
ARTICLE

Randomly stacked open cylindrical shells as
functional mechanical energy absorber
Tomohiko G. Sano 1,3✉, Emile Hohnadel2,3, Toshiyuki Kawata1, Thibaut Métivet2 &

Florence Bertails-Descoubes 2✉

Structures with artificially engineered mechanical properties, often called mechanical meta-

materials, are interesting for their tunable functionality. Various types of mechanical meta-

materials have been proposed in the literature, designed to harness light or magnetic

interactions, structural instabilities in slender or hollow structures, and contact friction.

However, most of the designs are ideally engineered without any imperfections, in order to

perform deterministically as programmed. Here, we study the mechanical performance of

randomly stacked cylindrical shells, which act as a disordered mechanical metamaterial.

Combining experiments and simulations, we demonstrate that the stacked shells can absorb

and store mechanical energy upon compression by exploiting large deformation and relo-

cation of shells, snap-fits, and friction. Although shells are oriented randomly, the system

exhibits statistically robust mechanical performance controlled by friction and geometry. Our

results demonstrate that the rearrangement of flexible components could yield versatile and

predictive mechanical responses.
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Predicting the large deformation of slender structures, such
as pillars, beams, and arches, is one of the central issues in
Material Science1. By forecasting structural instability and

optimising their design to prevent rupture, slender parts can be
assembled into lasting architectural buildings, easier to build and
able to withstand large external forces, thereby resilient to natural
disasters. Engineers design energy- or force-absorbing structures
to protect humans and objects from impact or shocks. Examples
include bicycle helmets and packaging materials for fragile
baggage2. The energy- or force-absorbing structures are often soft
elasto-plastic multiscale materials, carefully designed at the
structural and chemical levels, to control the deformation modes.

When a slender beam is compressed axially, it bends and
buckles, as bending is more energetically favourable than
compression3,4. The buckling of a slender beam can be regarded
as a classical and canonical example of a—reversible—energy-
absorbing phenomena5. The beam bends and buckles when
subjected to forces beyond Euler’s critical load, and the external
energy is then stored as bending energy. The stored energy can
thereafter be released by removing the external load. Hence, the
instability of slender structures could be interpreted as a
mechanical energy transducer5. This idea has been part of the
recent evolution of materials and structures with an artificial
mechanical response, called mechanical metamaterials6.

Recent progress in fabrication technology and computational
modelling have also fostered the investigation of tunable
mechanical functionality. Various types of mechanical responses
have been studied, such as auxetics7,8, friction-dominated
assemblies9, snapping10–12, twist-extension coupling13, elasto-
magnetic coupling14, or origamis and kirigamis15. Mechanical
metamaterials however usually require accurate engineering to
achieve the programmed responses16. The effects of randomness
and imperfection of the components on the mechanical

performances are seldom clarified, although these factors are
likely to manifest all the more as the diversity and local
arrangement of the structures at play constantly increase.

In this article, we report the mechanical properties of randomly
stacked open cylindrical shells, combining experiments and
simulations (see Fig. 1a). We carefully fabricate open cylindrical
thin shells whose rest geometry (inset in Fig. 1c) is an extruded
surface characterised by a radius R and a shell angle Φ, the
thickness h being negligible compared to the shell arc length ΦR.
Each shell deforms elastically in 2D and interacts with other shells
through contact and friction. We then consider a stack of iden-
tical shells placed in a random 2D configuration (see Fig. 1a). This
heterogeneous system exhibits characteristic damping against
compression, supplemented by friction, elastic bending, and shell
reorientation. Upon compression, shells interact and may sud-
denly overlap, a phenomenon called snap-fit. These snap-fit
events irreversibly reduce local empty spaces and voids, thereby
lowering the overall compressive load. Furthermore, frictional
contacts induce further dissipation throughout the cycle. As will
be shown, although the initial configuration of our system is set
randomly, energy dissipation remains nearly constant across
statistical sampling, while compressibility turns out to be tunable
by the shell geometry. Our work is complementary to the pio-
neering work by Poirier et al.17, where the localised deformation
of stacked straws is studied purely experimentally.

Results
Experimental results overview. Randomly stacked open cylind-
rical shells of identical geometry are compressed and decom-
pressed. In the absence of any external load (F= 0), empty spaces
still exist between the shells, which gives rise to a porous struc-
ture, contributed by both friction and elasticity (Fig. 1a). Upon
compression, the load F increases with large deformation of the
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Fig. 1 Mechanics of randomly stacked open cylindrical shells with shell angle Φ. a Our base experiment, where the randomly stacked shells are
compressed and then decompressed. b-i to b-iii The load F is absorbed into the elastic deformation with F decreasing when shells embrace each other
(snap-fit). c, d The typical force-displacement curve upon compression (red) and decompression (blue) in c experiments and d simulations. Note that the
experimental and numerical force-displacement curves were picked to be illustrative and similar to each other, among all of the possible outputs yielded by
the same physical parameters but random initial configurations (see Fig. 5a). As such, they do not necessarily reflect the statistically averaged quantities
analysed below. The black arrows highlight the snap-fit force drops in load F (scale bars 20mm).
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shells, followed by force drops corresponding to (local) inter-
mittent snap-fits. As we compress the system further, the increase
and decrease of the compression force continue up to the end of
the test (Fig. 1b–d).

Elementary two-shell snap-fit. The observed drops of the force F
find their origin in local snap-fit phenomena involving two open
shells, where one shell embraces the other. To understand this
elementary process, we consider a compression test between two
identical shells with varying shell angle Φ. When two identical
shells are assembled, they snap either smoothly or abruptly,
depending on the friction coefficient μ and the shell angle Φ. We
call the former and the latter modes Type I and II snap-fits,
respectively, following the classification that Yoshida et al.12 pro-
posed in the case of a shell indenting a rigid cylinder. In the Type I
snap-fit, the upper indenting shell continuously slides on the bot-
tom one, passing the smooth peak force fType I ~ 0.1B/R2 (with B the
bending modulus of the shell), until the indentation exceeds the
shell radius, when the force becomes negative and the shells
naturally snap-fit each other. The Type II behaviour, which can be
observed for more closed shells, on the contrary, features sticking
and coiling of the upper shell, until the force reaches the threshold,
and the shell abruptly unfolds onto the other. Note that the Type II
threshold force is much higher—fType II ~ 5B/R2≫ fType I—than the
typical forces for Type I events. In ref. 12, the shell-cylinder problem
is studied with different diameter ratios, leading to either snap-fit or
misfit, where the shell cannot fit onto the cylinder. However, given
that we consider two identical shells, our shells always snap-fit, and
we only consider Type I and II snap-fits throughout.

We investigate the two-shell elementary process both experi-
mentally and numerically (see Fig. 2). Due to its 2D nature, and
considering the negligible thickness h of the shells, the two-shell
assembly scenario can be simulated using 2D thin elastic rods,
under the unshearable and inextensible assumptions of the
Kirchhoff rod theory. To this end, we develop an unclamped, 2D
version of the Super-Helix model for discrete Kirchhoff rods18

with a full account of dry frictional contact19. In section

‘Simulations’ we provide a detailed description of our rod
simulator augmented with frictional contact, which has been
recently validated in 2D and 3D20, in particular on the 2D
pinning test21, which couples elasticity and frictional contact. We
run a new validation test, by comparing our simulator to the
analytical master curve of Yoshida et al.12 (Supplementary Fig. 1).
An excellent agreement is observed here again between theory
and simulation, which paves the way for the extensive parametric
studies performed below with our simulator.

Using exhaustive simulations, we explore the phase diagram of
the shell-shell snap-fit, and find, similarly to the shell-cylinder
analysis of Yoshida et al.12, that both the friction coefficient μ and
the shell geometry Φ impact the snapping behaviour between two
identical shells. As summarised in Fig. 2c, the larger μ or Φ, the
more Type II snap-fit happens. Between the Type I and II
regimes, there exists a critical shell angle Φ*=Φ*(μ), which
decreases as μ increases. Experimentally, we similarly find out a
transition between Type I and II regimes, as Φ varies. These
experimental and numerical results highlight the fact that not
only the friction between shells but also their geometric non-
linearity plays a critical role in the mechanical performance of
stacked shells. Furthermore, it is noteworthy that thanks to its
monotonic dependence, the critical angle Φ*(μ) can be exploited
to determine accurately the friction coefficient between our
experimental shells by measuring the actual threshold angle
between the Type I and II, as explained in Fig. 2.

In the remainder of the paper, we thus use this experimental
measurement to bound the friction coefficient 0.32 ≤ μ ≤ 0.41 and
use μ= 0.35 in all our simulations (two-shell and many-shell)
when comparing with the experiments. With this μ fixed, we thus
classify our experimental shells into two categories depending on
their normalised angle �Φ � Φ=ð2πÞ: Type I shells for �Φ<�Φ�ð0:35Þ,
and Type II shells for �Φ≥ �Φ

�ð0:35Þ, with �Φ
�ð0:35Þ ¼ 0:83.

Many-shell snap-fit. We consider sets of N= 30 systematically
fabricated shells with various Φ values (all other parameters
remaining fixed) and stack them randomly inside a container
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Fig. 2 How an elastic shell snaps onto a second identical shell. a, b Rescaled force-displacement curves for a Type I and b Type II snapping regimes,
where the red and blue curves are experimental and simulation results, respectively. The blue shaded regions represent the error bars against our estimate
of the experimental friction coefficient, 0.32≤ μ≤ 0.41 (scale bars 20mm). c Phase diagram of the shell deformation on the (Φ/2π)–μ plane, where empty
data points are simulation results. Similarly to the shell-cylinder problem studied by Yoshida et al.12, the diagram shows the existence of a monotonic
critical angle function Φ*(μ) separating the Type I regime (in blue squares) from the Type II regime (in red circles). In parallel, experiments made for
various controlled shell angles Φ—but for an unknown friction coefficient μ— lead either to Type I or Type II outcomes (filled data points): this
experimental capture of regime change allows us to identify precisely the range of possible values for the experimental friction coefficient μ (shaded
region) as the interval [0.32−0.41], where the simulated Type I and II phase boundary coincides with the experimental one. In our simulations, we then
systematically take μ= 0.35 when comparing to experimental data. The corresponding normalised critical angle is then given by �Φ

�ð0:35Þ ¼ 0:83.
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under the effect of gravity (c.f. Fig. 3a, b for typical static con-
figurations). The exact same scenario is replicated with simula-
tion, randomly initialising the position and orientation of each of
the 30 rings, before applying gravity and having them fall into a
virtual container. The friction coefficient between the rings and
the container is set to 0.35, similar to the ring-ring friction

coefficient. Unlike the latter coefficient (ring-ring), however, we
note in practice that the former has little influence on the overall
stack behaviour.

It is noteworthy that the geometry of the shells controls the
height of the full system when stacked. Indeed, the initial height of
the stacked shells, H0, monotonically increases with Φ and saturates
to the height corresponding to the hexagonal packing H0=R !
2þ 6

ffiffiffi

3
p

as Φ→ 2π. We observe that the simulation correctly
captures the experimental and expected behaviour for H0.

To further analyse the mechanical properties of the stacked
shells, we perform cyclic compression-decompression experiments
and simulations. The forces and displacement are respectively
normalised by the characteristic bending force B/R2 and relocation
length R. The stacked shells are compressed by a rigid plate from
Δ≡H0−H= 0, up to the point where the force exerted on the
plate reaches some maximal value F ¼ Fmax. The material is then
decompressed back to Δ= 0 (see Fig. 4a, b). In practice, we use
Fmax ¼ 5N throughout the experiments and simulations, to yield as
many snap-fits as possible while ensuring that we remain much
below the plasticity and rupture thresholds of the shells. Simulations
give results fully consistent with the experiments, as detailed below.

When we start compressing the stacked Type I shells
(�Φ< 0:83), in the first n= 1 cycle the compressive load exhibits
a characteristic damping behaviour: the force F increases as the
shells bend, and then drops abruptly as snap-fit events occur
within the system (Fig. 4a-i, a-ii and Supplementary Movie 1).
The continued compression causes snap-fits throughout the
system. A pair of overlapped shells could be regarded as a shell of
double thickness 2h, thus increasing the (effective) bending
stiffness and stiffening the overall system. As a result, F increases
rapidly as we compress. Upon decompression, the assembled
shells often do not separate into two, so that F gets relaxed to zero
smoothly. The compression and decompression process is as such
fully irreversible. For the second n= 2 and subsequent cycles,
snap-fit is less and less likely to happen, because the force
required for the Type I snap-fit fType I ≈ 0.06 N is much lower than
Fmax: Fmax � f TypeI. In other words, most of the possible
snappable pairs have already snapped after the 1st compression.
As the cycle continues n≫ 1, the force-displacement curve
converges to a limit cycle curve, where elastic bending of the
shells and frictional sliding between them are dominant.
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In contrast, when we compress the stacked Type II shells
(�Φ≥ 0:83), the force-displacement curve is qualitatively different
from that of Type I shells. Interestingly, we do not observe Type
II snap-fit in this problem set, despite that the compressive force
is higher than the Type II threshold: f TypeII � 5B=R2 ’
3:13N< Fmax (Fig. 4b-i, b-ii and Supplementary Movie 2). As
we observe in the two-shell snap-fit, the Type II shell sticks, rolls
and then unfolds upon compression, requiring much space for its
large deformation. However, surrounding shells prevent opening
the shell. In other words, the compression induces elastic bending
and sliding only. As a result, the limit force-displacement cycle
curve is basically immediately reached. This qualitative difference
in the mechanical performance of stacked shells originates not
only from the elasticity and geometry of each shell but also from
contact mechanics and rearrangement of shells.

In both Type I and Type II cases, the limit force-displacement
cycle exhibits a characteristic dissipation hysteresis which is
reminiscent of other thin elastic systems coupled with frictional
contact22. To understand the dissipative properties of this system
quantitatively, we compute the maximum working distance, Δmax,
and the dissipation ratio η (defined below) in our N= 30 shells
experiments and simulations. To mitigate the effect of the initial
conditions for small-size systems, assuming ergodicity of the
system, we perform independent measurements with respectively
5 and 100 different random initial configurations for the
experiments and simulations. In addition, we compute the robust
normalised mean absolute deviation, as it decreases the bias of
potential outliers23. In the following, we restrict the analysis to the
first n= 1 cycle, where the snap-fit effects are more pronounced
and characteristic than the limit cycles (n ≥ 2).

The maximum working distance Δmax represents the displace-
ment between the initial height H0 and the final height when F
reaches the prescribed maximum force Fmax. As shown in Fig. 5a,

c, two regimes can be identified for Δmax depending on the shell
opening angle Φ, with respect to the critical angle Φ* (separating
the type I and type II regimes in the shell-on-shell case as shown
in Fig. 2):

● Φ <Φ*: as discussed above, the type I-shell system is
subjected to snap-fit events, and the more closed the shells,
the larger Δmax, as the more snap-fits—and thus force drops
—occur during the compression.

● Φ ≥Φ*: for type II shells, snap-fits no longer happen as type
II snap-fit unrolling is blocked by confinement, as discussed
above; the system is thus driven by shell bending, and mutual
and self-contact sliding interactions, and the more closed the
shells, the stiffer the bending response (due to the earlier
happening of self-contact), which leads to larger forces and
thus a decrease of the Δmax required to reach Fmax.

From a more functional perspective, the ability to tune Δmax with
the shell geometry Φ could be useful in order to program the
compression properties on demand.

In addition to Δmax, we measure the dissipation ratio, η,
defined as the area of the hysteretic F-Δ curve, Ediss≡ ∮ FdΔ,
normalised by the total energy input Ein � FmaxΔmax: η≡ Ediss/
Ein. Despite the qualitative differences observed between small-Φ
and large-Φ F− Δ curves, the dissipation ratio η turns up to be
independent on the opening angle Φ (Fig. 5b). We can therefore
conclude that the stacked assembly exhibits robust energy-
dissipating performance.

The results from the simulations at μ= 0.35 are in excellent
agreement with the experimental ðΔmax; ηÞ (Fig. 5a, b and
Supplementary Movie 3). Given the prior validation of our
numerical method on shell-on-shell experiments, in the follow-
ing, we fully rely on numerical simulations to study the role of the
friction coefficient μ.
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Fig. 5 The maximum relative displacement, Δmax and energy absorption ratio, η as a function of (Φ, μ). Experimental and simulation results are
superposed. Experiment results (blue empty circles) for a Δmax and b η, plotted against Φ as open symbols. The corresponding simulation results (blue
filled squares) for different friction coefficients (μ= 0.35) are plotted as filled symbols. Simulation results of c Δmax and d η for different friction coefficients
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dashed lines in (c) indicate the respective critical Φ* for the different values of μ.
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To evaluate the role of friction in the mechanical and dissipative
performances of the system, we carry out numerical simulations for
smaller (starting from μ= 0.0) and larger (up to μ= 1.0) friction
coefficients, while other parameters remain the same (as before, the
friction coefficient between the rings and the container is set to the
ring-ring μ value). See Supplementary Movie 4 for comparison.
The results for ðΔmax; ηÞ are summarised in Fig. 5c, d, respectively.
While Δmax seems independent of μ for wide open (�Φ≲ 0:75)
shells, it decreases as μ increases for more closed shells. This
observation can be interpreted in the limit regimes of either wide
open (Φ→ π), or nearly closed (Φ→ 2π) shells: in the first case,
the system is in the type I regime, and is mostly driven by snap-fit
events between the shells; Δmax is therefore controlled by the
geometry of the system, which affects the total number of possible
snap-fits. Friction plays no role in this limit case, and the maximal
indentation is thus independent on μ. On the contrary, as shells
become nearly closed, no snap-fit happens anymore, and the
frictional mutual interactions are expected to become dominant:
increasing the friction coefficient μ thus naturally leads to an
increase of the force response of the system during compression
(see Supplementary Note 3)—as the Coulomb threshold, propor-
tional to μ must be overcome—and therefore to a decrease of
ΔmaxðΦ ! 2πÞ as μ increases, as observed in Fig. 5a.

In contrast, η appears constant over the wide range of μ,
indicating robust performances in terms of dissipation. This is
counter-intuitive because the dissipation of the stacked shells is
expected to be mainly controlled by friction, without any major
impact of snap-fit events. Note however that η purposefully
quantifies the dissipation Ediss of the system normalised by the
total injected energy Ein � FmaxΔmax. As such, the observed tiny
dependence of η on μ could be interpreted as a cancellation
between the effects of friction on the hysteresis Ediss and on Δmax.
Interestingly, we nonetheless observe that without friction (see
the μ= 0 data in Fig. 5), η significantly drops, indicating that the
effect of friction on the hysteresis vanishes (Supplementary Fig. 3)
while Δmax saturates. Given that the value of η results from
cooperative effects between the shells, additional theoretical
efforts are necessary to predict η, which we leave as future work.

Based on the simulation, we can therefore conclude the
following design principle for stacked shells: the combination of μ
and Φ determines the maximum working distance, Δmax, of the
system. Given the value of Δmax, we can require the set of μ and
Φ, keeping the dissipation ratio η nearly constant.

Discussion
Our system exhibits a characteristic energy-absorbing behaviour,
which could be exploited as a functional damper and energy
absorber. The dissipation mechanism behind the stacked shells
stems from the elasticity and geometry of shells, their contact
mechanics, and their relative orientations. In this paper, we have
studied the working distance and dissipation ratio ðΔmax; ηÞ for
the compression-decompression process. After the initial press,
most of the possible shells have already snapped, leading the
force-displacement curve to the limit cycle for n ≥ 2. Even though
shells do not snap so often at large n cycles, stacked shells are still
flexible (through elastic bending). Given that conventional shock-
absorbing materials exploit the collapse or fracture of their ele-
ments (voids, foams), the idea of stacking slender structures is
useful in designing functional structures.

The mechanical metamaterials studied in the previous literature
exhibit artificial mechanical performances upon compression,
which primarily rely on programmed elementary structures. The
defects and imperfections are, as such, critical in their mechanical
performances24. The initial random orientations of the shells play,
in our case, the role of such structural defects, and while the exact

evolution of the system during compression depends on the initial
conditions, the overall mechanical performances have been found
to be quite robust. Hence, large deformation of slender structures
can be utilised even when they are randomly stacked. Our study
paves the way for new designing principles, where slender struc-
tures deform largely and relocate their positions from each other.
We expect that a similar design idea will be applicable to engi-
neering problems across different length scales from food packa-
ging to the deformation of bowl-shaped molecules25.

To directly compare our numerical and experimental results
while reducing computational times, we have performed simu-
lations for N= 30 shells. However, our simulation can still
robustly simulate significantly larger systems, albeit at a high
computational expense: systems composed of N ~ 103 shells for
instance require, on a standard PC, about 9 days of computation
per compression-decompression cycle, mainly owing to the very
accurate resolution of frictional contact constraints required to
prevent shell-shell penetrations and crossings. Obtaining reliable
statistics for ðΔmax; ηÞ, therefore, requires much more computa-
tional power for large systems, and we leave the study of the
thermodynamic limit (N≫ 1) as future work (c.f. section ‘Sta-
tistics of Δmax and η’).

A fully analytical model would also provide a valuable and
complementary approach towards the analysis of such large
stochastic slender assemblies. Approaches based on statistical
mechanics have proven successful in predicting random systems,
such as molecular gases26, granular particles27 or active matter
systems28. However, such kinetic approaches so far have been
limited to rigid materials. Our experimental results will therefore
be valuable to validate extended kinetic theories and models for
largely deformable components.

To apply our idea on snap-fit between many shells in real
engineering problems, the extension towards three-dimensional
problems will be necessary. Once a 3D counterpart of stacked open
shells is made, one can mimic the deformation of conventional
cushioning materials such as stochastic foams29. Building such a
complex model requires experimental and numerical modelling
efforts, e.g., experimental contact visualisation or numerical contact
modelling between shells, which we leave as a future study.

Methods
Fabrication of open cylindrical shells. Open cylindrical shells are casted in a
thermoplastic way from naturally straight ribbons made of glycol-modified poly
ethylene terephthalate. The straight ribbon is laser-cut into a length L and width
w= 10 mm, from a flat sheet (Young’s modulus, E= 2.2 GPa, thickness
h= 0.5 mm, Shim Stock, Artus Corporation, USA). The total length of the ribbon,
L, is varied in the range of 66.3 ≤ L ≤ 116.1 mm, such that the shell angle Φ(=L/R)
ranges 200° ≤Φ ≤ 350°, meaning that 0:55≤ �Φ≤ 0:97. The surface of the straight
ribbon is roughened by sandpaper to reduce adhesive forces.

The mould for the open shells consists of two parts; outer and inner moulds.
The acrylic outer mould has a circular hole, while the inner circular mould, which
fits into the hole of the outer mould, is made of silicone elastomer (Smooth-on,
USA). The straight ribbon is inserted between the outer and inner moulds such that
the ribbon is bent into the uniform radius of curvature 19 mm. The set of a ribbon
and mould is placed into the hot water of temperature 95 °C for more than 15 min.
Subsequently, the ribbon and moulds are cooled in cold water (~20 °C) and then
demoulded. The radius of curvature of the shell becomes R= 19.2 ± 0.2 mm.

Experimental protocols for two-body problems. Two identical shells are com-
pressed with each other quasi-statically at the speed of 0.17 mm s−1. The middle of
the shells is either fixed or connected to the force-testing machine (EZ-LX, Shi-
madzu, Japan). The former shell is fixed with the ground via an acrylic bar of 4 mm
width. The latter shell is glued with an acrylic bar, which is clamped with the
load cell.

Experimental protocols for randomly stacked shells. To prepare the initially
stacked configuration, we randomly drop 30 shells one by one into the acrylic
quasi-two-dimensional container (200 × 300 × 11 mm) by free-fall. The mechanical
tests start at the initial height of the stacked shell under gravity, from which the
zero of the displacement, Δ= 0, is set. The shells are compressed and
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decompressed by an acrylic plate of 8 mm width with a speed of 5 mm s−1. The
shells are compressed up to 5 N and then decompressed back to Δ= 0. We iterate
the compression/decompression cycles 10 times, against 5 different initial config-
urations. After completing each 10th cyclic test, we carefully examine the geometry
of all the shells whether they are damaged or not. We regard the shells as damaged
if the tips of the reference shell and those of the shells after the test differ by about
10h. If damaged shells are found, we apply the same protocol as section ‘Fabri-
cation of open cylindrical shells’ prior to the next mechanical test.

Simulations
2D thin shells as 2D Kirchhoff rods. We represent our elastic shells in two
dimensions using the two-dimensional Kirchhoff thin elastic rod model, which
accounts for linear bending elasticity and exact geometrical non-linearities, at the
origin of the large displacements of the rod30. To solve for the dynamics of this
model, we develop a 2D, unclamped version of the high-order Super-Helix model,
which has been originally popularised in Computer Graphics in the context of hair
simulation18, by taking the Poisson ratio into account in the re-scaling of the
Young modulus. This model can be seen as a Galerkin (weak) discretisation of the
Kirchhoff equations, composed of N helical elements with uniform material cur-
vatures and twists. In 2D, the degrees of freedom of the rod boils down to N scalar
curvatures, and each element takes the form of a circular arc. Compared to a nodal
model, such a curvature-based model presents several advantages: the automatic
capture of inextensibility, linear bending forces that can be integrated implicitly
without additional cost, and a better speed of convergence with the number N of
elements. In all the simulations performed in this paper, we took N= 15 elements
for each rod, as we found this resolution sufficient for our accuracy needs.

Like the continuous 2D Kirchhoff rod model, the 2D Super-Helix model
(namely the Super-Circle model) is parametrised by only four physical parameters:
its length L, its natural curvature κ0, its linear mass λ and its bending modulus B.
When subject to gravity g, the model can be characterised by two dimensionless
parameters: the gravitational bending parameter Γ= λgL3/B and the curliness
c= κ0L. Note that in our experimental setting, the self-weight ~6 × 10−3 N is much
smaller than the characteristic elastic bending forces fType I.

Dry frictional contact. To couple two elastic shells together, we model dry frictional
contact through the Signorini–Coulomb law, which poses constraints on the
admissible velocity and force at contact so that non-penetration and Coulomb
friction conditions are satisfied. For the sake of simplicity, we only consider a single
friction parameter μ, hence making no distinction between static and dynamic
friction parameters. In our scenarios, we found that this single coefficient law was
sufficient to yield very good agreements between experiments and simulations. We
discretise the full, non-smooth dynamic problem of n contacting rods by using the
Moreau time-stepping method31, which resolves frictional contact constraints
implicitly. In practice, we use the so-bogus library32 which offers a free, robust, and
efficient implementation of non-smooth frictional contact solvers based upon the
hybrid algorithm first proposed by Daviet et al.19. We note that the coupling
between the Super-Circle model and so-bogus has been carefully validated20 on the
stick-slip scenario of a straight indenting rod (pinning test), first introduced by
Sano et al.21. We further improve the model by devising an arc-arc detection
scheme, and validate our complete numerical model on a curved rod contacting a
cylinder12 (see Supplementary Note 1). For all our results, we used a time-step of
10−4 s, a solver tolerance of 10−16(N s)2 (square impulses) and a maximum
number of iterations of 1000, allowing the solver to reach an accuracy of
10−9(N s)2 on average at each time-step.

The excellent agreements we obtain allow us, on the one hand, to calibrate
precisely the frictional coefficient of our experimental shells by relying on
simulation, using a shell-shell pinning experiment (see Fig. 2), and on the other
hand, to compare successfully our 30-shell experiment to simulation results (see
Figs. 3 and 4). Finally, our confidence in the numerical simulator allows us to
conduct extensive parametric studies on the many-body scenario, in which we vary
both the shell angle Φ and the friction coefficient μ, and use a set of 100 different
initial conditions per simulation for robust statistical output data (see Fig. 5, next
section and Supplementary Note 2). We conducted these simulations using the
same protocol as the experimental one; in particular, we used the speed of 5 mm
s−1 of the upper plate, which guarantees a quasi-static regime.

Statistics of Δmax and η. We observe experimentally and numerically that the Δmax
and η quantities measured on our 30-shell scenario are highly dependent on the
initial configuration of the shell stack, which leads to some significant spreading in
our results. A solution to reduce this spreading would be to scale up drastically the
number of shells, both experimentally and numerically. Relying on a

ffiffiffiffi

N
p

law for
the reduction of the distribution variance, we however anticipate that more than
10,000 shells would be necessary to yield less than 1% of spreading. Considering
that our experimental shells are fabricated manually and that our simulation time
raises from a few minutes for the first compression cycle of 30 shells to a few days
for that of 1000 shells, this makes this approach currently intractable, both from an
experimental and numerical point of view.

Instead, for the sake of efficiency, we stick to our small-scale 30-shell scenario
and, for each pair (Φ, μ), we run in parallel 100 simulations featuring each a different
random initial configuration. This allows us to build robust statistical data for Δmax

and η across the variation of initial conditions. Our plots are summarised in
Supplementary Fig. 2, for each (Φ, μ) pair considered. They all feature a Gaussian
distribution, which confirms the ergodicity assumption of our system. Moreover, it is
noteworthy that the variances are small, which allows us to report reasonably
accurate averages for both quantities. For the experimental values (μ= 0.35), it is
noteworthy that our error bars are close to the experimental ones (see Fig. 5).

Data availability
Experimental and simulation data are available at https://doi.org/10.5281/zenodo.
8085467.

Code availability
The codes for our numerical simulations are available upon request.
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