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Engineering receptor-mediated transmembrane
signaling in artificial and living cells
Ke Shi1, Chuwen Song1, Yayi Wang1, Rona Chandrawati 2 & Yiyang Lin 1✉

Living cells possess a variety of transmembrane signaling systems that receive chemical and

physical cues from the environment and transduce this information into an intracellular signal

that triggers downstream cellular responses. This Review aims to present recent advances in

the design of bioinspired systems that mimic transmembrane signaling in synthetic and living

cells. We summarize the building of cell-like membranous structures and the construction of

interfacial recognition between chemical or biological components. After introducing two

main mechanisms of signal transduction in biology through receptor tyrosine kinase and G‐

protein coupled receptors, we then highlight the possibility of mimicking transmembrane

signaling with transducer integrated systems. We survey the potential for applying supra-

molecular materials (e.g., DNA origami, polypeptide structures and polymer scaffolds) to

interact with surface receptors on the plasma membrane, providing an avenue for the

application of therapeutics.

The plasma membrane not only protects the interior of cell from the outside environment,
but also plays an essential role in supporting basic cellular activities such as cell division,
replication and cell-cell communication. The hydrophobic nature of the plasma mem-

brane prohibits the direct diffusion of polar molecules (e.g., hormones) across the lipid bilayer.
Nevertheless, transmembrane signal transduction is facilitated by receptors on and in the plasma
membrane, which receive external stimuli (chemical or physical) and translate them into
intracellular responses. In this process, a primary signal selectively binds to the active site of a cell
surface receptor on the outer leaflet of cell membrane, leading to the activation of a secondary
signal to regulate gene expression and other biochemical reactions.

Cell surface receptors convert specific extracellular signals into intracellular changes, either
directly via intrinsic enzymatic activities within the receptor or by activating intracellular
messenger molecules. Here we mainly focus on two types of prominent transmembrane protein
receptors involved in living cells, i.e., receptor tyrosine kinases (RTKs) and G‐protein coupled
receptors (GPCRs) (Fig. 1). A RTK requires at least two transmembrane units, in which
recognition sites are exposed on the membrane surface and signaling sites are on the interior1.
Upon the binding of signaling ligands (e.g., growth factor and cytokine) to the recognition sites,
two transmembrane units of RTKs are clustered through ligand-induced-dimerization, which
triggers the phosphorylation of the intracellular tyrosine residue and activates the tyrosine kinase
activity. GPCRs are another important class of cellular signal transduction and are well known
for their structures of seven transmembrane helices. The binding of a primary signal to the active
site induces conformational changes of receptor and subsequently activates a G protein. GPCRs
are the largest family of transmembrane receptors associated with different biological functions
such as cell proliferation, and play an essential role in modulating tumor growth and
angiogenesis2.
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In this Review, we discuss ongoing research spearheading the
effort to prepare membranous structures as cell mimics and dif-
ferent strategies to realize interfacial recognition at the interface
of lipid membranes. We then summarize recent progress in the
design of artificial receptors built in synthetic membranes to
mimic biological signaling across lipid bilayers. Lastly, we
showcase the vast possibility to develop potential therapeutic
drugs from supramolecular systems (e.g., polypeptides, polymers,
and DNA structures) that serve as agonists or antagonists to
instruct downstream cellular responses.

Construction of cell membrane mimics
According to the fluid mosaic model, cell membranes are
organized bilayer structures composed of lipids, proteins and
carbohydrates. Subcellular organelles such as the nucleus,
Golgi complex, and lysosomes, are also enclosed by lipid mem-
branes. To understand the physicochemical properties of cell
membrane, bottom-up approaches have been developed to build
liposomes or lipid vesicles as the simplest model of cells3. Typi-
cally, unilamellar vesicles are named according to their size as
GUVs (giant unilamellar vesicles, >1000 nm), LUVs (large uni-
lamellar vesicles, 100~1000 nm) or SUVs (small unilamellar
vesicles, ~50 nm). LUVs are facilely prepared with the thin-film
hydration followed by extrusion method, in which a dry lipid film
is hydrated and extruded mechanically through a polycarbonate
membrane with designate pore size. SUVs with smaller sizes are
simply prepared with sonication-based method, which does not
produce uniform liposomes with good reproducibility. GUVs can
be achieved with direct hydration of a phospholipid film, which
works only with certain lipid compositions and salt conditions4,5.
To address this challenge, hydrogel-assisted hydration method has
recently been developed to prepare GUVs, in which phospholipid
films are placed on top of a dried polymeric hydrogel surface and
swollen in aqueous solution6. Another widely used method to
prepare GUVs is electroformation, where an alternating electrical
field is applied across a solution-filled chamber to facilitate bilayer
separation and bending of the lipid film by electro-osmotic
effects7. However, the encapsulation of biomolecules in these
liposomes is still inefficient. To tackle this challenge, water-in-oil
emulsion droplets are exploited as soft templates to prepare bilayer
vesicles by transferring lipid-stabilized emulsion droplets through
an oil/water interface or by forming double emulsion droplets
with an oil shell followed by extracting the oil8–10. Recently,

microfluidic devices have been developed to produce mono-
disperse giant vesicles via microfluidic jetting or emulsion-based
methods11–14.

In addition, rudimentary forms of membranous structures
have been explored in colloidosomes15–17, dendrimersomes18,19,
polymersomes20,21, layer-by-layer capsules22,23, and proteino-
somes24–27. The building blocks of these membranous protocells
include organic or inorganic particles, dendrimers, polymers,
surfactants, polyelectrolytes and proteins. These membrane-
bound compartments offer new opportunities to mimic cell-like
behaviors such as growth28, division and fission29–32, fusion33,34,
signaling35–37, and motility38,39. Chemical communication
between these membranous compartments is described in a
recent Review40. Here we mainly focus on transmembrane sig-
naling across phospholipid membranes.

Biomimetic interfacial recognition on phospholipid
membranes
Recognition and binding of an extracellular signal by a cell surface
receptor is the first step of transmembrane signaling41,42. Under-
standing the ligand-receptor interactions on cell surface is vital to
reveal the molecular basis of cell signaling or cellular responses
to external stimuli. Here we review the recent effort devoted to
exploring biological recognition on cell-mimicking membranes,
which avoids the difficulty in the direct inspection of cellular
properties at the molecular scale. Non-covalent interactions
accounted for interfacial recognition on the surface of lipid mem-
brane include hydrogen bonding43–46, host-guest interaction47–49,
DNA hybridization50–52, metal-ligand coordination53 and biologi-
cal interactions54 (Fig. 2).

Hydrogen bonding is responsible for the stabilization of many
biological structures including protein secondary structures (e.g.,
α-helices and β-sheets) and DNA double helices. Hydrogen bonds
also play a central role in the biological recognition involving
carbohydrates and membrane proteins. It is worthwhile to note
that water molecules will compete with the hydrogen bonds
between biomolecules since water serves as hydrogen donor and
acceptor. To address the role of hydrogen bonding on the surface
of vesicles, multivalent H-bond pairs such as melamine/thymine
and cyanurate/melamine have been designed. For example, lipid
vesicles composed of cyanuric acid/melamine43,44 or 2-ureido-
4[1H]-pyrimidinone46 at the membrane surface undergo selective
adhesion and fusion driven by multivalent hydrogen bonding.

Fig. 1 Schematic illustration of transmembrane signaling.
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This suggests that low-dielectric hydrogen bonding can translate
effectively to the lipid−water interface.

Host–guest chemistry is an intriguing concept that describes
the formation of structural complexes by two or more molecules
through non-covalent forces. The displaying of macrocycle hosts
(e.g., crown ether, cyclodextrin and cucurbit[n]uril) on the sur-
face of the lipid vesicles allows for specific ligand recognition via
host-guest interactions. Ravoo et al.47,48 developed supramole-
cular vesicles displaying cyclodextrins on the membrane surface,
which aggregated and adhered to each other in the presence of
azobenzene-bearing linkers. The aggregated vesicles reversibly
dissociated by transforming trans-azobenzene to cis-form upon
ultraviolet (UV) light irradiation, which weakened the host-guest
interaction between cyclodextrin and azobenzene. Moreover,
phospholipid vesicles can display bioactive maltose and lactose on
the surface by using a sugar-adamantane conjugate as a guest49.
The maltose-decorated liposomes agglutinate in the presence of
lectin concanavalin A, whereas the lactose-decorated liposomes
agglutinate with the addition of peanut agglutinin.

Hybridization of complementary nucleic acids is a well-
established tool to engineer the surface of phospholipid vesicles,
in which the strength of interfacial recognition depends on a
variety of factors including temperature, DNA sequence, and the
concentration of inorganic salts. Although nucleic acids are not
intrinsically displayed on the cell membrane, the modification of
DNA or RNA sequences on lipid membrane can be achieved by
conjugation to an alkyl tail or cholesterol group, which sponta-
neously inserts into the hydrophobic lipid bilayer. These nucleic
acid-displaying lipid vesicles undergo reversible aggregation and
fusion in the presence of complementary DNA linkers, in which
the repulsive hydration forces between the lipid head groups of
bilayers are overcome50,52. To gain reversible control over

liposome assembly, membrane-anchored oligonucleotides were
incorporated with photoactive azobenzene groups and the system
was remotely irradiated with either UV or visible light55.

Metal ions play an essential role in biology. For example, metal
ions serve as catalytic or structural cofactors to maintain the
function of proteins. Ion binding or Ca2+ influx acts as the first
signal driving membrane events56. In artificial systems, metal-
ligand coordination at the interface of vesicular membranes
drives specific interactions that may result in vesicle aggregation,
adhesion, and fusion. For example, Lehn et al.53 designed syn-
thetic lipids bearing a bipyridine head group and incorporated
these amphiphilic lipids into LUVs. Upon the addition of metal
ions (e.g., Ni2+ or Co2+), metal-ligand complexation rapidly led
to spontaneous fusion into giant multilamellar vesicles.

Biological recognition between functional motif pairs such as
mannose/concanavalin A (Ka~8.5 × 106M−1)57, D-Ala-D-Ala/
vancomycin (Ka∼106M−1)58, biotin/streptavidin (Ka∼1015M−1)59

and coiled-coil polypeptides60 are engineered on the surface of lipid
membrane to initiate vesicle aggregation and fusion, as well as
liposome-based biosensing. For example, Zasadzinski et al.54

reported the reversible aggregation of phosphatidylcholine lipo-
somes equipped with biotin upon the addition of streptavidin.
Percec et al.18,19 designed a class of amphiphilic dendrimers that
self-assembled into dendrimersomes displaying sugar ligands with a
precisely controlled density, offering a platform for biomimetic
study of biological interactions.

Electrostatic effect dominates many aspects of biological phe-
nomena such as protein folding and DNA organization. Charge
attraction between chemical ligands and surface receptors also
contributes to interfacial recognition on lipid membrane. König
et al.61 reported vesicle membranes bearing three amphiphilic
artificial binding receptors that recognized phosphate anion,

Fig. 2 Supramolecular interfacial recognition on lipid membranes. The main intermolecular forces include electrostatic attraction, antigen-antibody
affinity, host-guest interaction, coiled-coil peptide structures, hydrogen bonding, DNA hybridization and biotin-streptavidin recognition.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-023-00394-z REVIEW ARTICLE

COMMUNICATIONS MATERIALS |            (2023) 4:65 | https://doi.org/10.1038/s43246-023-00394-z | www.nature.com/commsmat 3

www.nature.com/commsmat
www.nature.com/commsmat


imidazole derivatives, and ammonium ions through electrostatic
interaction. Similarly, lipid vesicles functionalized with bis-zinc
cyclen complexes exhibited a high affinity to phosphate anions; as
such, they selectively discriminated uridine triphosphate and
pyrophosphate via an indicator displacement assay62.

Mimicking receptor-mediated transmembrane signaling with
supramolecular systems
Despite extensive studies of membrane transporters63 and ion
channels64, the construction of receptor-mediated signal trans-
duction in artificial systems is less explored65–67. This is chal-
lenging since transmembrane signaling involves a series of
precisely designed physicochemical processes such as interfacial
recognition, signal conversion from one type into another type,
signal transmission from outer membrane to the interior, cata-
lytic signal amplification, as well as downstream responses.
Nevertheless, the essential role of RTKs and GPCRs as signaling
mechanisms in biology has inspired the rational design of artifi-
cial signaling systems in phospholipid membranes.

RTKs coordinate intracellular signaling cascades through the
binding of a ligand and the dimerization of cell surface receptors
that activates tyrosine kinase activity and stimulates intracellular
responses. Artificial signaling systems that mimic the RTK signaling
mode have been developed to sense a range of external signals,
including potassium ferricyanide68, diethylenetriammonium69,70,
adenosine triphosphate (ATP)71, immunoglobulin G antibody72,
and proton73. Early work by Matile et al.74 reported a membrane-
spanning ion channel exhibiting a simple mode of RTK signaling
where the binding of polyhistidine and copper ions led to the
synergistic dimerization of receptors. Hunter and Williams68

developed a RTK signal transduction system based on cholenic
acid-derived membrane-spanning receptors that sensed the external
oxidant signal to cluster the receptors and release a secondary signal
via thiol-disulfide exchange. Schrader et al.69,70 designed unsym-
metrical transmembrane receptors bearing bisphosphonate dia-
nions as a recognition site outside membrane and a fluorescence
resonance energy transfer (FRET) pair on the other end (Fig. 3a).
The binding of an external primary messenger (e.g., diethylene-
triammonium) triggered receptor dimerization and activated an
internal FRET. Target-aptamer recognition is another useful tool to
build RTK-mode signaling pathway in artificial membrane. For
example, Liu et al.71 developed a transmembrane signal transducer
possessing three functional modules: split ATP aptamers as recog-
nition modules, a hydrophobic transmembrane linker, and a split
G-quadruplex as a signal output module (Fig. 3b). The presence of
ATP outside the membrane triggers the dimerization of DNA
receptors, resulting in catalyzed peroxidation of Amplex red to
resorufin.

GPCRs are a large protein family that recognize a diverse range
of endogenous ligands. The binding of an external signal to a GPCR
causes a conformational change of receptor and generates a sub-
sequent interaction between the GPCR and a nearby G protein.
Artificial receptors that have similar function as GPCRs were pre-
viously reported in organic solvents75–77. To better mimic protein
receptors, Clayden et al.78 developed a photo-responsive foldamer
consisting of an azobenzene group and a helical synthetic peptide
spanning across the lipid membrane. The foldamer sensed light
signal to stimulate global conformational changes and a response of
solid-state 19F nuclear magnetic resonance. This foldamer was
further developed into a synthetic membrane-bound receptor
attached with a metal ion-binding pocket that selectively recognized
external ligands (Fig. 3c)79. In the presence of copper ions (cofac-
tor), the affinity of a chiral ligand to the binding pocket switched
the interconverting conformational states and caused a structural

change of fluorophores inside the membrane, which ultimately
generated a fluorescence signal.

Apart from RTK and GPCR mode, molecular translocation is
used as an alternative mechanism of signal transduction across
lipid membranes80–82. Lipid bilayer is a dynamic and fluidic
phase, in which individual lipids diffuse laterally83 and move
from one leaflet to the other leaflet (flip-flop, t1/2~h)84,85.
Williams and Hunter86 developed a synthetic receptor capable of
transmitting a chemical signal across lipid membrane by taking
advantage of receptor translocation from one side of lipid bilayer
to the other. In their design, two hydrophilic head groups are
attached to a steroid core, in which one head group acts as an
external sensing site and the other is a pro-catalyst. The receptor
is not long enough to span the bilayer and therefore the pro-
catalyst is imbedded in lipid membrane. Increasing the external
pH removes the charge on the sensing site, allowing the pro-
catalyst group to enter the vesicle interior and catalyze the
hydrolysis of a fluorogenic substrate. When the receptor is
attached with a bipyridine group, its translocation is inhibited by
the coordination of copper ions and activated by sodium ascor-
bate (a reducing agent) and ethylenediaminetetraacetic acid (a
competing ligand)87,88. By employing this signal transduction
mechanism, the lipid vesicles can release an encapsulated mole-
cular cargo in response to an external control signal (Fig. 4a)89 or
undergo a vesicle-to-vesicle communication based on competing
biotin-NeutrAvidin binding90. In another system91, the binding
of a cadmium(II) cofactor to the exterior pyridine-oxime group
generates a catalytically active complex that can translocate to the
vesicles interior and stimulates an output signal. In these systems,
molecular hydrophilicity is the key factor that governs receptor
translocation across lipid membrane. Similarly, artificial receptors
bearing photo-responsive groups such as azobenzene and spir-
opyran are able to change their hydrophobicity through host-
guest interaction or photoisomerization, offering new strategies to
switch on transmembrane signaling92,93.

Inspired by human vision, our group developed a photo-
transduction system in artificial cells, where an amphiphilic
ruthenium-bipyridine complex was designed as a synthetic
photoreceptor94. The membrane-anchored receptor is installed
on the outer leaflet of lipid membrane to harvest visible light and
release a catalytic messenger that translocated across the mem-
brane via flip-flop (Fig. 4b–f). The phototransduction eventually
led to fluorescence amplification and a liquid-liquid phase
separation (LLPS), a mechanism accounted for the formation of
membraneless organelles. Coupling receptor-mediated signaling
with biological recognition and enzymatic cascade reactions fur-
ther enabled the construction of protocell signaling-encoded
Boolean logic gates.

Engineering nanostructures to regulate signal transduction in
living cells
Biological recognition on the surface of the plasma membrane
requires control over ligand-receptor interaction in space, with
precise configuration, orientation and distance. To optimize the
ligand-receptor affinity, nanopatterned surfaces produced by
nanolithography method or engineered nanoparticles95,96 were
explored to display bioactive ligands in a controlled manner.
Supramolecular self-assembly offers an alternative tool to design
nanostructures displaying ligands with controlled surface density
and spatial arrangement97. Here, we will summarize recent
advances in using self-assembling structures and nanomaterials of
polypeptides, nucleic acids and polymers to trigger signal trans-
duction across the membrane, induce cellular events and stimu-
late therapeutic effects.
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Inspired by the sophisticated structure of natural proteins,
chemists have developed polypeptides that contain sequences
predisposed to form secondary structures (e.g., α-helix and β-
sheet)98. Designer polypeptides integrating these subunits can
further self-assemble into supramolecular scaffolds fused with
bioactive peptide ligands capable of binding to membrane
receptors including integrin99, human epidermal growth factor
receptor 2 (HER2)100, Eph receptor A2 (EphA2)101, death
receptor 5 (DR5)102 and Met103,104. In particular, amphiphilic
peptides readily aggregate into fibrillary networks with controlled
ligand architectures, geometries, and sequences, forming a ver-
satile platform for mimicking the extracellular matrix. Inspired by
the extracellular matrix protein fibronectin that synergistically
binds α5β1 integrin, Pashuck et al.99 designed self-assembled
nanofibers and hydrogels with β-sheet motifs, in which the dis-
tance of two different peptide epitopes was controlled with sub-
nanometer accuracy (0.7 to 6 nm). Endothelial cells, incubated
within fibril networks that display Arg-Gly-Asp-Ser (RGDS) and
Pro-His-Ser-Arg-Asn (PHSRN) with a 3.2 nm spacing, showed an
upregulation in the expression of the alpha 5 integrin subunit
(Fig. 5a). Supramolecular self-assembly is highly dynamic and
adaptive in physiological environments. Engineered peptide
nanoparticles were observed to transform into a fibrillar network
upon accumulating at the tumor site, which subsequently

suppressed the dimerization of HER2, a receptor tyrosine kinase
overexpressed in cancers, and prevented downstream cell sig-
naling and the expression of proliferation and survival genes
(Fig. 5b)100. Similarly, a cancer-targeting peptide was shown to
bind to transmembrane receptor tyrosine kinase EphA2 and
induce the aggregation of overexpressed EphA2 receptors101,
leading to the activation of signal transduction of antitumor
pathway and the downstream apoptosis of cancer cells. Futaki
et al.105,106 designed a leucine-zipper coiled-coil polypeptide as an
artificial bivalent ligand to stimulate dimerization of epidermal
growth factor receptor (EGFR) on plasma membranes.

Nucleic acid self-assembly is a reliable approach to design
predictable, programmable, and addressable scaffolds displaying
biological ligands or ligand mimics with specific orientation,
spacing and organization. The Watson-Crick rules direct bottom-
up assembly of DNA nanostructures, where two complementary
DNAs form a double helix with a diameter of 2.0 nm and a length
of 3.4 nm per helical turn. Moreover, the conjugation of func-
tional groups (e.g., peptide, aptamer and DNAzyme) to oligo-
nucleotides endows specific recognition towards membrane
receptors or catalytic amplification107. So far, receptor-binding
aptamers have been screened and developed to recognize
Met108–110, transferrin receptor111, and transmembrane tumor
necrosis factor (TNF) receptors112. Among these, hepatocyte

Fig. 3 Artificial GPCR and RTK signaling in supramolecular systems. a Primary messenger (diethylenetriammonium, DET) induces dimerization of two
transmembrane receptors and stimulates FRET inside liposomes. b ATP-mediated dimerization of DNA-based membrane receptors for transmembrane
signaling to activate hemin-catalyzed peroxidation of Amplex red. c A synthetic transmembrane receptor Cu-1 comprises three components: a metal-
binding site (green), a helical oligomer embedded in the membrane (gray), and a pyrene-based fluorophore (blue). Reversible binding of a chiral ligand
triggers the conformational changes from the binding site to the reporter, generating a fluorescence output. a Adapted with permission from ref. 69,
Copyright Wiley-VCH, 2009; b adapted with permission from ref. 71, Copyright Royal Chemical Society, 2021; c adapted with permission from ref. 79,
Copyright Springer Nature, 2017.
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growth factor (HGF) induces dimerization of the cell surface
receptor c-Met to stimulate cell proliferation, survival, and
migration113. Sando et al.114 designed a 50-mer DNA aptamer as
an oligonucleotide-based HGF mimetics that inhibits HGF-
induced c-Met signaling. This 50-mer DNA inhibitor is further
dimerized with a complementary DNA strand to generate an
agonist that binds to two receptors and activates the Met sig-
naling (Fig. 6a)115. To increase the specificity of Met activation, a
bispecific DNA aptamer was developed to simultaneously
recognize Met and non-cognate ligands (e.g. thrombin), in which
Met phosphorylation was only observed when both aptamer and
thrombin were present (Fig. 6b)116. A similar strategy was applied
to generate a bispecific aptamer that can induce protein-pairing
for selective inhibition of receptor function117. In addition,
aptamer-based growth factor mimetics was demonstrated to exert
therapeutic effects in a target tissue for in vivo applications118 and
allow for strategy-guided design of synthetic growth factor sur-
rogates with fine-tuned agonism119. Nie et al.109 designed an
ATP-responsive DNA nanodevice that responded to external

stimuli to trigger DNA strand displacement, inducing the
dimerization and activation of c-Met to cognate for hepatocyte
growth factor (Fig. 6c). This method allows for the manipulation
of the behaviors of multiple cell populations simultaneously. Li
et al.120 reported a reversible control of membrane receptors at
the cell surface with a self-assembled DNA nanospring, allowing
for the regulation of cell protrusions and mRNA expression
(Fig. 6d). Recently, a DNA origami structure that precisely scaf-
fold the patterning of TNF-related apoptosis-inducing ligand-
mimicking peptides at nanoscale level was demonstrated to sti-
mulate human breast cancer cells112. It was found that ~5 nm is
the critical inter-ligand distance between hexagonally patterned
peptides to induce death receptor clustering and produce
apoptosis.

Clustering of cell surface receptors requires specific and strong
ligand-receptor affinity, which is usually achieved with engi-
neered macromolecular scaffolds that display multivalent ligands
with varied density, orientation, and spatial organization121–123.
In this context, a therapeutic platform that mimics the

Fig. 4 Signal transduction across phospholipid bilayers via the mechanism of molecular translocation. a A signal transduction mechanism that triggers
cargo release from vesicles. Binding of a charged cofactor to the inner head group activates a catalytic hydrolysis and liberates a surfactant that enhances
the permeability of the membrane and facilitates cargo release. b Schematic illustration of receptor-mediated phototransduction, which involves five
essential steps including installation of a photoreceptor on the outer leaflet of lipid bilayers (1), light-triggered release of a messenger (2), flip-flop
movement of messenger across the membrane (3), signal amplification through catalytic hydrolysis of an esterase substrate (S) into a fluorescent product
(P) (4), and the formation of coacervate droplets (5). Coupling signal transduction with biological recognition and enzymatic cascade reactions leads to the
development of Boolean logic gates. c, d Formation of coacervate microdroplets as artificial organelles inside giant vesicles. e, f Flow cytometry results
show the enhancement of fluorescence intensity and the growth of coacervates through phototransduction. Scale bars: c 10 μm, d 15 μm. a Adapted with
permission from ref. 89, Copyright American Chemical Society, 2017; b–f adapted with permission from ref. 94, Copyright AAAS, 2023.
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mechanism of immune effector cells was developed to crosslink
surface receptors of target cells and induce apoptosis124. To
achieve this, an antibody-DNA hybrid was developed by con-
jugating an anti-CD20 Fab’ fragment to a single-stranded oligo-
nucleotide, which recognized CD20 on the surface of malignant
B-cells. A linear polymer was grafted with complementary oli-
gonucleotides that bind to antibody-DNA hybrids, leading to the
clustering of CD20 antigen and apoptosis. Similarly, Kolmar et
al.125 designed DR5 binding constructs comprising varied copies
of DR5 targeting peptide covalently bound to a protein scaffold
and demonstrated their remarkable effect in inducing apoptotic
signaling.

Modulation of cellular signaling with external stimuli
Manipulating ligand-receptor interaction with external stimuli
offers an alternative approach to regulate transmembrane sig-
naling and coordinate cellular behaviors. The use of light as a
non-invasive stimulus offers temporal and spatial control with
varied irradiation time, wavelength and intensity. For example,
Aida et al.126 described a dendritic molecular glue with multiple
pendant guanidinium ions that adhered to HGF and suppressed
its affinity towards c-Met. Upon exposure to 365 nm light, the
glue was photocleaved at a linkage in the dendrimer framework,
and HGF was liberated and retrieved its intrinsic affinity towards
c-Met (Fig. 7). Photo irradiation was also applied to increase the
ligand affinity to target proteins. Kohata et al.127 developed

another photoreactive glue that adhered to aptamer/c-Met com-
plex. Upon exposure to UV light, the temporarily stabilized
aptamer/c-Met conjugate reacts with the photoexcited benzo-
phenone group of molecular glue and the nitrene species,
resulting in the covalent permanent stabilization of the aptamer/
c-Met complex, which efficiently inhibited HGF/c-Met interac-
tions and suppressed cell migration.

To modulate cell signaling in a biocompatible manner, a
visible-near Infrared (NIR) laser was considered to be advanta-
geous over UV light since the former can penetrate into deep
tissue and causes less damages. Qin et al.128 applied pulse laser to
heat plasmonic gold nanoparticles to deactivate protease-
activated receptor 2 in target cells, which is a G-protein-
coupled receptor involving in a pathway that leads to pain sen-
sitization release. Similarly, NIR irradiation was demonstrated to
release a DNA agonist from gold nanorods, which dimerized
DNA-modified chimeric or native RTK on cell surfaces and
activated downstream signal transduction to control cytoskeletal
remodeling, cell polarization, and directional migration110.

Challenge and outlook
The cell membrane functions as a physical barrier to protect the
interior and regulates cellular behaviors via transmembrane sig-
naling. Signaling information is transmitted from the receptor on
the plasma membrane across the cytoplasm to stimulate cellular
responses. Research into signal transduction provides new

Fig. 5 Interfacing supramolecular peptide nanostructures with membrane receptors. a Schematic illustration of supramolecular fibrils displaying RGDS
and PHSRN with defined spacing of 0.7 nm, 3.5 nm and 6.2 nm. RGDS and PHSRN motifs are attached to the rigid backbone of a β-sheet peptide.
b Transformable peptide monomers (TPMs) self-assemble into nanoparticles (NPs) to arrest HER2 signaling in mice. TPMs are comprised of three discrete
functional domains: a bis-pyrene moiety with aggregation-induced emission (AIE), a β-sheet-forming domain derived from β-amyloid and a disulfide cyclic
peptide of HER2-binding domain. a Adapted with permission from ref. 99, Copyright American Chemical Society, 2016; b adapted with permission from
ref. 100, Copyright Springer Nature, 2020.
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opportunities to the development of novel therapeutic materials
and methods. Biomimetic signal transduction systems have been
broadly explored in both synthetic bilayers and living cells.

Key to the development of artificial signaling system is the
design of synthetic receptors that sense the external cues, translate
this signal into another kind and amplify the signal to elicit
downstream responses. A prerequisite for artificial receptors is

the ability to recognize specific messengers via monovalent or
multivalent interactions. Recent progress has witnessed the
development of artificial signaling systems that are capable of
sensing small molecules, pH, metal ions, albeit with the binding
of low specificity. However, it remains challenging to develop
synthetic receptors capable of sensing biologically relevant
endogenous ligands such as hormones and neurotransmitters.

Fig. 6 DNA structures mediated receptor clustering. a Oligonucleotide-based HGF mimetics induces Met dimerization. b Reprogramming of the ligand
specificity of growth factor receptors with bispecific DNA aptamers as non-cognate ligands. c ATP-responsive DNA-mediated chemically induced
dimerization. d Reversible control of integrin clustering and de-clustering with a DNA nanospring, which allows for regulation of intracellular signaling
pathways and cell morphology. a Adapted with permission from ref. 115, Copyright Wiley-VCH, 2016; b adapted with permission from ref. 116, Copyright
American Chemical Society, 2017; c adapted with permission from ref. 109, Copyright Wiley-VCH, 2018; d adapted with permission from ref. 120, Copyright
Royal Chemical Society, 2017.

Fig. 7 Photo-controlled protein-protein interaction. Proposed mechanism of a supramolecular glue-mediated off/on switching of ligand-receptor
interaction between HGF and c-Met. The glue molecules adhere to HGF and suppress the affinity between HGF and c-Met. Upon exposure to UV light, the
glue on HGF is degraded at photocleavable linkages to reduce the multivalency and weaken adhesion, which activates HGF binding to c-Met and initiates
dimerization and phosphorylation of receptor. Adapted with permission from ref. 126, Copyright American Chemical Society, 2019.
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Besides, cells can respond to a variety of physical clues such as
mechanical stimuli and electrical pulses, which remain largely
unexplored in synthetic systems.

Three main mechanisms, i.e., receptor dimerization, GPCR
mode and molecular translocation, have been explored to realize
signaling across the synthetic lipid membranes. Among these,
signal transduction using artificial membrane-spanning GPCR
receptors remains challenging since it requires precise control
over receptor conformation and orientation inside the membrane.
In this regard, computer-aided analysis (e.g., molecular dynamics
simulation and machine learning) will help to gain a deep
understanding of intramolecular forces and receptor-lipid inter-
actions. Another unmet challenge is to generate an amplified
signal output in artificial cells. In biology, cells use enzymes (e.g.,
protein kinases) to amplify the chemical signal and trigger a
downstream cellular response. In synthetic systems, signal
amplification is mainly achieved with small catalytic groups,
where the magnitude of signal amplification is far less than that
achieved with natural enzymes. To tackle this challenge, it is
essential to develop enzyme-like catalytic compounds or nano-
materials with comparable activity.

In living cells, reprogramming ligand-receptor interactions
represents a powerful tool to regulate transmembrane signaling
and downstream cellular responses. In a biologically relevant
context, polypeptides and aptamers are selected as recognizing
motifs through phage display and Sequential Evolution of Ligands
by Exponential Enrichment (SELEX), respectively. To boost the
efficacy of interfacial recognition, precise control over spatial
organization, orientation, and conformational freedom of bioac-
tive epitopes is demanded to optimize ligand-receptor interaction.
Such complex recognition scenarios are achievable with
sequence-specific polymers or precisely controlled self-assembly
of DNA and polypeptides.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data that support the findings of this study have been included in the manuscript.
Any additional data are available from the corresponding author upon reasonable
request.
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