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Band gap predictions of double perovskite oxides
using machine learning
Anjana Talapatra 1✉, Blas Pedro Uberuaga 1, Christopher Richard Stanek1 & Ghanshyam Pilania 1,2

The compositional and structural variety inherent to oxide perovskites spawn wide-ranging

applications. In perovskites, the band gap Eg, a key material parameter for these applications,

can be optimally controlled by varying the composition. Here, we implement a hierarchical

screening process in which two cross-validated and predictive machine learning models for

band gap classification and regression, trained using exhaustive datasets that span 68 ele-

ments of the periodic table, are applied sequentially. The classification model separates

wide band gap materials, with Eg≥ 0.5 eV, from materials which have zero or relatively small

band gaps, namely Eg < 0.5 eV, and the second regression model quantitatively predicts

the gap value of the wide band gap compounds. The study down-selects 13,589 cubic

oxide perovskite compositions that are predicted to be experimentally formable, thermo-

dynamically stable, and have a wide band gap. Of these, a subset of 310 compounds, which

are predicted to be stable and formable with a confidence greater than 90%, are identified for

further investigation. Our models are methodically analyzed via performance metrics and

inter-dependence of model features to gain physical insight into the band gap prediction

problem. Design maps to identify the variation of band gap with substitution of different

elements are also presented.
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The band gap (Eg), which is non-existent for a metal but is
positive for semiconductors and other insulators, is a fun-
damental property of a periodic solid and directly influences

its electrical conductivity. Based on their band gap, functional
electronic materials are used in a diverse array of applications such
as field effect transistors1, LEDs2, photovoltaics3, and scintillators4.
By controlling the composition or structure of the material, sys-
tematic tuning of the band gap may be achieved, allowing for
materials that are tailored to the desired application. Consequently,
the band gap is widely used as a screening criterion in data sets
generated via high-throughput calculations for application-based
discovery5–7.

The compositional and structural complexity afforded by
perovskites of the form ABX3 in conjunction with their fasci-
nating electrical and magnetic properties such as piezoelectricity8,
optical properties9, high-temperature superconductivity10, ferro-
electricity11, and magnetostrictive effects12 make them especially
attractive candidates for band gap tuning. The prototypical ABX3

cubic perovskite structure as indicated in Fig. 1a is composed of a
three-dimensional BX3 network of corner-sharing BX6 octahedra.
The A-site cations occupy the 12 coordinate sites formed by the
octahedral units and each A cation is surrounded by 12 equidi-
stant anions. The perovskite structure can accommodate 90%
of the metallic ions in the periodic table13 with a wide variety of
different anions, increasing their utility in a wide range of
applications. As we will show in this work, the band gap in these
materials is closely correlated with their physical and chemical
properties. Thus, varying the composition by replacing any of the
atoms in these structures can be used to precisely tune the phy-
sical and/or chemical properties of interest and thereby the band
gap. This tunability may be amplified by increasing the types of
cations occupying the A- and/or B-sites, giving rise to double
perovskites with formulae AxA

0
2�xB2X6, A2ByB

0
2�yX6 and, in the

most general case, AxA
0
2�xByB

0
2�yX6 for 0 ≤ x, y ≤ 2, as shown in

Fig. 1a.
In recent years, to accelerate the discovery of novel electronic

materials, tremendous strides have been made by using high-
throughput Density Functional Theory (DFT) techniques to
determine the electronic structure of materials. However, the
accuracy of the computed band gap of a material depends on the
particular exchange-correlation functional employed in the DFT
technique that is used. If we consider the band gap to be an
excitation energy, it is naive to expect an accurate description

using ground state DFT. In fact, when using DFT computations
with local and semi-local exchange-correlation functionals, the
errors in semiconductor and insulator band gaps can be as large as
50%14, which is especially significant in research in fields involving
semiconductors, optical and photovoltaic materials, and thermo-
electrics. This underestimation of the band gap is attributed to the
connate lack of derivative discontinuity15, self-interaction error
(SIE)16,17, and delocalization error18 within conventional DFT
functionals such as the local density approximation (LDA) or the
generalized gradient approximation (GGA)19. Consequently, much
attention has focused on solving the problem of the under-
estimation of the DFT band gap both within the Kohn-Sham DFT
formalism and outside it20,21. However, most of these techniques,
such as the GW approximation22 and delta self-consistent-field
(ΔSCF) method20, as well the use of hybrid functionals23, improve
the accuracy of band gap estimation at increased computational
cost which make them untenable for high-throughput calculation
efforts. One feasible way to circumvent this problem is to screen
large datasets using low fidelity GGA-type calculations and down-
select to a tractable subset of potential candidates. High-fidelity
band-gap estimation techniques or experiments can then be used to
accurately determine the electronic structure of this smaller subset.

Machine learning (ML) has enjoyed much popularity in the
field of materials science and condensed matter physics as an
efficient tool to predict a physical property or quantity, particu-
larly when the target property cannot be directly determined
without the use of extensive resources, either experimental or
computational24–28. In the last two decades, statistical learning
frameworks in conjunction with regression techniques have been
widely used to predict band gaps of large datasets in order to
overcome the band gap estimation problem. Earliest among these
was the work of Gu et al.29 who used experimental band gaps of
25 binary compounds and 31 ternary compounds to construct
support vector regression (SVR) and artificial neural network
(ANN) models, using elemental predictors. Since then, SVR has
featured prominently as the regression method of choice in band
gap prediction30–33 in addition to ordinary least squares regres-
sion (OLSR)30,34–36 and least absolute shrinkage and selection
operator (LASSO)30,35,36 methods. Pilania et al.37 presented a
general formalism to discover decision rules that can be used to
make ultra-fast, yet accurate, property predictions. They used ML
to establish a mapping between chemo-structural fingerprints and
the electronic charge density distribution of polymeric insulators

Fig. 1 Hierarchical discovery framework for wide band gap double perovskites. a Double perovskite crystal structure with rocksalt ordering of both
A- and B-site cations. b Histogram of DFT-calculated band gaps in the training dataset of oxide perovskite used in the development of the ML model
presented in this work. c Chemical space of the perovskite oxides explored in the present study. Cations appearing at the A-site and/or the B-site are
highlighted. d Hierarchical down-selection framework implemented in this work. Starting with more than 5 million potential chemistries, through a series of
ML models we identify about 300 double perovskites that are likely to exhibit a wide band gap.
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and their properties, including the band gap. In 2016, they
demonstrated a robust learning framework for efficient and accu-
rate predictions of electronic band gaps of double perovskites using
a systematic feature-engineering approach38. They also imple-
mented a multi-fidelity Gaussian process (GP)-based co-Kriging
regression model to predict Eg for the class of elpasolites39.
Recently, Na et al.40 and Li et al.41 reported multi-fidelity band gap
prediction models based on graph neural networks (GNNs) using
that can use band gaps data computed and/or measured at varying
levels of fidelity to provide best estimates at the hhighest level of
fidelity. Omprakash et al.42 also used GNNs trained on experi-
mental data gathered from literature to predict band gaps for a
variety of different 2D, 3D, organometal and inorganic inorganic
single perovskites. In a departure from traditional targets of high
accuracy, Gladkikh et al.43 used alternating conditional expecta-
tions (ACE), a ML technique suitable for small data sets which
performs worse than more commonly used ML methods but pre-
sents its results in a graphic form, helping in interpretation, the lack
of which is a core critique of ML applications today44. Kauwe
et al.45 used the example property of the band gap to demonstrate
an ensemble learning approach which allows the efficient modeling
of experimental data by combining models trained on otherwise
disparate computational and experimental data. Most of these
approaches favor the use of elemental predictors, lending credence
to the idea of physics-informed models. Recently, Stanley et al.33

used formation energy as a predictor to develop highly accurate
band gap prediction models for ABO3 perovskites. However, if
intended to be applied to large prediction datasets, the use of
properties which are relatively inexpensive to compute as model
predictors can still be prohibitive.

Thus we see that prior research in the area has focused on
exploring the potential of using different ML techniques to
predict the band gap in organic as well as inorganic materials.
While considerable work has been done on predicting the band
gap in perovskites, and oxide perovskites in particular, these
have either focused on single perovskites32,43,46–48 or only small
datasets of double perovskites38,49,50, which limits the general-
ization of these models beyond certain chemistries and warrants
more work to extend the models’ applicabilities. Further, these
works often demonstrate the accuracy of their models but do
not take the next step of predicting new compounds that satisfy
design criteria.

In this work, we make use of a ML-based screening framework,
employing the low-fidelity semi-local exchange-correlation
Perdew–Burke–Ernzerhof (PBE) flavor51 of the GGA func-
tional, to down-select a tractable number of promising com-
pounds from large candidate datasets. Specifically, we investigate
a previously identified52 exhaustive chemical space of formable
and stable cubic single and double oxide perovskites. These
predictions of formability and stability have been independently
validated by other researchers who have synthesized some of the
compositions that were originally predicted in our past work53,54.
Starting from these, we first identify novel cubic compositions
that are likely to be have relatively wide band gaps (Eg ≥ 0.5 eV)
and then predict their DFT band gaps with high accuracy using
ML models based on Random Forests (RF)55. We use this two-
step strategy of separating the materials which have or are pre-
dicted to have no band gap or a very small band gap (within the
precision limits of PBE calculated band gaps) from the materials
which have a significant band gap. We use a threshold value of
0.5 eV for the sake of illustration. In principle, the framework
may be modified to account for any application-specific cutoff
or a targeted range. We employ a very large dataset of DFT-
based band gaps that are generated in-house for training and
implement a hierarchical screening process, wherein we build two
ML models independently, the first being a classification model to

separate wide band gap materials from narrow band gap mate-
rials, and, the second, a regression model that quantitatively
predicts the band gap of designated wide band gap materials. The
trained models are then applied sequentially to our large candi-
date dataset. We intentionally do this to screen out a large
number of materials which have a vanishing band gap to avoid
biasing the subsequent regression model. To implement this
scheme, we use a threshold band gap of 0.5 eV to demarcate
narrow (Eg < 0.5 eV) and wide (Eg ≥ 0.5 eV) band gap materials.
Thus, the regression model is applied to only those candidates
that are likely to have a band gap greater than 0.5 eV as deter-
mined by the classification model. It is to be noted that the ter-
minology of narrow and wide band gap materials used in this
manuscript to differentiate between the two material classes is
distinct from the similar terminology used with reference to
semiconductor materials. A histogram of DFT-calculated band
gaps used in the development of the ML model presented in this
work and the associated chemical space are shown in Fig. 1b and
c, respectively. In Fig. 1d, the number of down-selected candi-
dates are shown at each step, details of which are discussed fur-
ther in the manuscript. Since we focus on a very large chemical
space, the developed models are deemed generalizable to the
entire space of perovskites and double perovskite oxides, poten-
tially containing millions of compounds.

Results
Hierarchical Down-selection workflow. We note that when we
refer to oxide perovskite structures used for model training as well
as the novel perovskite compositions that are predicted to have a
wide band gap, we only consider the cubic variants. In our previous
work52, we consider the formability and stability of oxide per-
ovskites, and in building our models, use a stability criterion of
energy above hull (Ec) ≤50meV/atom. We showed that cubic
thermodynamic stability is a very conservative criterion for per-
ovskite synthesizability, and in many cases, it is also possible to
further reduce the total energy (leading to an increased thermo-
dynamic stability) by relaxing to several lower energy phases (e.g.,
tetragonal, orthorhombic, rhombohedral etc.) that are commonly
found in perovskites. Therefore, if a compound is predicted to be
stable in a cubic symmetry, it is only going to be more stable in
these other possible reduced symmetry phases. Furthermore, these
stabilizing local distortions are also known to slightly widen the
bandgap in perovskites. Accounting for all the possible reduced
symmetry configurations for a given double perovskite composi-
tion can lead to several tens of lower symmetry phases. Therefore,
this assumption of restricting ourselves to only cubic symmetry
allows us to keep the number of computations in this study limited
to a practically-feasible level. However, a downside of this
assumption is possible omission of some promising compounds
whose PBE bandgaps are greater than 0.5 eV in the lower symmetry
phases but less than 0.5 eV in the cubic phase.

The novelty of this complete hierarchical framework is multi-fold
in that no prior work exists, to the best of our knowledge, in which
multiple ML models have been used to connect the stability,
formability, insulating nature, and band gap for such a large
perovskite oxide chemical space. We consider all possible double
oxide perovskite combinations for 68 elements from the periodic
table, resulting in a very large chemically diverse set of candidate
materials, which we contend is the largest and most diverse that has
been evaluated till date. Owing to this heterogeneous and large
dataset, our machine learning models are able to attain an very high
prediction accuracy over such a vast chemical space (we note that in
past this level of accuracy is only demonstrated on chemical spaces
which exhibit a rather limited chemical diversity, eventually limiting
the exploration potential of the developed surrogate models). The
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models are trained adaptively in order to achieve highly accurate
and efficient predictive performance during the model building
stages and are analyzed rigorously via performance metrics and
inter-dependence of model features in an effort to gain physical
insight into the band gap prediction problem. OurMLmodels allow
for instant band gap predictions in the vast perovskite chemical
space and screening for a variety of applications. The exhaustive
design space that we explore here lends insight into design rules and
dopant selection for band gap and band edge engineering56.

Figure 2a shows an overview of the model building and model
application workflows adopted in this work. First, to build the ML
models, DFT is used to compute the band gaps of more that 5000
materials to compile a training dataset. These materials are then
classified as having either a narrow or wide band gap; in this work,
a threshold value of 0.5 eV is used to separate them. Note that this
value is chosen for the sake of illustration only and, in principle,
any cutoff value depending on a target application can be
implemented within the workflow. Simultaneously, the training
descriptors are generated for this dataset and the descriptors along
with the band gaps are used to build two ML models: i) a wide/
narrow band gap classification model (MC) trained on both wide
and narrow band gap data and ii) a band gap regression model
(MR) trained on only wide band gap data. Then, the models are
applied to the large chemical space of potentially formable and
thermodynamically stable perovskite materials sequentially to first
identify wide band gap candidates via MC, and then predict the
band gap of those wide band gap candidates using MR.

Training data, prediction data and descriptors. To build train-
ing and candidate datasets, the 68 elements highlighted in the
periodic table in Fig. 1c were considered and all possible
ABO3;A2BB

0O6;AA
0B2O6 and AA0BB0O6 compounds that could be

formed by substituting them at the A- and B-sites were enumerated.

Considering all possible combinations and accounting for charge
neutrality, this resulted in a set of 946,292 unique single and double
perovskite compositions (some of which have multiple valence
combinations). From these, 5152 oxide perovskite compounds were
adaptively selected to form the training dataset DP and the struc-
tures were optimized (while constrained to remain cubic) and their
band gaps were calculated with DFT. Further technical details of our
DFT calculations are provided in the methods section. Initially, all
experimentally known oxide perovskites were calculated to form the
training dataset. The initial classification model predictions of wide
and narrow band gap materials and their corresponding band gaps
were then used to adaptively augment this training dataset.

In total, 5152 compounds were evaluated to create a robust
training dataset DP for the wide/narrow band gap classification
model. Structures with calculated band gaps equal to or greater
than 0.5 eV were labeled as wide band gap materials (insulators)
while those with band gaps less than 0.5 eV were labeled as
narrow band gap materials. Applying this 0.5 eV threshold
criterion, of the 5152 calculated perovskites, 1575 (i.e. about 30%)
were found to have a wide band gap, while the remaining 3577
were found to have a narrow band gap. These 1575 structures
encompass the training dataset DBG for the band gap prediction
regression model and the distribution of their band gaps is shown
in Fig. 1b. As is self-evident, DBG is a subset of DP. The various
training datasets used and referenced in this work are listed in
Table 1 and are also represented in a Venn diagram in Fig. 2b.
The complete training dataset is included in Supplementary
Data 1.

Candidate dataset for prediction. The exhaustive dataset of 946,292
unique single and double perovskite compositions less the 5152
compounds that comprise the training dataset, results in the foun-
dational chemically compatible candidate dataset DC comprising
941,140 perovskite oxide compounds. ML models described in52

Fig. 2 Schematic representation of workflow and associated datasets. a Computational workflow for model development and predictions. DFT calculated
band gaps wserve as the foundation of two ML models, one for classification of insulators and a second regression model that predicts the band gaps of the
insulating compounds. The two ML models are then applied sequentially to candidate datasets DFS and DW respectively. b Venn diagram representation of
training dataset and candidate datasets used in this work.
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that predict formability and theromodynamic stability of oxide
perovskites were then applied to DC, to identify the subset DFS of
462,248 oxide perovskites (using a cutoff probability of 0.5) that are
predicted to be formable and thermodynamically stable. This dataset
DFS is then our candidate dataset to which we apply the classification
model MC and band gap regression model MR built in this work
sequentially to identify the oxide perovskites that are likely to have a
wide band gap and then predict the actual band gaps. It is worth
repeating that in order to maintain zero overlap between the
training and candidate datasets, all compounds that comprise the
training dataset were removed from theDC dataset and hence do not
feature in the DFS database. Additionally, as mentioned earlier, all
experimentally known oxide perovskites are part of the training
dataset. Thus the compounds in the candidate dataset DFS are all
perovskite oxide compositions that have never been experimentally
synthesized to the best of our knowledge. The nested venn diagram
in in Fig. 2b delineates the relationship between the training dataset,
the candidate dataset and the sets of down-selected candidates at
each step in our hierarchical strategy.

Descriptors for machine-learning. In this work, we use a combi-
nation of geometric and atomic descriptors to train the ML
models. As far as possible, the intention was to use the simplest
possible inputs and minimize computational overhead necessary
to compile inputs while achieving high prediction accuracies by
effectively incorporating notions of chemical similarity across
different chemistries. To this end, elemental properties corre-
sponding to the A- and B-site cations were used as descriptors for
the single perovskites and their symmetric and anti-symmetric
compound variants were used for the double perovskites. For a
double perovskite AA0BB0O6, for a given property P, the sym-
metric compound feature is calculated as PA+= (PA+ P0

A)/2 and
the anti-symmetric compound feature as PA−= ∣PA− P0

Aj/2 for
the A-site, where PA and P0

A are the elemental properties of A and
A0; similar descriptors are defined for the B-site. Such compound
descriptors have been previously adopted by the authors38,52,57

and others58 and are an effective and well-known technique to

account for the multiple cations in a single site scenario. We
intentionally do not include compound properties such as total
energy, formation energy or electronic charge densities as
descriptors even though they may be calculated relatively easily
since the goal is to create robust ML models which may be
universally applied to large prediction datasets.

All descriptors were normalized to ensure zero mean and
standard deviation of unity. In the preliminary stages of model
building, we started out with a very comprehensive list of
68 structural and chemical properties that may be indicators of
the insulator nature of the perovskites and the band gap. Using
Pearson correlation59 values as a first step screening process and
then using the recursive feature elimination (RFE)60 technique
during model development using the open-source Scikit-learn61

python package, the least important descriptors were pruned and
the final set of relevant descriptors were identified. RFE works to
select features by recursively removing those features which exhibit
the smallest weight that are assigned by an extra trees classifier. The
estimator is first trained on the initial set of features and the
importance of each feature is determined. The most important
features are then retained from the current set of features. This
procedure is recursively repeated on the pruned set until the
desired number of features to select is eventually reached.

The final set of atom-specific descriptors include the Highest
Occupied Molecular Orbital (HOMO) and Lowest Unoccupied
Molecular Orbital (LUMO) energies62, ionization energy (IE),
electro-negativity63, Zunger’s pseudopotential radius (Z radius),
and electron affinity (EA). For the Zunger’s pseudopotential
radius the sum of the radii for the s and p orbitals was used. As
mentioned earlier, symmetric and anti-symmetric compound
descriptors for the A- and B-sites were used for these 6 atom-
specific descriptors resulting in 24 compound descriptors. We
further included perovskite-specific geometric descriptors – the
Goldschmidt tolerance factor (t)64, octahedral factor (μ)65, and
mismatch factors52,66 for the A-site ( �μA) and B-sites ( �μB) which
are defined as:

μ ¼ rB
rO

; ð1Þ

t ¼ rA þ rO
ffiffiffi

2
p ðrB þ rOÞ

; ð2Þ

�μA ¼ jrA � rA0 j=2rO; ð3Þ

�μB ¼ jrB � rB0 j=2rO; ð4Þ
where rA; r

0
A rB; r

0
B and rO are the coordination dependent

Shannon’s ionic radii67 of the A-site cations, the octahedrally
coordinated B cations and the oxygen anion respectively.
Including these four geometric descriptors, we were left with a
total of 28 descriptors. Using RFE, for the insulator classification
model, it was found that all 28 descriptors are important, while
for the band gap regression model, 21 atom-specific descriptors

Table 1 Definition of training and candidate oxide perovskite datasets used in this work.

Abbreviation Size Description

Training datasets
DP 5152 Adaptively built training dataset for band gap classification model used in this work
DBG 1575 Training dataset of wide band gap materials used for band gap regression model
Prediction datasets
DC 941,140 Chemically compatible oxide perovskite candidates less training dataset DP

DFS 462,248 Chemically compatible, formable and thermodynamically stable candidates (subset of DC)
DW 13,589 Subset of DFS with candidates predicted to have wide band gaps (Eg > 0.5 eV)
Dw 310 Subset of DW, selected high probability (>90%) wide band gap candidates

Table 2 List of descriptors used in the ML models.

Abbreviation Feature

Elemental
HOMO Highest Occupied Molecular Orbital (eV)
LUMO Lowest Unoccupied Molecular Orbital (eV)
IE Ionization energy (kJ/mol)
X Pauling Electronegativity
Z radius Zunger’s Pseudopotential radius (a.u.)
EA Electron affinity (kJ/mol)
Geometric
t Tolerance factor
μ Octahedral factor
�μ Mismatch factor
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and all the geometric descriptors were relevant. The specific
descriptors identified for both models are indicated in Table 2.
Values of these 28 descriptors for the D0

P database are provided in
Supplementary Data 1. The dataset also includes the DFT-
calculated band gap of the compounds. The HOMO and LUMO
Kohn-Sham levels of isolated atoms were computed using DFT
without spin polarization, in a large orthorhombic supercell
(15Å × 14.5Å × 14Å, to break the cubic symmetry) with respect
to the vacuum level38,68.

The two ML modelsMC andMR were built using the descriptors
listed in Table 2 and the respective training databases D0

P and DBG.
To gauge the robustness of the models and to identify the
minimum significant value for the feature importance, both models
were also tested using random descriptors. The models were then
tested on the test datasets created using the 90/10 shuffle split as
described previously. Subsequent to the training and testing phases,
the models were applied to the DFS dataset of predicted stable and
formable perovskites. In the following sub-sections, we will discuss
the models and their performance in detail. Technical details
regarding the ML models used may be found in the methods
section.

Wide/narrow band gap classification. The accuracy, precision,
and recall metrics of MC were evaluated using five-fold cross
validation for different combinations of training/test splits; the
values are shown in Table 3. For the final model, we used a 90/10
training/test split and achieved a model accuracy of 0.94 and 0.95
and model precision of 0.95 and 0.93 on the training and test sets,
respectively.

In Fig. 3a, we present the 24 most important descriptors for the
perovskite insulator classification problem. It is seen that the
symmetric HOMO energy, electronegativity, and ionization
energy for the B-site are the most important descriptors, followed

by the symmetric electronegativity and LUMO energy for the
A-site, in differentiating between compounds that are likely to
have a wide or narrow band gap. Figure 3b shows the average test
confusion matrix for 100 runs of the model. The off-diagonals (in
red) indicate the False Positives (FP) and False Negatives (FN)
while the diagonal elements (in green) indicate the True Positives
(TP) and True Negatives (TN).

In Fig. 3c, we plot the receiver operating characteristic (ROC)69

curves of the cross-validated classification model MC on the test
data. The closer the curve is to the ideal point (top left corner on
the plot), the greater the area under the curve (AUC), and the
better the performance of the classifier. The plot emphasizes the
value of the curve for a threshold value of 0.5, i.e., compounds
having a probability of ≥0.5 of being an insulator are classified as
wide band gap materials while those with a probability <0.5 are
classified as narrow band gap materials. For this classifier, we
achieve a very good AUC value of 0.98. Figure 3(d) showcases the
precision-recall (PR) curves for the classifier, which is a plot of
the precision rate on the ordinate and the recall rate on the
abcissa for varying threshold values. The point (1,1) on this plot
implies a perfect predictive model, and the closer the curve is to
this point, the more robust is the model. As is evident, the PR
curve for a threshold value of 0.5, is very close to the ideal (1,1)
point yielding an AUC of 96, resulting in a very skillful model.
The f1-score is the harmonic mean of the precision and recall
rates for a particular probability threshold value. On the PR
curve, we indicate the iso-curves for various f1-score values.

Band gap regression. As mentioned in prior sections, the band
gap prediction model was continually improved by adaptively
augmenting the size of the training dataset until the MAE for the
model on the test data was below 0.2 eV. The regression coeffi-
cient (R2) and MAE values for different combinations of training/

Table 3 Performance metrics for MC averaged over 100 different runs for varying percentages of training training/test data
splits.

Training % Data Training Test

Accuracy Precision Recall Precision Recall Accuracy
50 0.88∓ 0.02 0.90∓ 0.02 0.70∓ 0.05 0.89∓ 0.01 0.91∓ 0.01 0.74∓ 0.01
60 0.89∓ 0.02 0.91∓ 0.02 0.72∓ 0.05 0.90∓ 0.02 0.91∓ 0.03 0.77∓ 0.04
70 0.90∓ 0.01 0.92∓ 0.01 0.75∓ 0.03 0.91∓ 0.02 0.89∓ 0.04 0.78∓ 0.07
80 0.91∓ 0.01 0.93∓ 0.01 0.77∓ 0.03 0.91∓ 0.04 0.88∓ 0.05 0.79∓ 0.09
90 0.91∓ 0.01 0.94∓ 0.01 0.79∓ 0.04 0.95∓ 0.02 0.93∓ 0.03 0.87∓ 0.03

Also listed are standard deviations which are computed as the square root of the estimated variance of the metrics obtained over the 100 runs.

Fig. 3 Results for perovskite insulator character using MC. a Feature importance plot for all the descriptors with significant values, b Confusion matrix,
c Receiver operating characteristic (ROC) curves, and d Precision-recall curves of the cross-validated RF classification on test data using MC.
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test data splits evaluated using five-fold cross validation are
shown in Table 4. The band gap prediction model results are
shown in Fig. 4. To visualize the accuracy of our band gap pre-
dictions, the machine-learning predictions of the band gap as a
function of the calculated band gap for the training and test data
are shown in Fig. 4a and b, respectively. Regression coefficient
(R2) values of 0.97 and 0.86 and MAE values of 0.07 eV and
0.18 eV were achieved for the training and test data, respectively,
averaged over 100 different runs, each with randomly selected
90% training and 10% test sets. These values compare very
favorably with and are at least as good as previously reported
band gap prediction models38–40 which are trained on much
smaller datasets.

Figure 4c, d shows the learning curves for the regression model
for the R2 and MAE performance metrics. Learning curves are a
widely used diagnostic tool in ML algorithms to indicate the
incremental improvement in learning with respect to an increase
in the size of the training dataset. The model is evaluated for a
chosen evaluation metric on the training dataset and on a hold-
out validation dataset after each update during training; the
measured performance when plotted comprise the learning

curves. Here, we plot the learning curves for our chosen metrics
of R2 (Fig. 4c and the MAE (Fig. 4d). In both these plots, we see
that the test curve follows the trajectory of the training curve with
a moderate gap between them - indicating that our model exhibits
low bias and moderate variance, as is desired.

Figure 4e indicates the regression feature importances. Here,
we see that the geometric factors (t; �μB) feature very low on the
importance list while descriptors such as the electronegativities,
HOMO and LUMO energies, Zunger’s pseudopotential radius,
and ooctahedral factor (μ) prominently affect the band gap.
Overall, We see that the features corresponding to the B-site
appear more predominantly. This is expected since, in general, we
observe (as indicated in the SI) that for a given oxide perovskite
altering the A-site cation results in a smaller band gap variation as
compared to an alteration in the B-site cation. This observation
may be further attributed to the ionic nature of the perovskites,
wherein the valence band maximum (VBM) states are pre-
dominantly oxygen p states while the conduction band minimum
(CBM) states are predominantly B element d states. Thus, if
keeping the anion chemistry constant, one would expect the
nature of the B cations to have the greatest effect on the band gap.

To gain additional insight into the interplay of the model, the
model’s features, and their effect on the band gap, we also calculate
the two dimensional (binary) partial dependence for the most
important features identified. Partial dependence plots (PDP)70

which are calculated after the model has been fit to the data, show
the marginal effect a descriptor has on the predicted outcome of the
ML model. PDPs are useful in determining whether the relation-
ship between the target property and the descriptors is linear,
monotonic, or more complex. This is done by varying the value of
the descriptor of interest and using the model to predict the target
value for multiple instances; the average target value is then plotted
as a function of the descriptor. Thus, the partial dependence
method considers all instances and gives a statement about
the global relationship of a feature with the predicted outcome.
While the single feature PDPs capture the average trend of a given
feature with the target property, the binary PDPs visualize the
partial dependence of two descriptors simultaneously. Note that

Fig. 4 Results for prediction of band gaps of oxide perovskites using regression model MR. a Machine-learning predictions for training data and (b)
machine-learning predictions for test data. Learning curves representing the variation in (c) regression coefficient (R2) and (d) MAE in eV with increase in
size of training dataset. Each step represents the average R2 and MAE of 100 iterations of shuffle split cross-validation with 10% of the data for validation.
The shaded regions indicate the averaged standard deviation. e Feature importance plot for all the descriptors with significant values.

Table 4 Performance metrics (regression coefficient R2 and
MAE in eV) for MR, averaged over 100 different runs for
different combinations of training and test set sizes.

Training
% Data

Training Test

R2 MAE R2 MAE

50 0.96∓ 0.04 0.09∓ 0.04 0.71∓ 0.04 0.29∓ 0.04
60 0.97∓ 0.06 0.09∓ 0.04 0.74∓ 0.06 0.27∓ 0.04
70 0.97∓ 0.04 0.08∓ 0.04 0.77∓ 0.04 0.24∓ 0.04
80 0.97∓ 0.02 0.08∓ 0.02 0.80∓ 0.02 0.23∓ 0.04
90 0.97∓ 0.02 0.07∓ 0.01 0.86∓ 0.02 0.18∓ 0.02

Also listed are standard deviations which are computed as the square root of the estimated
variance of the metrics obtained over the 100 runs.
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partial dependence works by marginalizing the machine learning
model output over the distribution of the remaining features, so
that the function shows the relationship between the features we are
interested in and the predicted outcome. Marginalization is a
method that requires summing over the possible values of one
variable to determine the marginal contribution of another. By
marginalizing over the other features, we get a function that
depends only on the features of interest.

Figure 5a shows the binary PDPs for the top 5 descriptors, in
which the yellow regions indicate the largest values of predicted
band gaps. Figure 5b shows the expanded PDP for the top two
features i.e., XB+ and XA+. This plot indicates that the maximum
values of band gaps may be found for approximate value ranges
of 0 > XB+ > 1.6 and 0 > XA+ > 1.0. Such feature value ranges may
be obtained for various feature pairs, or even single features if one
refers to unary PDPs. Figure 5c shows the corresponding scatter
plot for the training data, i.e. the marginalized DFT calculated
band gaps for varying values of XB+ on the ordinate and XA+ on
the abcissa. On comparison of Fig. 5b, c, we see that the training
data does not include a significant number of data points in the
corresponding high band gap region predicted by the PDP. Thus,
while PDPs may be used to delineate ranges of feature values to
obtain specific ranges of band gaps, it is imperative to keep in
mind the limitation that the predictions are averaged values over
the remaining features and the training data rarely cover the
entire targeted feature ranges in a uniform manner.

The statistical nature of predictions obtained using ML is
concomitant with uncertainties in the predictions themselves.
Hence, while it is important to ensure high prediction accuracy
while building ML models, it is equally if not more important to
explain a prediction, and the confidence that we have in the
prediction made by a model. Also, predictions are interpolative
for data points that lie within the range of previously seen data,
and extrapolative for data points that fall beyond the range of
previously seen data. The uncertainty arising due to this distance

from the domain of the training data needs to be quantified and
hence confidence intervals for the test data using our band gap
regression model were calculated and are and shown in Fig. 6a.
Here, we see that for a large number of data points, the error bars
cross the prediction-equals-calculation diagonal, indicating the
lack of residual noise in the predicted band gaps and that our
features that constitute the regression model adequately describe
the oxide perovskite band gaps. The variation in the lengths of the
error bars indicates that our model is more confident about some
predictions than others. Reassuringly, we observe that, in general,
the model is more confident about those predictions for which
the predicted and calculated band gaps are similar.

Prediction of new oxide perovskites with wide band gaps.
Subsequent to the training and testing phases, the wide/narrow
band gap classification and band gap regression models were
applied to the dataset DFS of predicted formable and stable oxide
perovskites to predict new wide band gap materials and their
band gaps respectively. This prediction dataset DFS consists of
462,248 distinct compounds. Using a 50% probability cutoff, this
was reduced to 13,589 (<3%) compounds that were predicted to
possess a wide band gap; this set of compounds is designated DW.
The distribution of the wide band gap prediction probabilities for
these 13,589 compounds is shown in Fig. 6b. As discussed earlier,
the candidate compounds do not contain any experimentally
known perovskites, and hence these 13,589 oxide perovskite
compositions are novel compounds that have never been syn-
thesized to the best of our knowledge. To down-select a tractable
number of wide band gap candidates for further exploration,
from these 13,589 compounds, we retained those compounds
(Dw) for which the prediction probabilities of experimental
formability, thermodynamic stability, and wide band gap nature
were greater than 90% which amounted to 310 compounds. The
inset in Fig. 6b reflects the wide band gap prediction probabilities

Fig. 5 Partial dependence plots (PDPs) for model features. a PDPs for the five top ranked features of the band gap prediction regression model. The units
of the features used here are consistent with those reported in the Table 2. b Expanded PDP for the top two features i.e., XB+ and XA+, and c the
marginalized DFT calculated band gaps for varying values of XB+ on the ordinate and XA+ on the abcissa.
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for these 310 compounds. For these 310 compounds, we then
predicted the band gaps using MR, the distribution of which is
shown in Fig. 6c. The 310 compounds are listed in Table 5 and
complete descriptions of these compounds along with their pre-
dicted band gaps are included in Supplementary Data 2.

The DFT band gaps of these 310 compounds were calculated in
an effort to computationally confirm our predictions, as shown in
Fig. 6d. Calculations showed that all of these 310 compounds are
indeed wide band gap materials as defined in this work, i.e., all
their band gaps were greater than 0.5 eV, thus proving that our
insulator classification model is indeed very accurate. Further, the
calculated band gaps agree very well with the predicted band
gaps, with a maximum error of 0.48 eV, a MAE of 0.21 eV, a
mean square error (MSE) of 0.07 and a R2 value of 0.84. Absolute
difference in predicted and calculated band gaps for these
compounds are also denoted in eV in parentheses in Table 5. In
these calculations shown in Fig. 6d, we examine 31 distinct AA’
pairs. For a given AA’ pair, the band gap shows wide variation
with variation in the BB’ pair. For example, for A=A’= Ba, we
examine 32 distinct BB’ pairs and find that the calculated band
gap varies from 1.57–4.1 eV. In Supplementary Note 1 and
Supplementary Note 2 we include detailed heat maps for different
combinations of AA’ and BB’.

Discussion
As mentioned in prior sections, with a 50% probability cutoff,
13,589 compounds were predicted to be wide band gap materials,

i.e., materials with a DFT band gap greater than 0.5 eV. These
13,589 compounds are double perovskites with A2BB

0O6;AA
0B2O6

and AA0BB0O6 compositions. Thus our predictions enable us to
compile design maps which can give an insight into the band gap
variation and associated trends of a basic ABO3 structure when
another element (A0=B0) replaces half of the A-site, B-site or A- and
B-site cations. Figure 7 indicates one such design map for the
Ba2BB

0O6 for selected formable and stable combinations of B and
B0. The white squares indicate combinations which are predicted to
be narrow band gap materials (Eg < 0.5 eV) and hence do not have
an accompanying band gap prediction. Elements are arranged on
the x- and y-axes in order of increasing atomic number (left to right
and bottom to top respectively). Here, we see that Ta, Sb, In, La on
the B-site result in larger band gaps across the board, with the
specific combination of Ta and In resulting in the largest band gap
of 3.9 eV. On the other hand, the presence of Bi on the B-site always
lowers the band gap. Supplementary Note 3 includes Design maps
of predicted band gaps with respect to average values of the five top
ranked features individually and pairwise are included in Supple-
mentary Note 4 and Supplementary Note 5 respectively. Average
values of variation in band gap for base single perovskite oxides
with addition of element in A- and B-sublattices are shown in
Supplementary Note 5.

Thus, a hierarchical screening strategy (summarized in Fig. 1d is
presented to identify 310 novel formable, stable double oxide
perovskites exhibiting wide band gaps via a ML-guided exploration
of a very large fraction of the double perovskite chemical space. We
employ a large training dataset spanning a vast chemical space to

Fig. 6 Band gap prediction results. a Confidence intervals for test data for the band gap prediction regression. b Histogram of the predicted probabilities of
candidate compounds that are likely to be wide band gap materials, binned by 0.01. The inset indicates the zoomed-in histogram for for the 310 oxide
perovskites with a predicted wide band gap probability between 0.9 and 1. c Histogram of predicted band gaps for the 310 oxide perovskites, binned in
0.125 eV intervals. d Parity plot of calculated vs. predicted band gaps for 310 down-selected candidates.
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Table 5 List of 310 predicted wide band gap oxide perovskite compounds satisfying cutoff probabilities >0.9 for stability,
formability and wide/narrow band gap prediction models.

Predicted novel oxide perovskite candidates

Ba2BiErO6 (0.09) Ba2BiHoO6 (0.08) Ba2BiLaO6 (0.08) Ba2BiNdO6 (0.04)
Ba2BiScO6 (0.07) Ba2BiTbO6 (0.1) Ba2BiYO6 (0.07) Ba2NbAlO6 (0.01)
Ba2NbBiO6 (0.3) Ba2NbPmO6 (0.13) Ba2NbPrO6 (0.15) Ba2NbTbO6 (0.02)
Ba2SbDyO6 (0.06) Ba2SbErO6 (0.05) Ba2SbGdO6 (0.01) Ba2SbHoO6 (0.06)
Ba2SbLaO6 (0.01) Ba2SbTmO6 (0.04) Ba2SbYO6 (0.02) Ba2TaDyO6 (0.01)
Ba2TaErO6 (0.07) Ba2TaGdO6 (0.03) Ba2TaHoO6 (0.03) Ba2TaInO6 (0.24)
Ba2TaLaO6 (0.06) Ba2TaNdO6 (0.01) Ba2TaPmO6 (0.04) Ba2TaPrO6 (0.17)
Ba2TaSmO6 (0.02) Ba2TaTbO6 (0.02) Ba2TaTmO6 (0.05) Ba2TaYO6 (0.08)
BaCaAuDyO6 (0.16) BaCaAuErO6 (0.1) BaCaAuHoO6 (0.13) BaCaBiDyO6 (0.01)
BaCaNbYO6 (0.09) BaCaSbDyO6 (0.15) BaCaSbTbO6 (0.05) BaCaSbYO6 (0.04)
BaCaTaDyO6 (0.06) BaCaTaErO6 (0.04) BaCaTaGdO6 (0) BaCaTaHoO6 (0.1)
BaCaTaTbO6 (0.07) BaCaTaTmO6 (0.01) BaCaTaYO6 (0.03) BaSrAuDyO6 (0.03)
BaSrAuErO6 (0.00) BaSrAuGdO6 (0.04) BaSrAuHoO6 (0.01) BaSrAuNdO6 (0.08)
BaSrAuPmO6 (0.08) BaSrBiDyO6 (0.19) BaSrBiTbO6 (0.11) BaSrHfSnO6 (0.22)
BaSrNbDyO6 (0.14) BaSrNbSmO6 (0.26) BaSrSbDyO6 (0.02) BaSrSbErO6 (0.01)
BaSrSbHoO6 (0.02) BaSrSbTbO6 (0.03) BaSrSbYO6 (0.01) BaSrTaDyO6 (0.27)
BaSrTaErO6 (0.32) BaSrTaHoO6 (0.05) BaSrTaNdO6 (0.28) BaSrTaPmO6 (0.16)
BaSrTaTbO6 (0.05) Ca2MoMgO6 (0.04) Ca2MoZnO6 (0.09) Ca2WMgO6 (0.02)
Ca2WZnO6 (0.13) DyCsHfGeO6 (0.08) DyCsHfSnO6 (0.22) DyCsTaInO6 (0.38)
DyKTaInO6 (0.08) DyRbTaInO6 (0.18) ErCsHfGeO6 (0.2) ErCsHfTiO6 (0.22)
ErCsTaInO6 (0.23) ErCsTaScO6 (0.21) ErKHfSnO6 (0.20) ErKTaInO6 (0.21)
ErRbHfSnO6 (0.26) ErRbTaInO6 (0.22) HoCsTaInO6 (0.22) HoKHfSnO6 (0.26)
HoKTaInO6 (0.27) HoRbHfSnO6 (0.2) HoRbTaInO6 (0.31) LaCsAuDyO6 (0.34)
LaCsAuErO6 (0.04) LaCsAuHoO6 (0.03) LaCsAuNdO6 (0.35) LaCsAuPmO6 (0.36)
LaCsBiDyO6 (0.2) LaCsBiErO6 (0.08) LaCsBiHoO6 (0.17) LaCsBiNdO6 (0.19)
LaCsBiPmO6 (0.1) LaCsBiSmO6 (0.11) LaCsBiTbO6 (0.01) LaCsMoYbO6 (0.06)
LaCsNbDyO6 (0.17) LaCsNbErO6 (0.03) LaCsNbHoO6 (0.26) LaCsSbDyO6 (0.04)
LaCsSbErO6 (0.02) LaCsSbGdO6 (0.18) LaCsSbHoO6 (0.35) LaCsSbPmO6 (0.12)
LaCsSbTbO6 (0.23) LaCsTaDyO6 (0.37) LaCsTaErO6 (0.34) LaCsTaHoO6 (0.39)
LaCsTaNdO6 (0.05) LaCsTaPmO6 (0.40) LaCsTaSmO6 (0.28) LaCsTaTbO6 (0.38)
LaKAuDyO6 (0.34) LaKAuErO6 (0.25) LaKAuHoO6 (0.31) LaKAuNdO6 (0.06)
LaKAuPmO6 (0.42) LaKBiDyO6 (0.31) LaKBiGdO6 (0.41) LaKBiHoO6 (0.28)
LaKHfZrO6 (0.26) LaKNbYO6 (0.22) LaKSbDyO6 (0.28) LaKSbTbO6 (0.05)
LaKSbYO6 (0.34) LaKTaDyO6 (0.38) LaKTaErO6 (0.37) LaKTaHoO6 (0.42)
LaKTaNdO6 (0.16) LaKTaPmO6 (0.4) LaKTaSmO6 (0.41) LaKTaTbO6 (0.32)
LaKTaYO6 (0.42) LaRbAuDyO6 (0.39) LaRbAuErO6 (0.29) LaRbAuHoO6 (0.36)
LaRbAuNdO6 (0) LaRbAuPmO6 (0.01) LaRbBiDyO6 (0.41) LaRbCeZrO6 (0.3)
LaRbNbYO6 (0.41) LaRbSbDyO6 (0.12) LaRbSbTbO6 (0.11) LaRbSbYO6 (0.18)
LaRbTaDyO6 (0.37) LaRbTaErO6 (0.35) LaRbTaHoO6 (0.4) LaRbTaNdO6 (0.44)
LaRbTaPmO6 (0.43) LaRbTaSmO6 (0.41) LaRbTaTbO6 (0.45) LaRbZrSnO6 (0.41)
LuCsHfSnO6 (0.26) NdCsAuDyO6 (0.03) NdCsAuErO6 (0.03) NdCsAuGdO6 (0.21)
NdCsAuTmO6 (0.05) NdCsAuYO6 (0.14) NdCsBiGdO6 (0.23) NdCsBiYO6 (0.1)
NdCsTaDyO6 (0.48) NdCsTaErO6 (0.48) NdCsTaGdO6 (0.41) NdCsTaHoO6 (0.44)
NdCsTaInO6 (0.15) NdCsTaTmO6 (0.41) NdCsTaYO6 (0.21) NdKAuDyO6 (0.4)
NdKAuErO6 (0.34) NdKAuGdO6 (0.08) NdKAuHoO6 (0.38) NdKAuLuO6 (0.22)
NdKAuTmO6 (0.3) NdKAuYO6 (0.41) NdKBiDyO6 (0.42) NdKBiGdO6 (0.18)
NdKBiHoO6 (0.39) NdKBiTmO6 (0.37) NdKBiYO6 (0.21) NdKHfSnO6 (0.21)
NdKSbDyO6 (0.43) NdKSbErO6 (0.38) NdKSbGdO6 (0.42) NdKSbHoO6 (0.41)
NdKSbTbO6 (0.23) NdKSbTmO6 (0.22) NdKTaDyO6 (0.09) NdKTaErO6 (0.23)
NdKTaGdO6 (0.06) NdKTaHoO6 (0.39) NdKTaInO6 (0.4) NdKTaTmO6 (0.48)
NdKTaYO6 (0.26) NdRbAuDyO6 (0.12) NdRbAuErO6 (0.05) NdRbAuGdO6 (0.07)
NdRbAuHoO6 (0.09) NdRbAuLuO6 (0.16) NdRbAuTmO6 (0.38) NdRbAuYO6 (0.12)
NdRbBiDyO6 (0.07) NdRbBiTmO6 (0.02) NdRbBiYO6 (0.14) NdRbCeZrO6 (0.4)
NdRbHfSnO6 (0.2) NdRbSbDyO6 (0.3) NdRbSbErO6 (0.25) NdRbSbGdO6 (0.36)
NdRbSbHoO6 (0.27) NdRbSbTbO6 (0.39) NdRbSbTmO6 (0.11) NdRbTaBiO6 (0.34)
NdRbTaDyO6 (0.43) NdRbTaErO6 (0.45) NdRbTaGdO6 (0.4) NdRbTaHoO6 (0.4)
NdRbTaInO6 (0.45) NdRbTaTmO6 (0.48) NdRbTaYO6 (0.43) PmCsAuDyO6 (0.02)
PmCsAuErO6 (0.08) PmCsAuGdO6 (0.06) PmCsAuHoO6 (0.01) PmCsAuTmO6 (0.04)
PmCsAuYO6 (0.06) PmCsTaDyO6 (0.42) PmCsTaErO6 (0.42) PmCsTaGdO6 (0.3)
PmCsTaHoO6 (0.39) PmCsTaInO6 (0.08) PmCsTaTmO6 (0.35) PmCsTaYO6 (0.46)
PmKAuGdO6 (0) PmKAuYO6 (0.42) PmKHfSnO6 (0.17) PmKTaGdO6 (0.41)
PmKTaTmO6 (0.47) PmRbAuGdO6 (0.36) PmRbAuYO6 (0.04) PmRbTaGdO6 (0.43)
PmRbTaInO6 (0.05) PmRbTaTmO6 (0.43) PmRbVInO6 (0.08) PrCsAuDyO6 (0.42)
PrCsAuErO6 (0.42) PrCsAuHoO6 (0.43) PrCsAuLuO6 (0.07) PrCsBiDyO6 (0.12)
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train the ML models and achieve high predictive accuracies.
Confidence intervals were derived for the quantitative band gap
prediction model and our predictions are validated with DFT
computations. We find excellent agreement between our predic-
tions and these validating calculations.

The calculated band gap data that comprises the training data as
well as the predicted band gaps may be used to generate design
maps for desired combinations of elements on the A- and B- sites
that can offer insight into the variation of the band gap due to
doping and be used to identify preliminary candidates for specific
applications. The 310 identified candidates are novel chemistries
that have not been explored experimentally to date. These candi-
dates are predicted to have band gaps ranging from 0.5 to 4 eV and,
consequently, can potentially find application in a wide range of
areas ranging from infrared radiation detection, solar cells, and
other light emitting devices (LEDs), to scintillator materials.

The efficiency of our multi-step hierarchical screening
approach, which may be generalized to investigate other classes of
materials in addition to the oxide perovskites examined here,
provides further impetus to the application of physics-based ML
models to the discovery of novel functional materials. This
approach - of creating models and then using them to identify
specific novel candidates that will be of value to the community at
large and that are suggested for follow-on experimental studies -

is not always followed in the prior literature. We note that this
hierarchical strategy, where we first classify materials with per-
ovskite structure as either insulators or metals and then train
regression models on the insulators only with such high accura-
cies, is unique in the literature and provides a route for improved
models for these types of properties.

Lastly, we note that although the absolute DFT gaps are
underestimated due to our choice of the low-fidelity but less
expensive PBE functional, the relative changes in band gap as a
function of chemistry are well estimated by the PBE-GGA and
they correlate with the experimental band gaps (since the
underestimation is systemic and generally proportional to the
band gap itself) and therefore chemical trends, which in them-
selves are very useful, are expected to be well captured using our
approach. A high-throughput study such as the present one
necessitates a low-cost technique and recent studies56,71 have
indicated that ground state properties calculated using the PBE-
GGA functional are sufficiently accurate, particularly for changes
in electronic structure with chemistry. However, to ensure that
this is true for the current application, 100 materials were ran-
domly selected from our training dataset of wide band gap
materials and their HSE band gaps were calculated; the results are
included in the Supplementary Note 6. It is seen that PBE-GGA
indeed systematically underestimates the band gap for most
materials.

Methods
DFT calculation details. The Vienna ab initio simulation package (VASP)72,73

implementation of the DFT framework was used in this work to calculate the band
gaps of the training data. The parameterization proposed by Perdew, Burke, and
Ernzerhof 51 of the GGA74 approach was used. A Monkhorst-Pack mesh was used
to perform the Brillouin zone integrations with at least 5000k points per reciprocal
atom. The structures were fully relaxed using the Methfessel–Paxton smearing
method75 of order one and a final self-consistent static calculation was carried out.
The calculations were spin polarized and we used a cutoff energy of 533 eV for all
of the structures. All relaxations were carried out until changes in the total energy
between relaxation steps were within 1 × 10−6 eV and atomic forces on each of the
atoms were smaller than 0.01 eV/Å.

ML models using random forests. The choice to use RFs to build our ML models
was made to leverage the inherent robustness, low bias, and moderate variance
afforded by the technique. The RF (also known as Random Decision Trees) is a
bagging-based ensemble learning method. It has been shown that using ensembles
of trees, where each tree in the ensemble is grown in accordance with the reali-
zation of a random vector, results in consequential gains in classification or pre-
diction accuracy. Final predictions are obtained by aggregate voting over the
ensemble using equal weights in most cases. RFs seek to induce randomness by
using subsets of descriptors drawn at random to determine the optimal split of a
given node of a tree, thereby reducing the correlation between the quantities being

Table 5 (continued)

Predicted novel oxide perovskite candidates

PrCsSbDyO6 (0.06) PrCsTaDyO6 (0.41) PrCsTaErO6 (0.43) PrCsTaHoO6 (0.47)
PrCsTaTbO6 (0.46) PrKAuDyO6 (0.39) PrKAuErO6 (0.32) PrKAuHoO6 (0.36)
PrKAuLuO6 (0.19) PrKAuScO6 (0.2) PrKBiDyO6 (0.42) PrKBiErO6 (0.38)
PrKSbDyO6 (0.06) PrKSbErO6 (0.4) PrKSbHoO6 (0.04) PrKSbTbO6 (0.18)
PrKTaDyO6 (0.42) PrKTaErO6 (0.43) PrKTaHoO6 (0.3) PrKTaYO6 (0.42)
PrNdDyCoO6 (0.01) PrNdErCoO6 (0.18) PrNdHoCoO6 (0.14) PrRbAuDyO6 (0.03)
PrRbAuErO6 (0.39) PrRbAuHoO6 (0.06) PrRbBiDyO6 (0.14) PrRbBiErO6 (0.09)
PrRbBiHoO6 (0.11) PrRbSbDyO6 (0.09) PrRbSbErO6 (0.03) PrRbSbHoO6 (0.06)
PrRbSbTbO6 (0.17) PrRbSbYO6 (0.06) PrRbTaDyO6 (0.48) PrRbTaErO6 (0.45)
PrRbTaHoO6 (0.44) PrRbTaTbO6 (0.48) Sr2AuErO6 (0.07) Sr2AuNdO6 (0.16)
Sr2BiErO6 (0.06) Sr2BiHoO6 (0.18) Sr2BiYO6 (0.31) Sr2MoZnO6 (0.09)
Sr2SbErO6 (0.01) Sr2SbScO6 (0.24) Sr2SbTmO6 (0.03) Sr2TaInO6 (0.2)
Sr2WMgO6 (0.05) Sr2WZnO6 (0.03) TbCsTaInO6 (0.08) TbCsVInO6 (0.11)
TbRbTaInO6 (0.01) YCsHfSnO6 (0.22)

These compounds have never been synthesized. Absolute difference in predicted and calculated band gaps in eV is also denoted in parentheses in blue for the 310 oxide perovskites for which the
predicted band gaps have been validated.

Fig. 7 Band gap prediction map for selected combinations of Ba2BB’O6.
White squares indicate compositions that are predicted to be narrow band
gap materials and hence do not have an accompanying band gap prediction.
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averaged and consequently enhancing the variance gains. We used the Scikit-learn
package to implement our RF models.

For the RF classification model MC, the training and test dataset selections were
stratified over the wide/narrow band gap chemistries using a 90/10 training/test
split. Thus, we used 90% of the dataset D0

P to train the classification model MC and
then tested on the remaining 10%. The maximum tree depth was set at 25 and the
number of estimators or trees was 200 for the classification model. For the RF
regression model MR, we also used 90% of the dataset DBG to train the regression
modelMR and then tested on the remaining 10%. The maximum tree depth was set
to 50 and the number of estimators was chosen to be 200. To maximize accuracy
while minimizing the standard deviation on unseen data, we used 5-fold cross-
validation using a 90% training subset to determine the hyper-parameters for both
classification and regression.

Uncertainty quantification. RF models are difficult to interpret owing to their
black box nature, and it is difficult to quantify the associated modeling and input
uncertainties. Two methods are most widely used for the quantification of con-
fidence intervals in RF-based regression models: i) U-Statistic-based RFs76 and
ii) bootstrap77, jackknife-after-bootstrap78, and infinitesimal jackknife79 based
methods, which we use in this work.

U-statistics80 is a class of statistics in which a minimum-variance unbiased
prediction is derived by drawing a predetermined number of times through all
combinatorial selections of the training data set and then averaging over the
possible results of these sub-samples. Mentch and Hooker76 showed that under a
strict sub-sampling scheme, predictions for individual feature vectors are
asymptotically normal, allowing for application of U-statistics to RF predictions.
Relevant statistical measures can then be used to quantify the uncertainty related to
the reducible error of the RF prediction and construct confidence intervals.

Bootstrap sampling and jackknifing rely on estimating the variance of a
prediction by using the variability between re-samples rather than using
statistical distributions. In bootstrapping, numerous prediction models are
developed by randomly excluding varied small subsets of the training data and
the mean and variance of the predictions is estimated from these bootstrapped
models. This methods attempts to quantify the sensitivity of the model with
respect to slight perturbations in the training data. Jackknifing is another re-
sampling technique predating bootstrapping, in which each training data point
is systematically left out, the model is trained on the remaining data and an
estimate is calculated; the jackknife estimate is found by evaluating the average
of these calculations. These two ideas may be combined in a jackknife-after-
bootstrap method which is used to find the an error estimate (for example
variance) to a bootstrap estimate. As opposed to jackknifing and jackknifing-
after-bootstrapping, where the behavior of a prediction is studied after excluding
one or more observations at a time, the infinitesimal jackknife (IJ) looks at the
effect on a prediction after down-weighting each observation by an infinitesimal
amount. In 2014, Wager et al.81 demonstrated that both the jackknife-after-
bootstrap and the infinitesimal jackknife methods suffer from considerable
Monte Carlo bias, and they proposed a bias corrected version of the method, the
implementation of which is used to calculate the confidence intervals for the test
data using our band gap regression model.

Data availability
The training dataset used in this study is described in Supplementary Data 1 and the
predicted candidates are listed in Supplementary Data 2. Additional data related to this
work is available on reasonable request.

Code availability
The source code used in this study may be downloaded from GitHub (https://github.
com/anjanatalapatra/perovskite_oxide_discovery).
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