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Design of acoustic absorbing metasurfaces using a
data-driven approach
Hamza Baali 1✉, Mahmoud Addouche 2✉, Abdesselam Bouzerdoum1,3✉ & Abdelkrim Khelif 2✉

The design of acoustic metasurfaces with desirable properties is challenging due to their

artificial nature and the large space of physical and geometrical parameters. Until recently,

design strategies were primarily based on numerical simulations based on finite-element or

finite-difference time-domain methods, which are limited in terms of computational speed or

complexity. Here, we present an efficient two-stage data-driven approach for analyzing and

designing membrane-type metasurface absorbers with desirable characteristics. In the first

stage, a forward model consisting of a neural network is trained to map an input, comprising

the membrane parameters, to the observed sound absorption spectrum. In the second stage,

the learned forward model is inverted to infer the input parameters that produce the desired

absorption response. The metasurface membrane parameters, which serve as input to the

neural network, are estimated by minimizing a loss function between the desired absorption

profile and the output of the learned forward model. Two devices are then fabricated using

the estimated membrane parameters. The measured acoustic absorption responses of the

fabricated devices show a very close agreement with the desired responses.
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The first successful fabrication of metamaterials by Smith et
al.1 two decades ago revolutionized the conventional view
of electromagnetic and acoustic wave propagation. It

opened the doors to engineer new materials with variable prop-
erties not found in natural materials2–4. In essence, metamaterials
are artificially structured composite materials characterized by
built-in locally resonant structures (LRS). These structures
restrain/localize strongly oscillating acoustic or electromagnetic
fields in the bulk of the structured materials or on the surface, in
the case of metasurfaces, to specific frequencies. The presence of
these LRSs allows the control and modulation of incident waves
at subwavelength frequency.

Over the past two decades, various metamaterials and meta-
surfaces have been developed with new acoustic properties:
acoustic cloaking5–7, complete sound reflection and
transmission8–10, complete sound absorption11–17, and wavefront
tailoring18. This study concerns sound absorption applications in
which conventional approaches rely on materials with limited
acoustic performance, such as glass, wool, and perforated panels
backed by air cavities19–21. These conventional absorbers are
characterized by thicknesses having wavelengths in the audible
range, which require large mass, limiting the scope of their
applications and efficiency. One innovative way to overcome this
limitation is using decorated metasurface membranes that can
achieve nearly total absorption at low frequency with dimensions
much smaller than the wavelength of incident sound waves.

Until recently, however, the analysis of metasurface-based
absorbers was primarily based on numerical simulations of
physics-based models using either Finite Element methods (FEM)
via solvers such as the COMSOL Multiphysics or through finite-
difference time-domain (FDTD) methods. The former approach
can model complex scenarios and geometries at the cost of slow
simulation. This limitation adds to the inconvenience of the black-
box nature of the calculations of these commercial packages, which
can only provide a posteriori explanation. By contrast, the latter
approach is appropriate only for scenarios of low to moderate
complexity22. The fast development of deep learning techniques in
the last decade coupled with the increasing computing power and
the growth in data availability has made them a feasible surrogate of
FEM for the analysis of acoustic wave systems, both in the time and
in the frequency domains23–26. Deep learning is based on universal
function approximators leveraged to specific problems through
learning from data. This data is usually generated from high-fidelity
numerical simulations or through physical experiments. One sig-
nificant advantage of these data-driven approaches is that they do
not require knowledge of the governing equations of the system
and are much faster than physics-based simulations.

The inverse design of metasurfaces is a high-dimensional non-
convex optimization problem that seeks to find optimal meta-
material parameters to achieve a desired behavior. Conventional
approaches rely either on nonlinear optimization approaches,
such as genetic algorithms, or heuristic methods. Nonlinear
optimization approaches are computationally expensive due to
repeated sampling and are susceptible to convergence failure. On
the other hand, heuristic approaches cannot systematically search
a large design space as they rely heavily on trial and error and
extensive experimentation27. The emergence of new data-driven
approaches in recent years has led to a shift in the design para-
digm of metamaterials28–30.

The idea of inverse design using data-driven approaches was
initially proposed to analyze neural network architectures31,32. The
adaptive control community used these approaches to circumvent the
limitations and unfeasibility of direct inverse modeling of dynamical
systems, which is an ill-posed problem in the Hadamard sense33.
These approaches have recently gained significant attention in elec-
tromagnetic and acoustic metamaterials34–36. Popular inverse design

approaches include iterative gradient-based and indirect inversion
using tandem configuration. In this configuration, a particular inverse
solution of an already trained network is connected in series with
another network to accomplish an auto-association task (learning an
identity mapping across the composite network). In this setup, the
forward model allocates one output to each frequency sampling point
in the absorption spectrum which leads to significant number of free
parameters37,38. Other alternative inversion approaches include direct
inverse design and global optimization algorithms enabled by gen-
erative neural network approaches and neural network inversion
through constrained optimization formulations39–41.

This paper deploys a data-driven approach for forward mod-
eling and inverse design of membrane-based metasurface absor-
bers. By observing the metasurface parameters (input) and the
sound absorption spectrum (output), a forward neural network
model learns a nonlinear function that maps inputs to outputs
through the minimization of the prediction error. Once trained,
the neural network model reduces the high computational
demands of conventional forward physics simulations into a
single forward pass. We demonstrate the effectiveness of the
learned model by producing accurate outputs from parameters
that were not used in the training phase. The learned model is
then inverted to estimate the membrane parameters (input) that
yield the desired response. The inversion is cast as an optimiza-
tion problem by minimizing the error between the desired
response and the predicted output. The objective is to find the set
of membrane parameters that minimize the prediction error over
a set of frequencies while keeping the forward model parameters
(weights and biases) fixed. The proposed inversion approach
provides flexibility in optimization, enabling consideration of
only the desired absorption at a specific frequency or range of
frequencies of interest. In contrast, the tandem architecture does
not allow for such specificity. Furthermore, since the inverse
problem is purely an optimization-based approach, there is more
flexibility to vary the objective function or introduce appropriate
constraints, e.g., adding a regularization term without having
recourse to retraining of the entire model.

Results and discussion
Forward and inverse modeling. In the following, we describe the
forward and inverse models adopted in this study. First, a forward
model is learned by training a neural network to predict the sound
absorption spectrum, using the membrane’s physical parameters
and the frequency as input. Second, an inverse model is learned
indirectly using the forward model to find the membrane para-
meters which produce a desired sound absorption profile.

The forward model. An L layer feedforward neural network, with
N inputs (x2RN ) and one output ðy2RÞ, is trained to approximate
the physical model, ΦðxÞ, that generates the training data. The
network realizes a composite function, which can be expressed as:

f ðx;θÞ ¼ f Lð f L�1ð� � � f ið� � � f 1 xð ÞÞÞÞ; ð1Þ
where θ denotes the network free parameters and f i; i ¼ 1; :::; L; is
a vector-valued function, f i:R

Ni�1RNi . The expression (1) means
that the output yi of each function f i becomes the input to the
following function. Each of these functions comprise two parts: a
linear affine transformation (W i yi�1 þ bi) and a nonlinear ele-
mentwise activation function hð�Þ. The output yi of f i can be
expressed as follows:

yi ¼ f i yi�1;θi
� � ¼ h W i yi�1þbi

� � ¼; i ¼ 1; � � � L;where y0 ¼ x:

ð2Þ
The parameters θi represent the network parameters compris-

ing the weights (W iR
Ni�1 ´Ni ) and biases (biR

Ni ). Popular
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activation functions hð�Þ include the sigmoid, hyperbolic tangent,
and the ReLU functions.

The training involves adjusting the network parameters to
minimize a loss function that measures the discrepancy between
the network output y ¼ yL ¼ f ðx; θÞ and the desired (ground-
truth) output r ¼ ΦðxÞ when subjected to the same input, as
summarized in Fig. 1.

Given a training dataset D of P typical input and desired output

samples x ið Þ; r ið Þ�P
i¼1

n
, where r ið Þ ¼ Φ x ið Þ� �

. The network input

vector x ið Þ ¼ ½x ið Þ
1 ; x

ið Þ
2 ; ; x

ðiÞ
N �

T
comprises the frequency f ðiÞ ¼ x

ðiÞ
1

and the membrane parameters xðiÞ2:N ¼ ½x ið Þ
2 ; � � �; xðiÞN �T . The task of

training a network is to find the best set of parameters (i.e.,
weights) θ� that minimize the mean sum of squares of the
network errors over the training set:

g θð Þ ¼ 1
P
∑
P

i¼1
ðr ið Þ�y ið ÞÞ2 ¼ 1

P
∑
P

i¼1
ðr ið Þ�f ðx ið Þ; θÞÞ2 ð3Þ

There exist several optimization techniques to minimize g θð Þ,
such as the Gradient-descent and its variants, Newton’s method,
and the Levenburg-Marquard algorithm. Most Gradient-descent-
like methods involve recursive calculation of the partial
derivatives of the loss function g with respect to the network
parameters θ and then use of these derivatives to update the
network parameters in the direction that reduces the overall loss
g, i.e., the negative gradient direction. The standard gradient-
descent update rule for the weights has the form:

θðkþ1Þ ¼ θðkÞ � η∇θg θðkÞ
� �

; ð4Þ

where ð0<ηÞ is the learning rate and ∇θ is the gradient operator
with respect to θ. In practice, the partial derivative forming the
gradient ∇θ are calculated using the backpropagation algorithm,
an efficient algorithm that exploits the composite and the
differentiability nature of f to compute the derivatives in reverse
mode according to the chain rule.

The inverse model. In this part, we aim to estimate the meta-
material parameters x2:N for which the earlier learned forward
model f ðx; θ�Þ approximates a ‘fictitious’ desired sound absorp-
tion profile (rd ¼ ½r1; r2; � � � ; rm; � � � ; rM �T) specified by the user,
where rm is the desired absorption coefficient at frequency f m. Let
y ¼ ½y1; y2; � � � yM �T be the actual network output sound
absorption profile as a function of frequency when its inputs are

½f m; x2:N �T
� �m¼M

m¼1 . The problem of inverting a neural network
model can be then cast as an optimization problem over the

network inputs x2:N :

min
x2:N

E xð Þ ¼ min
x2:N

jjrd � yðxÞjj2 ¼ min
x2:N

∑
M

m¼1
jjrm � f f m; x2:N

� �T
; θ�

� 	
jj
2

ð5Þ
An efficient way to solve (5) uses gradient-based optimization

whereby the gradient ∇x with respect to (w.r.t.) the network input
elements x2; x2; ¼ ; xN are calculated using a variant of the
backpropagation algorithm similar to the one used in the training
of the forward model. The partial derivative of E xð Þ w.r.t. xi ði ¼
2; ¼ ;NÞ is given by

∂E xð Þ
∂xi

¼ ∂jjrd � f x; θ�ð Þjj2
∂xi

¼ 2 rd � f x; θ�ð Þ� � ∂f x; θ�ð Þ
∂xi

; i ¼ 2; 3; � � � ;N:

ð6Þ
Since the first elements of x is the frequency f m, it is not

included in the optimization search for the input parameters. The
update rule adjusts iteratively the remaining elements x2:N to
minimize the difference between the desired outputs rm and the

actual network outputs ym ¼ f ð f m; x2:N
� �T

; θ�Þ such that:

xðkþ1Þ
2:N ¼ xðkÞ2:N�η∇xE xðkÞ2:N

� 	
ð7Þ

Figure 2 summarizes the computation of the gradient ∇x using
a variant of the backpropagation algorithm, where the network
inputs are adjusted instead of its parameters which are held
constant.

The iterative network inversion algorithm can be summarized
by the following steps:

Step 1: At iteration k ¼ 0 assume random values for the of the
membrane parameters within their respective ranges xðkÞ2:N .

Step 2: Compute the outputs of the previously trained network
for all the frequencies of interest f m:

yðkÞm ¼ f ½f m; xðkÞ2:N �
T
; θ�

� 	
;m ¼ 1 : M:

Step 3: Compute the sum-squared error: Eðx kð ÞÞ ¼ jjrd�y kð Þjj2
Step 4: Compute the gradient of Eðx kð ÞÞ with respect to

xðkÞ2:N and update x2:N : x
ðkþ1Þ
2:N ¼ xðkÞ2:N�η∇xEðxðkÞ2:NÞ;

Step 5: Go to Step 2 and repeat until E x kð Þ� �
<Threshold or

k ¼ kmax

Generation of training data. The first step in the process of
constructing a forward data driven model consists of generating a
representative dataset with known ground-truth that captures
different characteristics of the membrane-type acoustic meta-
surface under investigation. To this end, we generated a realistic
dataset D of sound absorption responses for a range of membrane
geometric parameter values using numerical simulations. The
independent model parameters considered in this study consist of
the membrane radius (a2 20; 60½ �mm), thickness
(h 2 ½0:01; 0:5�mm) and cavity depth (ec 2 1; 40½ �mm). The

( ) Physics-Based

Model: ( )

Data Driven Model 

( ; )

Fig. 1 Block diagram of the forward model learning from the inputs and
outputs of the physics-based model. The same input, x, is applied to the
system, Φ(x), and the network, fðx; θÞ. The desired network weights are
found by minimizing a loss function of the prediction error e ¼ r � y.

( ; ∗)

( )

Input update rule

( ) ( )

( )

Fig. 2 Iterative inversion of the forward model. The prediction error is
backpropagated through the forward model to calculate the gradient with
respect to the input parameters. These are iteratively adjusted instead of its
weights which are held constants.
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focus on geometrical parameters is justified by the strong
dependence of the acoustic response on membrane geometry. The
elastic constants of the material were selected from COMSOL
material library as a stainless steel and are considered to be fixed
including the Young’s modulus (E ¼ 2 �1011 Pa), mass density
(ρ= 7850 kg m−3]), Poison’s ratio (ν ¼ 0:27) and effective loss
coefficient (ξ ¼ 0:0613). The independent parameters are drawn
randomly from uniform distributions within their respective
ranges.

The FE software COMSOL was used to calculate the acoustic
wave reflections in an environment that mimics measurements in
an impedance tube according to the ISO 10534-2 protocol. The
cylindrical membrane assumed to be backed by an air cavity and
clamped in a tube with a square outer section and circular inner
hollow section. The acoustical behavior of the membrane is
investigated inside a rectangular impedance tube of inner width
equals to the outer width of the clamping cube. A unit pressure is
applied on the opposite side of the membrane to serve as a normal
incidence excitation. The acoustic pressure interacts with the elastic
vibration mode of the membrane inducing sound losses through
the visco-thermal effect modeled as an absorbed thin layer attached
to the membrane. The simulation configuration is shown in Fig. 3.
For each combination of the independent parameters, the normal
sound absorption coefficient was recorded for the frequency range
1 to 3000 Hz in 3 Hz increments.

Forward model Network architecture. The aim is to train a
feedforward neural network to approximate the physics-based
membrane model using the training inputs and corresponding
targets. The selection of the network topology in terms of number
of layers and neurons at each hidden layer is usually found with
several trial-and-error training runs. Larger networks can create
more complex functions with the risk of overfitting. i.e., small
error on the training set and large error on unseen data. Pre-
venting overfitting can be achieved either through regularization,
early stopping or by increasing the size of the training set. In this
study, the network size was kept large enough to provide a good
fit while the size of the training set was increased to ovoid
overfitting. A neural network with 5 hidden layers and out output
(4-24-16-8-4-1) was trained using 50 million data points (100
thousand absorption profiles each contains 500 frequencies). The
actual network inputs comprise the membrane radius a, thickness
h, cavity depth ec, and frequency (f ). The desired output is the
normal absorption coefficient (α) at the frequency f . Prior to
training, the data is partitioned into three subsets training, vali-
dation, and test sets, with ratios 70%, 15%, and 15%, respectively.
All hidden layers use the standard logistic sigmoid activation
function, while the output neuron uses a linear activation func-
tion. The network was trained using the Levenberg-Marquardt
algorithm, which is characterized by an efficient update rule that

varies between the gradient descent and the Gauss-Newton
method.

Figure 4 shows the plots of the mean squared error (MSE) loss
as a function of the number of training epochs for the training
and validation sets. The training and validation errors exhibit
similar characteristic, a decreasing function of the number of
epochs. The model achieves the lowest validation MSE of 0.0004
at epoch 556. The agreement between the actual and predicted
values is further evaluated statistically through Pearson’s correla-
tion coefficient (R) between the model output relative to FEM’s
desired output. The model performed well with a correlation
coefficient of over 0.98.

Figure 5 illustrates the network response as a function of
frequency for four different sets of input parameters chosen from
the test set, except for Fig. 5d whose one of its parameters was
chosen outside the range of the training parameters. The physical
parameter sets {radius, thickness, depth} used were: (a) {45.5,
0.37, 27.5} mm, (b) {33.4, 0.02, 26.5} mm, (c) {45, 0.04, 7.5} mm,
and (d) {32, 0.025, 54} mm. The curves are produced by fixing the
physical parameters (a, h, and ec) and varying the input
frequency. The sound absorption curves generated based on the
learned model show high fidelity with those based on the FEM
simulation across different spectral patterns. Figure 5a, b show
resonator responses with one and two prominent peaks,
respectively. Figure 5c is a broadband absorber with a relative
bandwidth of 15% for an absorption coefficient α ¼ 0:8 at the
frequency f= 1165 Hz.

The ability of the model to generalize beyond the range of the
training parameters is also evaluated by generating the broadband
spectrum of Fig. 5d. This spectrum is generated with a cavity
depth ec= 54 mm, a relative bandwidth of 31%, and α ¼ 0:6
around the central frequency fc= 509 Hz. The plots in Fig. 5
clearly show that the trained model produces sound absorptions
that are in good agreement with the simulated FEM responses.
The correlation coefficients between the model and the FEM
responses in these examples were greater than 0.99. The proposed
forward model resulted in a speed improvement of over four
orders of magnitude compared to FEM simulation on a typical
personal computer.

Inverse design of membrane-type metasurface absorber. The
membrane absorbers presented in this study are characterized by
high and narrow absorption peaks at specific frequencies. Broader
frequency absorption using these structures can be achieved
through the coupling of the high-order elastic modes of the single

Fig. 3 Schematic of the impedance tube configuration. The normal sound
absorption ground truth was simulated for randomly generated membrane
parameter combinations, covering a frequency range of 1 to 3000Hz with
3 Hz increments.

Fig. 4 Mean square error loss of the training and validation sets as a
function of training epochs. Both the training and validation errors exhibit
similar characteristics, showing a decreasing trend as the number of epochs
increases. The model achieves the lowest validation MSE of 0.0004 at
epoch 556.
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membrane. These couplings occur with specific geometrical
parameters of the membrane and the air cavity. They are, how-
ever, not easy to describe using simple analytical models. This
section aims to illustrate the application of the proposed inverse
design approach to realize absorbers with prominent absorption
peaks at selected subwavelength frequencies and broadband
absorbers. In the following, we describe the estimation of the
membrane parameters for a given reference absorption profile.

Reference absorption profile and parameters estimation.
Depending on the intended response of the absorber, a desired
(reference) absorption profile rd should be first defined. The
membrane parameters x� are then estimated by minimizing the
deviation between the model output y and rd using the inverse
design approach. The algorithm remains the same, except that the
error computation in Step 3 of the iterative inversion approach
should include only the frequency range or the frequency values
of interest. The algorithm starts from a random initial point x0

and produces a sequence of parameter estimates xk ðk ¼
0; 1; 2; ¼ Þ with the objective to minimize the cost function

E xð Þ ¼ jjrd � yðxÞjj2. Depending on the starting point (x0), the
algorithm might converge to different local minima; this is due to
the fact that different combination of parameters may yield
similar values of the cost function. Different random initial values
are evaluated, and the best fit is presented. In this section, three
case studies are presented: single narrow-band, dual narrow-
band, and wideband absorber. Here, we consider only the fre-
quency range covered by the impedance tube (up to 1500 Hz).

a. Single narrow-band absorber: One way to define the
reference absorption profile rd is using the frequency
response of a second-order resonator of the form:

H sð Þ ¼ K
s

s2 þ Δωpsþ ω2
p
; ð8Þ

b. where K is a constant gain, Δωp represents the half-power
(3 dB) bandwidth, and ωp ¼ 2πf p is the peak or resonant

frequency. The bandwidth is inversely proportional to the
Q-factor Qp, Δωp ¼ ωp=Qp. Figure 6 shows an example of a
reference absorption spectrum (green dashed line) with
absorption level α= 1 at f p ¼ 1252 Hz and Q-factor
Qp = 32, along with the forward model response (blue
dotted line), using as input the estimated membrane
parameters, and FEM responses (red solid line). The
estimated membrane parameters are summarized in Table 1.
The model response is highly correlated with the desired
response around the peak frequency. It contains a second
small peak at frequency f ¼ 624Hz. The model response is
validated numerically using FEM simulation, and the two
responses match very well.

Fig. 5 The model predicted absorption spectrum and the COMSOL simulated FEM responses. The blue curve represents the model predicted absorption
spectrum, while the red curve represents the COMSOL simulated FEM response for four different sets of parameters {radius, thickness, depth}: a {45.5,
0.37, 27.5} mm, b {33.4, 0.02, 26.5}mm, c {45, 0.04, 7.5} mm, and d {32, 0.025, 54} mm.

0 500 1000 1500
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1
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bs
or
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n 

Desired
Model 
FEM

Fig. 6 Desired, estimated, and FEM simulated single narrow-band
absorber responses. The reference absorption profile (dashed line) is
defined by the amplitude frequency response of a second-order resonator.
The forward model response (dotted line), using as input the estimated
membrane parameters, closely aligns with the desired response around the
peak frequency of fp ¼ 1,252 Hz, exhibiting an absorption level α= 1 and a
Q-factor Qp = 32. The actual absorption response of the absorber achieved
through FEM simulation is shown as a solid line.
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c. Dual narrow-band absorber: The reference response in
this case can be defined as the desired absorption coefficient
(α) at specific frequencies f 1 and f 2. Figure 7 is an example
of a reference response (green dashed line) with α ¼ 1 at
f 1 ¼ 540 Hz and f 2 ¼ 889 Hz. The model response (blue
dotted line) using as input the estimated membrane
parameters and the FEM simulation (red solid line) are
also included. The estimated membrane parameters are
summarized in Table 1. The inverse parameters estimation
yielded an absorption coefficient values equal to 0.99 at the
selected frequencies. The model response is very close to the
response obtained with FEM simulation. It is worth
mentioning that the FEM response shows a slightly lower
absorption coefficient (α ¼ 0.9) at f 1.

Wideband absorber: The reference response in this case can be
the desired absorption coefficient (α) over the specific frequency
band of interest. Figure 8 is an illustration of an ideal bandpass
response (green dashed line) with a relative bandwidth of 23% for
α ¼ 0:8 around the central frequency f c ¼ 97 Hz. The forward
model (blue dotted line) and the desired response display similar
behavior in terms of general tendencies. The discrepancies
between the two spectra are due to the limitations imposed by
the inherent behavior of the membrane’s resonance as well as the
fact that the desired response is an ideal response that cannot be
achieved by real causal system and can only be approximated.
The forward model response, using as input the estimated
membrane parameters, correlates well with the simulated FEM
response (red solid line).

Experimental results. Based on findings summarized in Table 1,
we selected the single and the dual narrow band absorbers for
fabrication. The experimental results show a good agreement with
the estimated absorption spectrum (αFEM1) in terms of general
tendencies and spread around the peaking frequency. The main

difference between the results in the case of single narrow-band
(Fig. 9a) is a shift in the frequency response of the experimental
absorption curve towards the higher frequencies with a relative
frequency shift of about 3% and a 1.8% decrease of the value of
the resonance amplitude. Similar behavior was observed with the
dual narrow-band absorber (Fig. 9b) with a slight difference in
the shift between the first and second prominent peaks.

Replacing the COMSOL default value of the Young Modulus
(E ¼ 20 GPa) used in the first simulation (blue curve in Fig. 9) by
the actual value (E ¼ 27 GPa) of the reinforced stainless steel used
in the experiment resulted in an upward shift in resonance
frequencies (red curve in Fig. 9) towards the experimental values.
Other shifts and discrepancies are due to modeling errors caused
by the deformation in the fabrication of the 3D-printed frame and
the inaccuracies that occur during the assembly process. In the
numerical model, we assumed rigid condition on the lateral
boundaries of the membrane, which is very difficult to achieve
experimentally. Practically, sandwiching and pressing the steel
membrane between the rigid frame induces a static stress in the
clamped boundary, which affects the mechanical vibration and
results in a shift of the resonant frequency.

Conclusion
This study presented a systematic framework for the forward
modeling and inverse design of membrane-type metasurfaces
sound-absorbers. Once trained, the forward model reduces the
computational time by orders of magnitude compared to con-
ventional approaches. The iterative inversion method finds the
input that reconstructs the desired output when cascaded with the
forward model. We validated the proposed approach numerically
and experimentally. This data-driven approach simplifies the way
of designing metasurfaces with desired acoustic properties.

Methods
Fabrication of the membranes. The elasto-acoustic metasurfaces selected for
fabrication consist of a circular membrane backed by an air cavity with rigid
endings. Each device is made up of two polymer cuboids with cylindrical cavities
and a steel sheet membrane. The cuboids were created layer-by-layer using an
additive manufacturing technique. For the first device, the first cuboid is of
dimension 70 × 70 × 10 mm with a cylindrical cavity of radius a= 25.5 mm and a
cavity depth ec = 4 mm. The second cuboid has a dimension of 70 × 70 × 5mm
with a cylindrical hollow air cavity of radius a= 25.5 mm. For the second device,
the first cuboid is of dimension 70 × 70 × 10 mm with a cylindrical cavity of radius
a= 24.7 mm and a cavity depth ec = 13.5 mm. For both devices, a membrane of a
side length of 70 mm and a thickness of 0.05 mm was sandwiched between the
cuboids and secured using eight cap screws. Figure 10a, b, which display the
schematic and fabricated membrane, respectively.

Table 1 Estimated membrane parameters.

Estimated
parameters

Simple
absorber

Dual-band
absorber

Wideband
absorber

Radius a (mm) 25.5 24.7 30.9
Thickness h (mm) 0.0509 0.0500 0.0247
Cavity depth ec
(mm)

4.0 13.5 16.9
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Fig. 7 Dual narrow-band absorber characteristics. The desired membrane
absorption characteristic (dashed line) with absorption coefficient α ¼ 1 at
frequencies f1 ¼ 540 Hz and f2 ¼ 889 Hz. The forward model response
(dotted line) has a maximum absorption coefficient α= 0.99 at the desired
frequencies. The FEM simulated response (solid line) has a slightly lower
absorption coefficient, α ¼0.9, at f1.
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Fig. 8 Wideband absorber characteristics. The desired wideband
characteristic (dashed line) is an ideal bandpass response with a relative
bandwidth of 23% for α ¼ 0:8 around the center frequency fc ¼97 Hz.
The forward model response (dotted line), using as input the estimated
membrane parameters, correlates well with the simulated FEM response
(solid line).
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Experimental protocol. A non-commercial impedance tube apparatus based on
the Two-Microphone transfer function method specified in the ISO 10534-2
protocol was used in this experiment, see Fig. 11. It serves at determining the
complex reflection factor (R) and the dimensionless sound absorption coefficient
(α) curve of the metasurface at different frequencies for normal sound incidence.
The apparatus consists of a rigid rectangular impedance tube of inner cross section
of 7 × 7 cm and length 60 cm, a loudspeaker mounted on one end of the tube, the
metasurface membrane mounted at the other end and two identical microphones
located on the side of the membrane to measure the acoustic pressure of the
incident and reflected waves inside the tube. The two microphones are respectively

located at 20 cm and 30 cm away from the surface of the structure. The loudspeaker
generates broadband random signal covering the frequency range of interest
namely, 50 to 1500 Hz. The pressure signals measured at the microphones are used
to solve the pressure equation in the tube:

pðxÞ ¼ p0 ejkx þ Re�jkx
� �

; ð9Þ

where p0 is a constant; k is the wavenumber; the membrane is assumed to be at
x ¼ 0. The first and the second term in (9) represent respectively the incident and
reflected waves.

Fig. 9 Measured and FEM simulated absorption spectra with COMSOL default and actual Young modulus for single and dual narrow-band absorbers.
a Single narrow -band absorber. b Dual narrow-band absorber. The black curve represents the measured spectrum, the blue curve represents the absorption
spectrum obtained using the COMSOL default Young modulus, while the red curve represents the absorption spectrum with the actual Young modulus.

Fig. 10 Example of a fabricated sound absorption device. a Schematic representation of the device design. b Photograph of the fabricated device
highlighting its key components.

Fig. 11 Experimental setup for the impedance tube measurements. The experiment utilized a non-commercial impedance tube apparatus based on the
two-microphone transfer function method, following the ISO 10534-2 protocol.
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By computing transfer function, ratio of pressures H12 ¼ pðx2 Þ
pðx1 Þ, at the two

microphone positions we can solve for the refection factor R ¼ H12e
jkx1�ejkx2

e�jkx2�H12e
jkx1

� 	
and

deduce the absorption coefficient as α ¼ 1� Rj j2 .
The generated signals were amplified then processed using a multi-channel

high-accuracy dynamic signal acquisition module connected to a computer for data
analysis.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used for this study are available from the corresponding author upon
reasonable request.
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