Abstract
Unveiling the microscopic origins of quantum phases dominated by the interplay of spin and motional degrees of freedom constitutes one of the central challenges in strongly correlated manybody physics. When holes move through an antiferromagnetic spin background, they displace the positions of spins, which induces effective frustration in the magnetic environment. However, a concrete characterization of this effect in a quantum manybody system is still an unsolved problem. Here we present a Hamiltonian reconstruction scheme that allows for a precise quantification of holemotioninduced frustration. We access nonlocal correlation functions through projective measurements of the manybody state, from which effective spinHamiltonians can be recovered after detaching the magnetic background from dominant charge fluctuations. The scheme is applied to systems of mixed dimensionality, where holes are restricted to move in one dimension, but SU(2) superexchange is twodimensional. We demonstrate that hole motion drives the spin background into a highly frustrated regime, which can quantitatively be described by an effective J_{1}–J_{2}type spin model. We exemplify the applicability of the reconstruction scheme to ultracold atom experiments by recovering effective spinHamiltonians of experimentally obtained 1D FermiHubbard snapshots. Our method can be generalized to fully 2D systems, enabling promising microscopic perspectives on the doped Hubbard model.
Similar content being viewed by others
Introduction
Microscopically understanding the motion of mobile charge carriers doped into Mott insulators constitutes one of the key open problems in strongly correlated manybody physics. When hopping through an insulating spin environment, holes displace spins along their way, which effectively frustrates the magnetic background. The arising competition of kinetic energy gain via delocalization and associated magnetic energy cost leads to the formation of a plethora of strongly interacting manybody phases^{1,2}, many of which yet seek to be explained on a microscopic footing. The Fermi–Hubbard (FH) model, believed to capture the essential physics of strongly correlated materials, has been subject to intense numerical studies that can resolve the intricate competition between various orders^{3,4,5,6,7,8,9}. Nevertheless, despite ongoing theoretical and experimental efforts over the past decades, a precise microscopic understanding of the interplay between motional and spin degrees of freedom is still an unsolved task, whose longsought understanding may help to reveal the origin of hightemperature superconductivity and possibly lead to the discovery of novel pairing mechanisms^{10,11}.
Analog quantum simulation, e.g., via ultracold atoms, can shed new light on the microscopic mechanisms underlying strongly correlated quantum manybody states^{12,13,14,15,16,17} and paradigmatic Hamiltonians like the FH model can now be experimentally explored^{11,18,19,20,21,22,23,24}. In particular, these setups allow to perform genuine quantum projective measurements and sample snapshots of the manybody state in the Fock basis, which in turn allow for insights into the wave function beyond averages and local observables. This capability has already been used to unveil highly nonlocal order parameters and hidden correlations in manybody systems^{22,25}.
As we demonstrate in our work, the huge amount of information stored in snapshots of manybody states can further be utilized to disentangle spin and charge sectors through nonlocal correlation functions, which allow us to recover emergent effective spinHamiltonians for parts of the system. The problem of reconstructing a Hamiltonian from measured correlations via machine learning schemes^{26,27,28,29,30} has attracted considerable interest in recent years, including certifying quantum simulation devices^{31}.
In this article, we present a snapshotbased Hamiltonian reconstruction scheme for the spin channel alone, which removes dominant charge fluctuations^{22,32} from individual snapshots. This allows us to quantify the effective spinHamiltonian, which includes the backaction of mobile dopants on the spin environment. We exemplify the proposed method by considering a system in mixeddimensions (mixD), where hole motion is restricted to one dimension (1D), but SU(2) spinsuperexchange is twodimensional (2D). We find that hole hopping drives and stabilizes the spins in a highly frustrated regime, which we show to be accurately described by a J_{1}−J_{2}type spinHamiltonian.
Our method is directly applicable to experimental data obtained from ultracold quantum gas microscopes. We showcase this by reconstructing effective Hamiltonians from 1D measurements of the FH model^{22}, where spincharge separation governs the physics of the chains. Furthermore, our insights could be used to effectively simulate the highly frustrated J_{1}–J_{2} model in ultracold atom experiments by implementing the mixD setting and postprocessing the measurements.
Our work sheds light on the longstanding question about the interplay of spin and motional degrees of freedom in strongly correlated materials, and paves the way to gain deep microscopic insights into prototypical systems such as the 2D FH and t − J model.
Results
The model
We consider the t − J model in mixD^{10,33,34,35}, described by the Hamiltonian:
Here, \({\hat{c}}_{{{{{{{{\bf{i}}}}}}}}}^{({{{\dagger}}} )}\), \({\hat{n}}_{{{{{{{{\bf{i}}}}}}}}}\) and \({\hat{{{{{{{{\bf{S}}}}}}}}}}_{{{{{{{{\bf{i}}}}}}}}}\) are fermionic annihilation (creation), charge density, and spin operators on site i, respectively; 〈i, j〉_{(x)} denotes a nearestneighbor (NN) pair on a 2D square lattice (with subscript x indicating a NN pair only along the xdirection), and \({\hat{{{{{{{{\mathcal{P}}}}}}}}}}_{GW}\) is the Gutzwiller operator projecting out states with double occupancy. The mixD setting, Eq. (1), has successfully been implemented in ultracold atom setups using strong tilted potential gradients^{11}, which effectively restrict hole motion perpendicular to the gradient direction while spinspin interactions remain 2D^{36,37}.
Recently, we demonstrated how hidden AFM correlations in the mixD t − J model result in the formation of a remarkably resilient stripe phase (i.e., a coupled charge and spindensity wave^{38,39}), with critical temperatures on the order of the magnetic coupling J^{35}. Above these critical temperatures of charge and spindensity wave formation, holes were found to form a deconfined chargon gas, i.e., a phase without order^{34,35}.
In the following, we focus on the latter regime, and study how hole motion distorts the spins in the background. The effect is qualitatively depicted in Fig. 1a. The upper panel shows an (idealized) real space snapshot of holes moving through an AFM Néel background. Bonds correspond to AFM interactions in the instantaneous charge configuration, illustrated by gray lines. In between holes on neighboring legs, spins are aligned, leading to a linearly increasing magnetic energy penalty via the formation of geometric strings^{21,40,41,42} (depicted by green wiggly lines).
As a direct consequence of the restricted charge motion to 1D, spins can be relabeled by the new positions they have after moving all holes to the right in each chain—resulting in a distinct definition of squeezed space^{32,43}. More formally, consider a Fock state \({\bigotimes }_{y}\big\vert {\sigma }_{[1,y]},{\sigma }_{[2,y]},\ldots ,{\sigma }_{[{L}_{x},y]}\big\rangle\), where {0, ↑, ↓} ∋ σ_{x,y} is the single particle basis of the t − J model. These local spin charge configurations are relabeled upon squeezing, whereby each Fock state is now given by \({\bigotimes }_{y}\big\vert {\tilde{\sigma }}_{[\tilde{1},y]},{\sigma }_{[\tilde{2},y]},\ldots ,{\sigma }_{[{\tilde{L}}_{x},y]}\big\rangle \otimes {\hat{h}}_{[{x}_{1},y]}^{{{{\dagger}}} }\ldots {\hat{h}}_{[{x}_{{N}_{y}},y]}^{{{{\dagger}}} }\left\vert 0\right\rangle\)^{34}. Here, \({\tilde{\sigma }}_{[\tilde{x},y]}=\uparrow ,\downarrow\) (but note that \({\tilde{\sigma }}_{[\tilde{x},y]}\, \ne \, 0\)) denotes spins on the squeezed lattice \(\tilde{x}=1,\ldots ,{L}_{x}{N}_{y}\), where N_{y} is the number of holes in rung y, and \({\hat{h}}_{[x,y]}\) creates a hard core fermionic chargon at site i = [x, y]. By squeezing the spins out, spins on the squeezed and real space lattice relate as \(\tilde{\sigma }(\tilde{x},y)=\sigma (\tilde{x}+{\sum }_{j < \tilde{x}}{n}_{[\, j,y]}^{h},y)\), where \({n}_{[x,y]}^{h}\) refers to the number of chargons at real space lattice site [x, y]. The lower panel of Fig. 1a illustrates the squeezing process, where the initial Néel order is restored in the isolated spin background. However, interactions on diagonal bonds emerge (ocher lines), which cause geometric frustration of the spins in squeezed space. From now on, we refer to lattice sites in real and squeezed space by i and \(\tilde{{{{{{{{\bf{i}}}}}}}}}\), respectively.
Characterizing the spin state in squeezed space
In order to quantify the arising frustration on the squeezed lattice, we simulate the mixD t − J model, Eq. (1), at finite temperature and fixed doping using imaginary time evolution schemes (purification) via matrix product states (MPS)^{44,45}. For faster, more controllable numerics and to prevent postselection of snapshots, we explicitly implement the system’s enhanced U(1) symmetries in each ladder leg, i.e., we work in an ensemble where we allow for thermal spin fluctuations but keep the number of holes in each ladder leg constant^{35}. In particular, we simulate the mixD t − J model at intermediate temperature T/J = 5/3 (βJ = 0.6), which lies inside the chargon gas phase (i.e., no charge and spindensity waves form) and, furthermore, is in a temperature regime accessible for quantum gas microscopes.
From the thermal MPS at inverse temperature β, we sample uncorrelated snapshots of the corresponding Gibbs state^{46,47}. After postprocessing the individual measurements by squeezing out the holes, spinspin correlations \(\langle {\hat{S}}_{\tilde{{{{{{{{\bf{i}}}}}}}}}}^{z}{\hat{S}}_{\tilde{{{{{{{{\bf{j}}}}}}}}}}^{z}\rangle\) can directly be evaluated in squeezed space. In Fig. 2a, nearestneighbor as well as diagonal spinspin correlations are shown on the squeezed lattice. In the bulk of the squeezed ladder, both nearest neighbor as well as diagonal correlators are negative and comparable in magnitude, signaling strong frustration in the spin background induced by the motion of the holes. In contrast, at both edges of the ladder, low average hole concentrations lead to only marginal perturbations of the spin background—resulting in AFM type correlations that are negative (positive) along nearest (diagonal) neighbors.
Figure 2b shows nearestneighbor rung (blue) and diagonal (red) correlators. Dasheddotted lines correspond to rung and diagonal correlations for a Heisenberg ladder with solely nearestneighbor couplings (where \(\beta {J}_{1}^{x}=\beta {J}_{1}^{y}=0.44\)), which describe the physics at the edges qualitatively well, but fail to reproduce the measured correlations in the bulk. Due to the frustrating effect of the hopping holes, diagonal couplings need to be taken into account to accurately capture the physics of the squeezed background. To this end, we introduce an effective \({J}_{1}^{x}{J}_{1}^{y}{J}_{2}\) Heisenberg model^{48}, given by the Hamiltonian:
Here, \({\hat{{{{{{{{\bf{S}}}}}}}}}}_{\tilde{{{{{{{{\bf{i}}}}}}}}}}\) is the spin1/2 operator at site \(\tilde{{{{{{{{\bf{i}}}}}}}}}\), and \(\{{J}_{H}\}=\{{J}_{1}^{x},{J}_{1}^{y},{J}_{2}\}\) are the coupling strengths of neighboring spins in x, y and diagonal direction on the squeezed lattice, respectively.
To quantitatively pin down the strength of the arising frustration, we perform a Hamiltonian reconstruction with input Hamiltonian \({\hat{{{{{{{{\mathcal{H}}}}}}}}}}_{\{{J}_{H}\}}\), Eq. (2), together with the measured spinspin correlations in squeezed space. Couplings in \({\hat{{{{{{{{\mathcal{H}}}}}}}}}}_{\{{J}_{H}\}}\) are chosen to be homogeneous throughout the bulk of squeezed space, justified by the approximately constant behavior of correlations in the bulk region of Fig. 2b—solid lines are averages of the correlations over the marked box. Due to the underlying SU(2) symmetry of the mixD t − J model, manybody snapshots along a single spin axis—here chosen along z—are sufficient to reconstruct the full effective Hamiltonian, Eq. (2). Results of the reconstruction correspond to the parameter configuration {J_{H}} that best describe the measured correlations.
On a more formal footing, we follow the procedure introduced in ref. ^{30} and minimize the objective function \({{{{{{{\mathcal{G}}}}}}}}\) over all possible coupling parameters {J_{H}}:
with \(Z={{{{{{{\rm{Tr}}}}}}}}[{e}^{\beta {\hat{{{{{{{{\mathcal{H}}}}}}}}}}_{\{{J}_{H}\}}}]\) the partition function and \({{{{{{{{\mathcal{M}}}}}}}}}_{1}^{\mu }=\mathop{\sum }\nolimits_{{\langle \tilde{{{{{{{{\bf{i}}}}}}}}},\tilde{{{{{{{{\bf{j}}}}}}}}}\rangle }_{\mu }}^{{\prime} }\langle {\hat{S}}_{\tilde{{{{{{{{\bf{i}}}}}}}}}}^{z}{\hat{S}}_{\tilde{{{{{{{{\bf{j}}}}}}}}}}^{z}\rangle\), \({{{{{{{{\mathcal{M}}}}}}}}}_{2}=\mathop{\sum }\nolimits_{{\langle \langle \tilde{{{{{{{{\bf{i}}}}}}}}},\tilde{{{{{{{{\bf{j}}}}}}}}}\rangle \rangle }_{{{{{{{{\rm{diag}}}}}}}}}}^{{\prime} }\langle {\hat{S}}_{\tilde{{{{{{{{\bf{i}}}}}}}}}}^{z}{\hat{S}}_{\tilde{{{{{{{{\bf{j}}}}}}}}}}^{z}\rangle\) the summed correlations along nearest and diagonal neighbors within the considered window in the bulk of squeezed space. Figure 2c shows how approximations for \({{{{{{{{\mathcal{M}}}}}}}}}_{1}^{x,y},{{{{{{{{\mathcal{M}}}}}}}}}_{2}\) quickly saturate with the number of used snapshots, suggesting a qualitatively satisfactory proxy for the spinspin correlators after a few thousand projective measurements. For the rest of the analysis, we use sample sizes of 7000 snapshots for each approximation of the correlations.
The minimization process is done via standard gradient descent (GD) methods, where in each iteration the parameters are updated according to the gradient \({\nabla }^{{\prime} }{{{{{{{\mathcal{G}}}}}}}}\) within the considered bulk window of squeezed space. The temperature β^{−1} of the \({J}_{1}^{x}{J}_{1}^{y}{J}_{2}\) Heisenberg Hamiltonian is chosen identically to the underlying simulations of the mixD t − J system during the GD. Note that this choice might not reflect the actual effective temperature of the spin background. However, the relevant ratios \({J}_{1}^{y}/{J}_{1}^{x}\), \({J}_{2}/{J}_{1}^{x}\) that quantify the frustration in the system are independent of the true temperature of the squeezed magnetic environment.
Intermediate temperature regimes T/J ≳ 1—as also chosen in our simulations—have been shown to work best for reconstructions of the underlying coupling parameters, as both in the low and hightemperature limit the energy landscape defined by \({{{{{{{\mathcal{G}}}}}}}}\) is entirely flat^{30}. Given a size L_{x} × L_{y} of the mixD system, the dimensions of the reconstructed \({J}_{1}^{x}{J}_{1}^{y}{J}_{2}\) Heisenberg ladder on the squeezed lattice is given by \({\tilde{L}}_{x}\times {\tilde{L}}_{y}=(1{n}^{h}){L}_{x}\times {L}_{y}\).
Hamiltonian reconstruction results for a single run are presented in Fig. 2d. Evaluated correlations of the best fitting \({J}_{1}^{x}{J}_{1}^{y}{J}_{2}\) model are seen to perfectly match the measured mean correlations in the bulk of squeezed space, hence strongly supporting that the physics of the magnetic background in the mixD t − J model is well captured by \({J}_{1}^{x}{J}_{1}^{y}{J}_{2}\) Heisenberg interactions on a square lattice. We have explicitly checked that independent of the initially chosen parameter values for the GD, {J_{H}} always converge to identical points in parameter space, underlining the robustness of the GD scheme—see Supplementary Note 1.
To characterize and classify the reconstructed spin states in squeezed space as a function of doping, we perform ground state calculations of the \({J}_{1}^{x}{J}_{1}^{y}{J}_{2}\) Heisenberg model and evaluate the static spin structure factor (SSSF) given by \(S({q}_{x},{q}_{y})=\frac{1}{{L}_{x}^{2}{L}_{y}^{2}}{\sum }_{{{{{{{{\bf{i}}}}}}}},{{{{{{{\bf{j}}}}}}}}}{e}^{i{{{{{{{\bf{q}}}}}}}}\cdot ({{{{{{{\bf{i}}}}}}}}{{{{{{{\bf{j}}}}}}}})}\langle {\hat{{{{{{{{\bf{S}}}}}}}}}}_{{{{{{{{\bf{i}}}}}}}}}\cdot {\hat{{{{{{{{\bf{S}}}}}}}}}}_{{{{{{{{\bf{j}}}}}}}}}\rangle\). For \({J}_{1}^{x}={J}_{1}^{y}={J}_{1}\), it has been demonstrated that a highly frustrated magnetic regime exists for 0.4 ≲ J_{2}/J_{1} ≲ 0.6 that is sandwiched by a Néel and stripe AFM phase^{49,50,51,52,53,54}. Though the exact nature of the nonmagnetic ground state in the frustrated regime is still controversial, it remains a promising candidate for the realization of a quantum spin liquid phase possibly described by Anderson’s resonating valence bond (RVB) paradigm^{55,56,57,58,59,60,61,62}. We evaluate the hybrid order parameter S(π, π) + S(0, π) in the \({J}_{1}^{y}/{J}_{1}^{x}{J}_{2}/{J}_{1}^{x}\) parameter space, signaling whether AFM or stripe AFM order exists in the system. Dark regions in the background of Fig. 1b correspond to no apparent spin ordering, and hence signal the existence of a strongly frustrated spin state akin to the observations in the homogeneous J_{1} − J_{2} model.
The reconstruction process, consisting of (1) approximating correlations in squeezed space using snapshots and (2) performing the GD, is repeated a total number of ten times. Averaging over the converged results of all runs leads to the main result of this paper, presented in Fig. 1b by blue connected symbols. We observe how the spin state in squeezed space rapidly approaches the highly frustrated regime upon increasing the doping level, until seemingly saturating within it to a certain configuration \(\{{J}_{H}^{* }\}\). We note that at the considered system sizes, boundary effects become especially pronounced at low hole concentrations n^{h} = 0.05, 0.1. This leads to a slow saturation of the correlations in the bulk of squeezed space, which in turn shifts effective couplings averaged within the fixed window to smaller (larger) values of \({J}_{2}/{J}_{1}^{x}\) (\({J}_{1}^{y}/{J}_{1}^{x}\)), see Supplementary Note 2. In the thermodynamic limit, we in fact expect any finite hole doping in the chargon gas phase to drive the squeezed spin system into a highly frustrated state. A numerical study of longer ladders of size 40 × 2 support this assumption, where already for n^{h} = 0.05 the spin state is reconstructed to lie deep inside the frustrated regime.
The reconstruction scheme as introduced above takes into account spinspin correlations directly measured in squeezed space, hence providing an unbiased platform for the analysis of the spin background by explicitly including the backaction of hole motion on the spins. Motivated from the separation of energy scales in the mixD t − J model with t/J ≫ 1, we make the ansatz of a fully decoupled thermal density matrix given by separate spin (s) and charge (c) sectors, \(\hat{\rho }={\hat{\rho }}_{{{{{{{{\rm{s}}}}}}}}}\otimes {\hat{\rho }}_{{{{{{{{\rm{c}}}}}}}}}\), and aim to test the resulting predictions against the unbiased reconstruction output.
Within the separation ansatz, interaction strengths in squeezed space are obtained by conditioned probabilities in real space^{22}. Two nearest neighbors along x in squeezed space interact only if the corresponding sites are nearest neighbors along x in real space, leading to an effective coupling strength (assuming homogeneous hole density \(\langle {n}_{{{{{{{{\bf{i}}}}}}}}}^{h}\rangle ={n}^{h}\))—see i.p. the Supplementary Materials of ref. ^{22}:
Here, \({g}_{\mu }^{(2)}=\langle {\hat{n}}_{{{{{{{{\bf{i}}}}}}}}}^{h}{\hat{n}}_{{{{{{{{\bf{i}}}}}}}}+{{{{{{{{\bf{e}}}}}}}}}_{\mu }}^{h}\rangle\) with e_{μ} the unit vector in direction μ = x, y. Vertical and diagonal bonds are obtained similarly by conditioning the correlators by the total number of holes to the left of site i, \({\nu }_{{{{{{{{\bf{i}}}}}}}} = [x,y]}^{h}={\sum }_{{x}^{{\prime} } < x}{N}_{[{x}^{{\prime} },y]}^{h}\), with \({N}_{{{{{{{{\bf{i}}}}}}}}}^{h}\) the number of holes on site i. Diagonal coupling strengths J_{n} spanning a distance of Δx = n − 1 (vertical bonds \({J}_{1}^{y}\) correspond to J_{1} in this notation) are then given by:
We evaluate the estimated effective couplings, Eqs. (4) and (5), using the mixD t − J snapshots. Results are shown by red connected symbols in Fig. 1b. We observe that the theoretically predicted expectations for \({J}_{1}^{x},{J}_{1}^{y},{J}_{2}\) within the separation ansatz agree remarkably well with the full reconstruction. Deviations from the above description, in particular the consistent underestimation of relative diagonal coupling strengths \({J}_{2}/{J}_{1}^{x}\), are likely caused by nontrivial spinhole correlations in the mixD t − J model, which are implicitly included in the reconstruction analysis but discarded in the separation ansatz.
We note that the conditioned correlators Eqs. (4) and (5) calculated from mixD t − J snapshots are numerically almost identical to calculations of free spinless fermions (free chargon gas), see Supplementary Note 3. This lets us conclude that holes, while behaving like free fermions in the chargon gas phase of the mixD t − J model, nevertheless correlate nontrivially with the spin background.
So far, our approach has been to restrict the effective Hamiltonian Eq. (2) to first order diagonal couplings J_{2}. To assess the systematic error related to this approximation, we estimate the magnitude of longerrange couplings J_{n} by evaluating the conditioned correlators Eq. (5) for n ≥ 3. Relative strengths of couplings up to J_{4} are depicted in Fig. 3, where a rapid decrease with real space distance is observed. The relative strength of J_{2} in units of \({J}_{1}^{x}\) is of order ~10%, cf. Fig. 1b. J_{3}, on the other hand, reaches only a few percent in terms of \({J}_{1}^{x}\), suggesting that n ≥ 3 couplings are negligible for the effective description. We implement the Hamiltonian reconstruction scheme outlined above also for a \({J}_{1}^{x}{J}_{1}^{y}{J}_{2}{J}_{3}\) Heisenberg model including interactions in squeezed space up to J_{3}. We find that this results in only very minor corrections to the reconstructed ratios \({J}_{1}^{y}/{J}_{1}^{x}\), \({J}_{2}/{J}_{1}^{x}\), supporting that the spin physics is well captured by nearestneighbor and frustrating (first order) diagonal bonds—see Supplementary Note 4.
Spincharge separation in 1D
In the 1D FH model, the ground state wave function is known to factorize into fully separated spin and charge channels in the strongly interacting limit, leading to the celebrated phenomenon of spincharge separation (i.e., the exact absence of spinhole correlations)^{43}. In 1D, is has been demonstrated that hidden spin correlations—distorted in real space by the motion of holes—can be revealed by transformation to squeezed space, effectively described by a 1D Heisenberg Hamiltonian with nearest neighbor interaction \({J}_{1}^{x}({n}^{h})\) on the squeezed lattice^{22,63}, cf. Fig. 4a:
We apply our squeezed space Hamiltonian reconstruction scheme and recover the effective spinHamiltonian of the doped 1D FH model using experimentally obtained snapshots in a degenerate twocomponent ultracold Fermi gas carried out by some of us^{22}. Results are shown in Fig. 4b by blue data points, where a consistent decrease of effective coupling strength \({J}_{1}^{x}({n}^{h})\) is observed upon increasing the hole doping—as expected from Eq. (4). For comparison, we further simulate the 1D t − J model with identical parameters as estimated in the experiment (t/J = 1.82, T/J = 0.87) and use sampled thermal snapshots in squeezed space for reconstructions, shown by red squares in Fig. 4b.
Effective interactions \({J}_{1}^{x}/J\) reconstructed for an underlying 1D t − J model are seen to consistently lie below recovered coupling strengths of the 1D FH model. This discrepancy can be explained by higher order virtual processes in the FH model, which we illustrate by comparing the reconstructions to theoretical predictions within a separation ansatz. In the 1D t − J model, effective spin interactions in squeezed space can be calculated via Eq. (4), yielding:
Here, \(G(d)=\frac{1}{\pi }\int\nolimits_{0}^{\pi }dk\cos (kd){n}_{F}({n}^{h},T)\) with n_{F}(n^{h}, T) the FermiDirac distribution of free chargons hopping on a 1D lattice at temperature T. When generalizing the t − J model to include nextnearest neighbor hole hopping processes mediated by doubly occupied virtual states as possible in the FH model, the effective coupling reads^{22}:
with J = 4t^{2}/U and U the Hubbard interaction.
Reconstructed values of \({J}_{1}^{x}/J\) are observed to match the theoretical predictions for spincharge separated systems well, depicted by red and blue dashed lines corresponding to Eqs. (7) and (8), respectively. This illustrates the (approximate) presence of spincharge separation in the 1D FH and t − J model away from the T = 0 and strongly interacting limit, ultimately being mediated by their separation of energy scales.
Discussion
Using Hamiltonian reconstruction schemes, we have proposed a method to quantify holemotioninduced frustration in a doped antiferromagnet by exploiting the full information stored in manybody snapshots. An advantage of the reconstruction process as introduced above is that the effective Hamiltonian—defined on the squeezed lattice—describes a reduced number of degrees of freedom, i.e., its local Hilbert space dimension is smaller than the one of the original system. In particular, the effective spinHamiltonian in squeezed space is of local dimension d = 2, rendering reconstructions for a given set of snapshots feasible even for larger system sizes. Experimental data of 2D systems that are inaccessible with classical simulations but within reach of current experiments^{11} could be used as input for a computational reconstruction of the spin background. We benchmarked this for wide Heisenberg ladders, where we reconstruct unknown coupling parameters to high accuracy from snapshots, see Supplementary Note 5.
By analyzing a setting in mixeddimensions, we have firmly established a quantitative connection between the doped mixD t − J model and the paradigmatic frustrated J_{1} − J_{2} model. In particular, we demonstrated how hole motion drives the spin background into a highly frustrated state, whereby effective diagonal, frustrating magnetic bonds are induced on the squeezed lattice formed by the spins alone. Our results match theoretical predictions based on spincharge separation reasonably well, differences being likely caused by weak remaining spinhole correlations that deserve further investigation in the future. We note that due to the formation of stripes below temperatures T ~ J/2^{35} in the mixD t − J model, its ground state is not directly related to a quantum spin liquid phase. Nevertheless, the ordered stripe phase at lower temperature may be merely covering a disordered quantum phase that dominates the physics of the model once the stripe order is melted away above the stripe critical temperature. Though this perspective is admittedly speculative, a similar view is often evoked in the context of describing the pseudogap with its associated small Fermi surface as originating from a covered ground state fractionalized Fermi liquid, see e.g. ref. ^{64}.
Utilizing snapshots of a cold atom experiment simulating the 1D FH model, we already demonstrated the direct applicability of the reconstruction method to existing experimental data. From a converse experimental point of view, the above insights could further be utilized to effectively simulate the highly frustrated J_{1} − J_{2} model by implementing the mixD setting and postprocessing the measurements.
The reconstruction scheme can be generalized and applied to a variety of manybody phases. In the stripe phase, for instance, fluctuating holes bound into stripes are expected to lead to spatial modulations of the couplings between spins which can be reconstructed using the scheme we described. Moreover, our method can be extended from mixD to fully 2D settings with homogeneous charge motion, where e.g., a weak easyaxis anisotropy of the Heisenberg interactions can enable string retracing^{40} to remove dominant charge fluctuations and define a squeezed lattice. Applying our scheme to such snapshots will provide a microscopic perspective on the doped FH model and its relation to putative topological order in his enigmatic model. Making explicit use of all accessible correlation functions in squeezed space to further enhance the accuracy of the reconstructions is a promising direction for future research, for instance by directly comparing the distributions of measured and reconstructed snapshots.
Methods
Finitetemperature DMRG
We simulate the mixD t − J model at finite temperature using mixed state purification schemes while conserving the system’s symmetries^{65}. In particular, we expand the ladder system by introducing auxiliary sites, which act as a finite temperature bath via their entanglement to the physical system. In order to calculate thermal matrix product states, we first generate the infinite temperature, maximally entangled state \(\left\vert \Psi (\beta =0)\right\rangle\) in a given symmetry sector^{35}—see also Supplementary Note 6.
A pure state in the enlarged system at finite temperature is then calculated by evolving \(\left\vert \Psi (\beta =0)\right\rangle\) in imaginary time under the physical Hamiltonian, \(\left\vert \Psi (\tau )\right\rangle ={e}^{\tau \hat{{{{{{{{\mathcal{H}}}}}}}}}}\left\vert \Psi (\beta =0)\right\rangle\), where τ = β/2 with β the inverse temperature. The corresponding mixed state of the physical system is computed by tracing out all auxiliary degrees of freedom when computing expectation values in the physical subset.
During the imaginary time evolution, we conserve the particle number in each physical leg N_{ℓ}, ℓ = 1 .. L_{y}, the total particle number in the auxiliary system \({N}_{{{{{{{{\rm{aux}}}}}}}}.}^{{{{{{{{\rm{tot}}}}}}}}}\), as well as the total spin \({S}_{{{{{{{{\rm{phys}}}}}}}}.+{{{{{{{\rm{aux}}}}}}}}.}^{z,{{{{{{{\rm{tot}}}}}}}}}\) (the latter allowing for finite total magnetizations of the physical system at finite temperate). This results in a total of L_{y} + 2 symmetries employed by the DMRG implementation.
Given a generic observable \(\hat{O}\) of the physical chain, the thermodynamic average can be calculated in the enlarged space by tracing out the ancilla degrees of freedom:
Here, the norm 〈Ψ(β)∣Ψ(β)〉 ∝ Z(β) is proportional to the partition function at temperature β^{−1}.
The maximally entangled state needed as a starting point of the imaginary time evolution is generated using the concept of entangler Hamiltonians^{65,66}, which we specifically tailor for our “legcanonical” ensemble^{35}. Since the maximally entangled state is usually of low bond dimension, we first employ global MPS imaginary time evolution schemes to evolve the system away from infinite temperature. Once bond dimensions are sufficiently high, we switch to local approximation methods. In particular, we use the Krylov scheme and the timedependent variational principle (TDVP) for global and local evolutions, respectively^{45}.
Hamiltonian reconstruction
Due to the nonMarkovian nature of quantum states, it is a priori unclear whether measured correlations are sufficient to learn the quantum interactions of the underlying Hamiltonian^{67}. However, it has been shown that the strongly convex property of the free energy with respect to the interaction parameters renders the Hamiltonian learning problem feasible^{30}.
In each GD step, we compute the partition function and relevant correlations \({{{{{{{{\mathcal{M}}}}}}}}}_{1}^{x/y},{{{{{{{{\mathcal{M}}}}}}}}}_{2}\) using the MPS schemes described above. Due to the numerical complexity, we do not consider advanced GD methods with varying step size e.g., given by the Amijo rule, but stick to a straightforward optimization using a fixed descent step. In particular, we choose the step a to be 20% of the objective gradient, i.e., \({{{{{{{\bf{a}}}}}}}}=0.2{\nabla }^{{\prime} }{{{{{{{\mathcal{G}}}}}}}}\), where \({\nabla }^{{\prime} }\) is the gradient in parameter space within the fixed window in the bulk of squeezed space as introduced in the main text. When the norm of the gradient reaches a certain threshold, here chosen as \( {\nabla }^{{\prime} }{{{{{{{\mathcal{G}}}}}}}} < 1{0}^{6}\), we stop the descent and assume converged results.
In our simulations, we work at intermediate temperatures, i.p. T/J = 5/3. On the one hand, this ensures that the mixD t − J system is in the chargon gas phase, i.e., stripes do not form^{35}. On the other hand, intermediate temperature regimes have been shown to yield best reconstruction results from projective measurements^{30}. To illustrate the latter argument, consider for instance the ferromagnetic (FM) Ising model, featuring a FM ground state for any nonzero interaction strength. Therefore, at low temperatures close to the ground state, the energy landscape \({{{{{{{\mathcal{G}}}}}}}}\) is nearly flat, resulting in bad reconstructions. Similarly, for T/J ≫ 1 measured correlations only weakly depend on the underlying coupling parameters (e.g., the infinite temperature state is identical for all interaction strengths), which hinder precise reconstructions. By reconstructing purely magnetic models for various temperatures, we demonstrate this explicitly in Supplementary Note 5.
Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
Code availability
The data analyzed in the current study have been obtained using the SyTen package^{68,69}.
References
Lee, P. A., Nagaosa, N. & Wen, X.G. Doping a mott insulator: physics of hightemperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to hightemperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
LeBlanc, J. P. F. et al. Solutions of the twodimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).
Zheng, B.X. et al. Stripe order in the underdoped region of the twodimensional Hubbard model. Science 358, 1155–1160 (2017).
Jiang, H.C. & Devereaux, T. P. Superconductivity in the doped hubbard model and its interplay with nextnearest hopping t’. Science 365, 1424–1428 (2019).
Qin, M. et al. Absence of superconductivity in the pure twodimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).
Schäfer, T. et al. Tracking the footprints of spin fluctuations: a multimethod, multimessenger study of the twodimensional Hubbard model. Phys. Rev. X 11, 011058 (2021).
Jiang, H.C. & Kivelson, S. A. Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl Acad. Sci. 119, e2109406119 (2022).
Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).
Bohrdt, A., Homeier, L., Bloch, I., Demler, E. & Grusdt, F. Strong pairing in mixeddimensional bilayer antiferromagnetic mott insulators. Nat. Phys. 18, 651–656 (2022).
Hirthe, S. et al. Magnetically mediated hole pairing in fermionic ladders of ultracold atoms. Nature 613, 463–467 (2023).
Bloch, I., Dalibard, J. & Zwerger, W. Manybody physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Cheuk, L. W. et al. Quantumgas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).
Parsons, M. F. et al. Siteresolved imaging of fermionic ^{6}Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).
Esslinger, T. Fermihubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010).
Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).
Cocchi, E. et al. Equation of state of the twodimensional Hubbard model. Phys. Rev. Lett. 116, 175301 (2016).
Chiu, C. S. et al. String patterns in the doped Hubbard model. Science 365, 251–256 (2019).
Hilker, T. A. et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators. Science 357, 484–487 (2017).
Koepsell, J. et al. Microscopic evolution of doped Mott insulators from polaronic metal to fermi liquid. Science 374, 82–86 (2021).
Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).
Endres, M. et al. Observation of correlated particlehole pairs and string order in lowdimensional Mott insulators. Science 334, 200–203 (2011).
Di Franco, C., Paternostro, M. & Kim, M. S. Hamiltonian tomography in an accesslimited setting without state initialization. Phys. Rev. Lett. 102, 187203 (2009).
Zhang, J. & Sarovar, M. Quantum hamiltonian identification from measurement time traces. Phys. Rev. Lett. 113, 080401 (2014).
Qi, X.L. & Ranard, D. Determining a local Hamiltonian from a single eigenstate. Quantum 3, 159 (2019).
Cao, C., Hou, S.Y., Cao, N. & Zeng, B. Supervised learning in Hamiltonian reconstruction from local measurements on eigenstates. J. Phys. Condens. Matter 33, 064002 (2020).
Anshu, A., Arunachalam, S., Kuwahara, T. & Soleimanifar, M. Sampleefficient learning of interacting quantum systems. Nat. Phys. 17, 931–935 (2021).
Bairey, E., Arad, I. & Lindner, N. H. Learning a local Hamiltonian from local measurements. Phys. Rev. Lett. 122, 020504 (2019).
Kruis, H. V., McCulloch, I. P., Nussinov, Z. & Zaanen, J. Geometry and the hidden order of luttinger liquids: the universality of squeezed space. Phys. Rev. B 70, 075109 (2004).
Grusdt, F., Zhu, Z., Shi, T. & Demler, E. Meson formation in mixeddimensional tJ models. SciPost Phys. 5, 57 (2018).
Grusdt, F. & Pollet, L. \({{\mathbb{z}}}_{2}\) parton phases in the mixeddimensional t − J_{z} model. Phys. Rev. Lett. 125, 256401 (2020).
Schlömer, H., Bohrdt, A., Pollet, L., Schollwöck, U. & Grusdt, F. Robust stripes in the mixeddimensional t − j model. Phys. Rev. Res. 5, L022027 (2023).
Trotzky, S. et al. Timeresolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).
Dimitrova, I. et al. Enhanced superexchange in a tilted Mott insulator. Phys. Rev. Lett. 124, 043204 (2020).
White, S. R. & Scalapino, D. J. Density matrix renormalization group study of the striped phase in the 2d t − J model. Phys. Rev. Lett. 80, 1272–1275 (1998).
Tranquada, J. M. Stripes and superconductivity in cuprates. Physica B: Condensed Matter 407, 1771–1774 (2012).
Grusdt, F. et al. Parton theory of magnetic polarons: mesonic resonances and signatures in dynamics. Phys. Rev. X 8, 011046 (2018).
Grusdt, F., Bohrdt, A. & Demler, E. Microscopic spinonchargon theory of magnetic polarons in the t − j model. Phys. Rev. B 99, 224422 (2019).
Bohrdt, A. et al. Classifying snapshots of the doped Hubbard model with machine learning. Nat. Phys. 15, 921–924 (2019).
Ogata, M. & Shiba, H. Betheansatz wave function, momentum distribution, and spin correlation in the onedimensional strongly correlated Hubbard model. Phys. Rev. B 41, 2326–2338 (1990).
Schollwöck, U. The densitymatrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Paeckel, S. et al. Timeevolution methods for matrixproduct states. Ann. Phys. 411, 167998 (2019).
Ferris, A. J. & Vidal, G. Perfect sampling with unitary tensor networks. Phys. Rev. B 85, 165146 (2012).
Buser, M., Schollwöck, U. & Grusdt, F. Snapshotbased characterization of particle currents and the Hall response in synthetic flux lattices. Phys. Rev. A 105, 033303 (2022).
Starykh, O. A. & Balents, L. Dimerized phase and transitions in a spatially anisotropic square lattice antiferromagnet. Phys. Rev. Lett. 93, 127202 (2004).
Mezzacapo, F. Groundstate phase diagram of the quantum J_{1} − J_{2} model on the square lattice. Phys. Rev. B 86, 045115 (2012).
Hu, W.J., Becca, F., Parola, A. & Sorella, S. Direct evidence for a gapless Z_{2} spin liquid by frustrating Néel antiferromagnetism. Phys. Rev. B 88, 060402 (2013).
Wang, L., Poilblanc, D., Gu, Z.C., Wen, X.G. & Verstraete, F. Constructing a gapless spinliquid state for the spin1/2J_{1} − J_{2} Heisenberg model on a square lattice. Phys. Rev. Lett. 111, 037202 (2013).
Gong, S.S., Zhu, W., Sheng, D. N., Motrunich, O. I. & Fisher, M. P. A. Plaquette ordered phase and quantum phase diagram in the spin\(\frac{1}{2}\)J_{1} − J_{2} square Heisenberg model. Phys. Rev. Lett. 113, 027201 (2014).
Jiang, H.C., Yao, H. & Balents, L. Spin liquid ground state of the spin\(\frac{1}{2}\) square J_{1}J_{2} Heisenberg model. Phys. Rev. B 86, 024424 (2012).
Haghshenas, R. & Sheng, D. N. u(1)symmetric infinite projected entangledpair states study of the spin1/2 square J_{1} − J_{2} Heisenberg model. Phys. Rev. B 97, 174408 (2018).
Anderson, P. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).
Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valencebond state: solitons and highT_{c} superconductivity. Phys. Rev. B 35, 8865–8868 (1987).
Anderson, P. W. The resonating valence bond state in La_{2}CuO_{4} and superconductivity. Science 235, 1196–1198 (1987).
Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonatingvalencebond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095–2098 (1987).
Kotliar, G. Resonating valence bonds and dwave superconductivity. Phys. Rev. B 37, 3664–3666 (1988).
Nagaosa, N. & Lee, P. A. Normalstate properties of the uniform resonatingvalencebond state. Phys. Rev. Lett. 64, 2450–2453 (1990).
Baskaran, G., Zou, Z. & Anderson, P. The resonating valence bond state and hightc superconductivity—a mean field theory. Solid State Commun. 88, 853–856 (1993).
White, S. R., Noack, R. M. & Scalapino, D. J. Resonating valence bond theory of coupled Heisenberg chains. Phys. Rev. Lett. 73, 886–889 (1994).
Coll, C. F. Excitation spectrum of the onedimensional Hubbard model. Phys. Rev. B 9, 2150–2158 (1974).
Zhang, Y.H. & Sachdev, S. From the pseudogap metal to the fermi liquid using ancilla qubits. Phys. Rev. Res. 2, 023172 (2020).
Nocera, A. & Alvarez, G. Symmetryconserving purification of quantum states within the density matrix renormalization group. Phys. Rev. B 93, 045137 (2016).
Feiguin, A. E. & Fiete, G. A. Spectral properties of a spinincoherent Luttinger liquid. Phys. Rev. B 81, 075108 (2010).
Leifer, M. & Poulin, D. Quantum graphical models and belief propagation. Ann. Phys. 323, 1899–1946 (2008).
Hubig, C. et al. The SyTen toolkit. https://syten.eu (2015).
Hubig, C. Symmetryprotected tensor networks. https://edoc.ub.unimuenchen.de/21348/ (2017).
Acknowledgements
We are thankful for valuable discussions with F. Palm, M. Kebrič, and L. Homeier. This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC2111—390814868, by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 948141)—ERC Starting Grant SimUcQuam, and by the NSF through a grant for the Institute for Theoretical Atomic, Molecular, and Optical Physics at Harvard University and the Smithsonian Astrophysical Observatory.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
A.B., F.G. and H.S. conceptualized the idea. H.S. carried out the calculations under the supervision of A.B., F.G. and U.S. T.A.H. and I.B. supervised the application to the experimental data. All authors discussed the results. H.S. wrote the manuscript with input from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Materials thanks Dominik Hangleiter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Aldo Isidori.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Schlömer, H., Hilker, T.A., Bloch, I. et al. Quantifying holemotioninduced frustration in doped antiferromagnets by Hamiltonian reconstruction. Commun Mater 4, 64 (2023). https://doi.org/10.1038/s43246023003823
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43246023003823
This article is cited by

Neural network approach to quasiparticle dispersions in doped antiferromagnets
Communications Physics (2024)