showing low moduli for certain types of
MOFs31, mechanical properties are insufficient to assess activa-
tion stability. This is because solvent characteristics and solvent-
MOF interactions also affect the activation process.

As an alternative, ML models trained on experimental data can be
used to predict activation stability. Using MOFSimplify37, we
predicted the activation scores of 148 hMOFs. As presented in
Fig. 5a, the activation scores range from 0 to 1.0, corresponding to
unstable (collapsible) and stable (activatable) likelihoods, respec-
tively. An activation score of 0.5 is used here to distinguish
collapsible and activatable structures. Among 148 hMOFs, 43 have
activation scores < 0.5, thus assigned as collapsible upon solvent
removal. It is important to note that the employed ML models do

Fig. 3 Free energies of MOFs. a Free energies of 148 hMOFs with all the five metal node types versus the percentage of metal atoms. b Free energies of
hMOFs and experimental MOFs with various metal node types: pillared Cu-paddlewheel, pillared Zn-paddlewheel, Zn4O and V3O3. c Relative free energies
of 148 hMOFs (o) and selected benchmarking experimental MOFs (✩). The hMOFs with ΔLMF > 4.2 kJ/mol are considered thermodynamically unstable
(unsynthesizable).
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not consider the actual activation method, which may affect the
successfulness of activation. For instance, there are advanced
activation methods, such as the supercritical CO2 approach, that
can effectively remove solvents if other conventional activation
methods fail. Moreover, solvent characteristics and activation
conditions may have considerable influences but were not taken
into consideration in MOFSimplify. Yet, the adopted ML models
appear as a simple and fast method to provide a reasonable
assessment of whether the hMOFs would survive in activation.

Thermal stability. For high-temperature applications such as
catalytic reactions, the thermal stability of MOFs is crucial. By
contrast, post-combustion CO2 capture is conventionally per-
formed near ambient temperature. Thus, the major concern
here about the thermal stability is when synthesized MOFs need to
be thermally activated by increasing temperature to remove
entrapped solvent or unreacted substance. As such, the tempera-
ture required is highly dependent on the boiling point of the solvent
or the thermal decomposition temperature (Td) of unreacted
substance38. If the interaction between solvent and MOF is strong,
a high temperature is required beyond the boiling point to com-
pletely remove the solvent. For instance, HKUST-1 contains open
metal sites with strongly bounded water molecules, and the

activation temperature can reach 200 °C39. Consequently, it is
challenging to set a distinct limit to quantify the thermal stability of
MOFs. Yet, those decomposing below 300 °C can be considered
thermally unstable, similar to hybrid ultra-microporous
materials40. Thus, 300 °C is set as the threshold for thermal stabi-
lity. To predict the Td of hMOFs, we also used MOFSimplify37. As
shown in Fig. 5b, among 148 hMOFs, 117 exhibit Td > 300 °C,
which indicates that most of the 148 hMOFs have decent thermal
stability. The remaining 31 hMOFs are considered thermally
unstable, and the lowest predicted Td is ~199 °C.

Integration of stability metrics. Based on the above four stability
metrics, Fig. 6a summarizes the percentages of stable and unstable
structures among 148 hMOFs. The thermodynamic stable
structures represent 72% of 148 hMOFs; thus, only 28% are
unsynthesizable. Regarding mechanical stability, the percentage of
stable structures at ambient temperature is 79%. The predicted
activation and thermally stable structures, based on ML models,
are 72% and 79%, respectively. However, these two stability
metrics are subject to the accuracy of ML models and the
designated boundaries to distinguish stable and unstable struc-
tures. Figure 6b shows the number of stable hMOFs based on the
four stability metrics. Not surprisingly, some MOFs satisfy one

Fig. 4 Mechanical properties of 148 hMOFs. a Distributions of bulk, shear, and Young moduli at 0 K. Distributions of the smallest eigenvalues at b 0 K and
c 298 K.

Fig. 5 Activation and thermal stabilities of 148 hMOFs. a Activation scores of 148 hMOFs, those with scores <0.5 are classified as collapsible.
b Decomposition temperatures (Td) of 148 hMOFs, 300 °C is used as the threshold for thermal stability.
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metric but fail in the other. Although the four metrics are eval-
uated using different approaches, considerable overlaps are seen
as there are conceptual links among them. Particularly, the
thermodynamic and mechanical stabilities are correlated, to a
certain extent, with the thermal stability (Supplementary Fig. 2).
The intersection in Fig. 6b gives 51 hMOFs, as listed in Supple-
mentary Table 1, representing the final top-performing hMOFs
that meet the separation performance requirement for CO2

capture and also satisfy all the four stability requirements. The
building blocks of these hMOFs are listed in Supplementary
Table 2. Interestingly, a handful of top-performing hMOFs in
Fig. 2c with the highest CO2 uptake are found unstable. There-
fore, integrating stability metrics is important to discard unstable
hMOFs. It is worthwhile to note that the stability metrics can only
tell if the structures are stable, but not how to synthesize them.
Yet, it is possible to obtain an initial guess for synthesis conditions
and additives using ML models that were trained using experi-
mental data of successfully synthesized MOFs41.

Performance of a top-performing stable hMOF. Finally, it is
instructive to provide microscopic insight into the separation
mechanism in the top-performing stable hMOFs. For this pur-
pose, grand-canonical Monte Carlo (GCMC) simulations were
carried out for the adsorption of a CO2/N2 mixture (17%/83%) in
a hMOF with V3O3 metal node and methyl functionalized pyr-
ene-2,7-dicarboxylic acid (PDC) linker. This hMOF exhibits the
highest CO2 uptake among 51 stable candidates, along with high
CO2/N2 selectivity. Figure 7a shows the adsorption isotherms of
CO2 and N2 in this hMOF, which reveals far more significant
adsorption of CO2 over N2 in the entire pressure range (0–1 bar).
At 1 bar, CO2 uptake is 7.49 mmol/g, and CO2/N2 selectivity is
355, which surpasses many reported experimental MOFs. The
high CO2 uptake in this hMOF is attributed to the presence of
strong adsorbaphore16, which originated from parallel aromatic
rings separated by a distance of 6.8 Å, as well as the favorable
interaction sites in V3O3 metal node. The adsorption heats in
Fig. 7b assert the preferential adsorption of CO2 over N2 at
various pressures. Moreover, the separation performance of this

hMOF is assessed with the presence of moisture in the CO2/N2

mixture. As shown in Fig. 7c, d, both CO2 uptake and CO2/N2

selectivity are marginally affected by the relative humidity (RH).
Specifically, CO2 uptake remains nearly constant at low-to-
moderate RH, though there is a slight decrease at a high RH;
meanwhile, N2 uptake also decreases. Consequently, CO2/N2

selectivity increases slightly with RH. Overall, this hMOF is
expected to separate CO2 efficiently from dry or wet flue gas.

Conclusions
Computational screening of hMOFs often returns many top-
performing candidates, yet there are large uncertainties in their
synthetic likelihood and stabilities. In the present study, we
integrate four stability metrics in the screening of hMOFs for CO2

capture. The stabilities are evaluated using different approaches,
including MD simulations and ML models. The synthetic like-
lihood (thermodynamic stability) is assessed by free energies,
while the mechanical stability is examined through the Born
stability criterion at ambient temperature. Moreover, hMOFs that
retain activation and thermal stabilities are predicted. Finally, we
identify the top-performing hMOFs satisfying all these stability
requirements. For future work, chemical stability should also be
taken into consideration to examine possible structural degra-
dation if MOFs are exposed to water, corrosive gases, and organic
solvents.

Methods
MOF database. A subset of hMOFs (labeled as DB5) in the ARC-
MOF database18 was considered in the present study. This subset
was originally created by Wilmer et al.42 and refined by Chung
et al.43 The adsorption data for post-combustion CO2 capture
were also extracted from the ARC-MOF database, as calculated
from Monte Carlo simulations. Specifically, CO2 uptake and CO2/
N2 selectivity at 298 K and 0.9 bar at a feed composition of 17%/
83% for a CO2/N2 mixture were used. Among 22,366 hMOFs
with adsorption data in DB5, we investigated the non-
interpenetrated (non-catenated) hMOFs by verifying the second
integers of their 6-chromosome names (which encode actual

Fig. 6 Integration of stability metrics for 148 hMOFs. a Percentages of stable and unstable hMOFs based on four stability metrics. b Overlapping of stable
hMOFs based on four stability metrics, the intersection among them gives the final top-performing, synthesizable, and stable hMOFs for CO2 capture.
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interpenetration), resulting in 15,219 hMOFs. The selected
dataset comprises five different metal node types: Zn4O, pillared
Cu-paddlewheel, pillared Zn-paddlewheel, V3O3 and Zr6O6.

MD simulations. The thermodynamic and mechanical stabilities
were evaluated using MD simulations. For a given MOF, the
LAMMPS interface44 was used to prepare input files for bonded
and non-bonded interaction potentials. It was found, for many of
the hMOFs under study, that the implemented bonding algo-
rithm in the LAMMPS interface led to incorrectly coordinated
atoms or bonds, which subsequently caused the failure of MD
simulations or inaccurate calculations of desired properties. To
overcome this issue, the bonding information was precomputed
and added to the Crystallographic Information Files (CIFs) prior
to using the LAMMPS interface. As employed by Bruner et al.18,
the IsayevNN45 algorithm in Pymatgen46 was used to generate the
bonding information. This algorithm considers two atoms as
neighbors (bonded) if they share a Voronoi facet and the sepa-
rated distance is less than the sum of their covalent radii plus a
tolerance. The default tolerance (0.25 Å) was used to detect
bonding and found reliable to detect the Cu-Cu bond in pillared
Cu-paddlewheel metal node present in the hMOFs. Yet, to
identify the Zn-Zn bond in the pillared Zn-paddlewheel metal
node, the tolerance was increased (0.5 Å) to search for neigh-
boring Zn atoms. Computing the bonds based on the above
algorithm resulted in fewer structures with incorrect bonds,
which were manually corrected. The interactions between dif-
ferent atoms were described using the UFF4MOF force field47.

For pillared Cu- and Zn-paddlewheel metal nodes, we assigned
Cu4+2 and Zn4+2 metal types, respectively. It was revealed in
the literature that the inclusion of electrostatic interactions with
UFF4MOF would lead to inaccurate calculations of MOF prop-
erties such as elastic moduli and thermal expansion coefficients,
and the optimized MOF structures would differ significantly from
experimental measurements44. Thus, electrostatic interactions
were not included here, as also in previous studies24,34. All the
MD simulations were performed using the LAMMPS package48.

Thermodynamic stability. To determine thermodynamic stability
(i.e., synthetic likelihood), the free energies of hMOFs were cal-
culated using the Frenkel–Ladd (FL) thermodynamic integration
method22,23. It has been proven that the FL method predicts the
free energies of MOFs more accurately compared to other
approaches24. The FL path is a thermodynamic integration
between the ideal Einstein crystal and its actual representation
described by a force field. MD simulations were performed at
298 K and zero pressure, repeated three times using different seeds
for the initial velocity distributions, and the computed free energies
were averaged. The fix ti/spring command was used to perform
thermodynamic integration, with 400 ps switching time using 1 fs
timestep. The free energies of hMOFs were computed per atom
basis, with a maximum standard deviation of ± 0.29 kJ/mol.
To benchmark the free energies of the hMOFs, a set of experi-
mental MOFs was used as a reference. Specifically, the CoRE
MOFs9, labeled as DB12 in the ARC-MOF database18 were used.
As in the hMOFs, the non-interpenetrated (non-catenated)

(a) (b)

(d)(c)

Dry WetDry Wet

6.8 Å

CO2
adsorbaphore

Fig. 7 Separation performance of a top-performing stable hMOF. a Adsorption isotherms and b adsorption heats of CO2 and N2 for a CO2/N2 mixture
(17%/83%) at 298 K. The insets illustrate CO2 adsorbaphore and simulation snapshot at 1.0 bar (CO2: purple, N2: blue). c CO2 uptake and d CO2/N2

selectivity versus relative humidity (RH).
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structures were detected using MOFid49 and considered. Given
that free energy is sensitive to metal node type, only the CoRE
MOFs possessing the same metal node as those in the hMOFs were
selected. As such, the revised autocorrelations (RACs)25,26 for
metal nodes were used to find the matching CoRE MOFs. First, the
hMOFs were grouped based on their metal node types, and the
centroid of each cluster of hMOFs was calculated using KMeans
algorithm, as implemented in Scikit-learn. Then, the Nearest-
Neighbors algorithm was used to locate the nearest 20 CoRE MOFs
to each centroid calculated for hMOFs. Lastly, the final selected
CoRE MOFs were manually examined to ensure matching with the
designated metal node and free of any disorder. A handful of
duplicate structures were found, especially those having V3O3

metal node.

Mechanical stability. To examine mechanical stability, the aver-
age elastic properties, including bulk (K), shear (G), and Young (E)
moduli, as well as the Born stability criterion, were evaluated at both
0 K and 298 K. Derived from Hooke’s law that relates stress with
strain, the elastic constants can be calculated through an explicit
deformation approach. At 0 K, initially, a structure was optimized
using two stages of energy minimization. The first stage was per-
formed using the conjugate gradient algorithm, coupled with triclinic
box relaxation at zero pressure, while in the second stage, the fire
algorithm50 was used at a fixed volume. In each stage, the energy
and force-stopping tolerance were set as 10−15 kcal mol−1 Å−1 with
105 maximum iterations or force evaluations. This scheme was
repeated for 200 cycles, where atomic positions were slightly dis-
turbed between cycles to achieve minimum energy configuration. At
the end of structure relaxation, the pressures (stresses) were saved.
Next, the structure was strained (1%) in various directions, followed
by 10 cycles of energy minimization with the fire algorithm to
optimize atomic positions at a fixed volume. The corresponding
pressures (stresses) on the structure at each deformation were col-
lected and used with the initial stresses to calculate elastic constants.
To calculate the elastic constants at 298 K, the above explicit
deformation method was used after replacing energy minimization
with MD simulation, though this approach is computationally
expensive as the structure must be strained in various directions and
followed by long MD simulation. Moreover, a large simulation box
(minimum length of 50 Å) was used to improve accuracy. First, the
simulation box was relaxed at zero pressure in the NPT (triclinic)
ensemble using the Nosé–Hoover thermostat and barostat to control
temperature and pressure, respectively. The equilibration time was
4 ns, followed by 4 ns production, during which the cell parameters
were sampled. Afterward, the simulation box was adjusted to the
averaged cell parameters. Then, simulation was performed in the
NVT ensemble (0.5 ns equilibration, 4 ns production), during which
the pressures (stresses) acting on the simulation box were collected
every timestep, averaged, and saved as the initial stresses for the non-
deformed structure. Next, deformations were applied to various
directions (1% strain). For each deformation, simulation was per-
formed in the NVT ensemble (0.5 ns equilibration, 4 ns production),
and the stresses during production were collected and averaged.
Finally, from the collected stresses of the non-deformed and
deformed structures, the elastic constants were calculated.

Activation and thermal stabilities. The activation and thermal
stabilities were predicted using ML-based MOFSimplify37. This
platform takes a CIF as an input and then internally conducts
featurization and prediction. For activation stability, the imple-
mented ML model was trained on thousands of experimental
MOFs to predict the likelihood of removing solvents without
structural collapse. For thermal stability, the ML model was

trained on experimentally measured decomposition temperatures
(Td) extracted from thermogravimetric analysis (TGA) data.

Monte Carlo simulations. After identifying top-performing syn-
thesizable and stable hMOFs for CO2 capture, to provide in-depth
insight into separation performance, grand-canonical Monte Carlo
(GCMC) simulations were conducted for the adsorption of a CO2/N2

mixture (composition of 17%/83%) in a hMOF at 298 K. The force
fields used were identical to those in the ARC-MOF database18.
Specifically, the university force field (UFF)51 was used to describe
the dispersion interactions of framework atoms, while the REPEAT
atomic charges were included for electrostatic interactions. For CO2

and N2 adsorbates, the potential parameters were adopted from
literature52,53. Furthermore, to examine the effect of moisture on
separation, GCMC simulations were also performed at different
relative humidities. H2O was represented by the TIP4P model54,
which has a saturation pressure of 4365 Pa55. The Lorentz–Berthelot
combining rules were used to calculate the cross interactions. The
cutoff to evaluate dispersion intermolecular interactions was set to
12.8 Å, and the Ewald sum was used to calculate long-range electro-
static interactions. The number of cycles was 200,000, with the first
half for equilibration and the second half for production. During
GCMC simulations, the framework was held rigid. Five different trial
moves were attempted for the adsorbate molecules, including
translation, rotation, reinsertion, identity change and swap with
probabilities of 16.7%, 16.7%, 16.7%, 16.7% and 33.2%, respectively.
All the GCMC simulations were conducted using the RASPA56.

Data availability
The data that support the findings of this study have been included in the manuscript
and Supplementary Information. Any additional data are available from the
corresponding author upon request.
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