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Brain-inspired computing emerged as a forefront technology to harness the growing amount

of data generated in an increasingly connected society. The complex dynamics involving

short- and long-term memory are key to the undisputed performance of biological neural

networks. Here, we report on sub-µm-sized artificial synaptic weights exploiting a combi-

nation of a ferroelectric space charge effect and oxidation state modulation in the oxide

channel of a ferroelectric field effect transistor. They lead to a quasi-continuous resistance

tuning of the synapse by a factor of 60 and a fine-grained weight update of more than 200

resistance values. We leverage a fast, saturating ferroelectric effect and a slow, ionic drift and

diffusion process to engineer a multi-timescale artificial synapse. Our device demonstrates an

endurance of more than 1010 cycles, a ferroelectric retention of more than 10 years, and

various types of volatility behavior on distinct timescales, making it well suited for neuro-

morphic and cognitive computing.
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The amount of data created during the last thirty years
(~320 ZB) compares with what will be created during the
next three years (~364 ZB projected for 2022–2024), a

trend also accelerated by the covid-19 pandemic1–3. A consider-
able amount will be created by the rapidly growing Internet of
Things (IoT)4, which connects the physical world and computing
entities. The development of sensors and actuators that connect
to the internet, comes in pair with the emergence of Artificial
Neural Networks (ANNs) for data processing. The conventional
von-Neumann architecture cannot sustain such evolution,
because of the energy and performance bottleneck coming from
the massive data movement between the physically separated
memory and processing units. Novel processing architectures,
device technologies, and computational paradigms have therefore
recently emerged. In-memory computing5 co-locates memory
and processing, eliminating inefficient data movement, which is
especially beneficial for ANN training by data-intense machine-
learning algorithms. In addition to ANNs, computing systems
like Spiking Neural Networks (SNNs), which mimic the type of
information processing in the human brain, promise low-power
computation and dynamic learning in the context of complex
data6. A major challenge for SNNs remains in supporting
operations under a wide range of effective timescales7. This
requirement arises from the need to adapt the computation to the
input timescale in real-time online applications (e.g., real-world
sensory signals) and because multi-timescales are inherent in
spiking neurodynamics (e.g., neural activation decay, combina-
tion of short- and long-term plasticity mechanisms7–9). To
emulate the complex and multi-timescale plasticity processes of
biological synapses7, physical effects acting at different timescales
must be orchestrated in an artificial synapse9. Being able to tune
the timescale (tunable volatility) in SNNs would bring the ability
to mimic many of the basic processing and storage operations of
the mammalian brain10 and facilitate reservoir computing or
unsupervised learning11.

In ANNs and SNNs, analog non-volatile resistive memory
elements, so-called memristors, are used to emulate synaptic
functionality, to locally store network parameters12,13, and to serve
as analog computing element14. Lately, multi-terminal memristive
devices have gained a lot of attention due to the ability of using
extra terminals to tune their switching dynamics (volatility, plas-
ticity timescales), opening opportunities to implement advanced
bio-inspired learning rules. For example, reward-modulated spike-
timing-dependent plasticity was demonstrated in a 4-terminal cell
based on ferroelectric P(VDFTrFE)15. The concept of multi-
terminal can also be extended to combining electrical and
light spikes to control the synapse plasticity16. Hafnia-based
technologies17–19 are CMOS-compatible; the low-power and
multi-state nature of hafnia-based Ferroelectric Field-Effect
Transistors (FeFETs) makes them a viable candidate for the
development of a multi-timescale synaptic element in neuro-
morphic circuits. FeFETs20–22 have the advantage over two-
terminal devices of separating the read and write path23. On one
hand, this permits to write to a high-impedance gate with low-
power. On the other hand, the reading current flows through the
channel that can be engineered to be ohmic24.

Scaled FeFETs nevertheless suffer from a finite number of
conductance levels21 due to the discrete number of ferroelectric
domains available in each device. Integrating the FeFETs in the
Back-End-Of-Line (BEOL) leaves more area for the control
electronics while at the same time it enables analog weight
updates through relaxed size constraints24–26.

In this work we present a BEOL-compatible, back-gated FeFET
utilizing a 10 nm thick HfZrO4 (HZO) ferroelectric gate dielectric
and a 4 nm tungsten oxide (WOx) thin-film channel. The
screening of the ferroelectric polarization charges of HZO results

in an accumulation or depletion of electrons in the WOx channel,
effectively changing its resistivity. Beyond the absence of inter-
facial dielectric layers (which limit the performance of FeFETs
with doped-Si channels27), oxide channels are of interest for the
intrinsic presence of slow ionic drift and diffusion mechanisms,
and hence are viable candidates for a slow plasticity timescale
effect. WOx was chosen due to its relatively mobile oxygen-ions
and thereby tunable conductivity as a function of oxygen
content28,29. Furthermore, the junction less contacts to the WOx

permit a ohmic conduction between source and drain24.
We engineered our device by using a channel with the

appropriate stoichiometry and by having it in direct contact with
HZO. In the first section, we capture how these measures facil-
itate a resistance modulation of the channel when the device is
programmed with different timescales: on one hand the resistance
modulation is driven by fast electronic screening of the HZO
polarization charges, and on the other hand by the slow ionic drift
and diffusion process of oxygen in the WOx. In the second
section, we characterize the synaptic weight and provide an
evaluation of the proposed technology’s performance when
implemented in an ANN.

Results and discussion
Artificial synaptic weight structure. We developed a back-gated
FeFET with two metal lines (M1, M2) for the Gate (G) and two
(M3, M4) for the Source (S) and Drain (D) to establish a three-
terminal device configuration. The FeFET gate stack is made of a
TiN contact and a 10 nm HZO ferroelectric gate dielectric. The
thin-film channel consists of a 4 nm WOx layer on top of the
HZO. The S and D contacts are made of Pt/W and the passivation
layer above the WOx consists of an Al2O3 and a SiO2 layer. In our
design, the gate fully overlaps with S and D to avoid large
topographic steps beneath the channel. The device schematic is
depicted in Fig. 1a. In this work, single, stand-alone devices are
studied. In view of their integration in passive pseudo-crossbar
circuits, the geometry of the channel is designed to optimize the
channel resistance (we refer to Supplementary Note 1 where the
pseudo-crossbar operation is further discussed). For the integra-
tion in active pseudo-crossbar circuits (as proposed for example
by Jerry et al.20), the devices would be embedded in at least four
metal levels. Therefore, within our stand-alone device processing
scheme, we include these challenges inherent to the complexity of
the active crossbar realization.

The structural analysis of our device material stack is described
in Supplementary Note 2. Grazing-Incidence X-Ray Diffraction
GIXRD scans confirm the absence of the monoclinic phase, the
peak at 30:7� corresponds to the ferroelectric orthorhombic phase
of HZO30. Bright-field Scanning Transmission Electron Micro-
scopy (BF-STEM) analysis confirms the expected layer thickness.
Energy-dispersive X-ray spectroscopy reveals the diffusion of Al
into the WOx layer, a metal expected to promote the reduction of
WOx

31.
In addition to the ferroelectric field-effect, this work exploits

the high mobility of oxygen in WOx, as observed during
reduction anneals32 and in WOx nanowires33. More generally,
WOx was chosen as a channel for its electron-doping ability
through the removal of oxygen34,35. In this work, the as-deposited
WOx was close to a stoichiometry of x ¼ 3 (insulating). We then
leverage the mobility of oxygen: during the deposition of the
passivation layers (Al2O3 and SiO2), the WOx was slightly
reduced (consistently with the Al diffusion found earlier). The
resulting mobility and carrier concentration are suitable for a
large channel conductance modulation by the polarization
charges via Coulomb coupling29: the screening of the HZO
polarization charges in the WOx occurs over a distance
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comparable to the channel thickness24. A 2D time-dependent
Ginzburg-Landau model of the HZO/WOx FeFET36 provided
guidelines for the optimization of the channel thickness and
stoichiometry. Moreover, the resulting channel resistances in the
MΩ to GΩ range are well suited for energy-efficient and scalable
crossbar array operation37.

The capacitance, resistance, and polarization characterization
of the gate stack are found in the Supplementary Notes 3 and 4.

Switching components and timescales. Potentiation (depres-
sion) cycles on 120 devices with constant channel width
(Wch= 600 nm) and a channel length varying from Lch= 300 nm
to 2 μm were measured by applying write pulses with an ampli-
tude (Vw) up to 6 V (−6 V) and a width (tw) of 500 μs. In this
work, the device is programmed symmetrically, i.e., by applying
Vw on the gate while grounding both the S and D contacts. The
dynamic range (DR) is defined as the ratio of the source-to-drain
resistance (RSD) in the high resistive state (HRS) to the low
resistive state (LRS). First, the influence of the channel length on
the DR is examined by performing a statistical analysis on 120
devices to average out variations due to local fabrication inho-
mogeneities (see further discussion in section “Characteristics for
ANNs”). The average DR and the distribution are represented as
a function of Lch in Fig. 1b. A detailed analysis of the DR
dependence on Lch is found in the Supplementary Note 5. We
found that the two components of the source-to-drain resistance

RSD ¼ Rch þ 2Rc, the channel resistance Rch and the contact
resistance Rc, are modulated to a different extend by the write
pulses. While Rc displays a modulation of DRRc

¼ 8:4, the
dynamic range of the channel DRRCh

¼ 2:8 is three times less.
Consequently, the total DR in Fig. 1b, that includes both con-
tributions, decreases for longer channels as the relative con-
tribution of DRRCh

increases. Moreover, an overall increase of the
DR by a factor of ~2.8 was observed by increasing tw to 500 ms, a
first indication of another RSD modulation than caused by the
polarization switching at short tw (500 μs).

The influence of tw on the dynamic range was further analyzed
by performing a sequence of 20 constant amplitude potentiation
(Vw ¼ 6 V) and depression (Vw ¼ �6 V) cycles with changing
tw from 10 ns to 1 s (Fig. 2a). In Fig. 2b, the same 20 potentiation/
depression cycles are superposed, to highlight the low cycle-to-
cycle variability and better visualize the potentiation and
depression shape. A dynamic range of almost 60 was reached
(average of 20 cycles), a considerable increase as compared to the
state-of-the-art oxide-channel FeFETs24,25. The RSD shows a
strong dependence on tw: there are two different regimes for both
the potentiation and depression. For short pulses (tw > 3 μs,
Vw ¼ �6 V) a steep depression is observed, followed by a less
steep change (tw > 3 μs, Vw ¼ �6 V) that does not saturate up to
the maximum tw of 1 s. In the long pulse regime, cumulative
switching is observed: repeating the same pulse (e.g., tw= 100 ms,
Vw ¼ �6 V) 100 times increased RSD after the first 10 cycles still

Fig. 2 Potentiation and depression cycles with a constant pulse amplitude scheme. The write pulse width tw was modulated from 10 ns to 1 s while
keeping the write pulse amplitude Vw constant at 6 V (−6 V) for the potentiation (depression) on a FeFET with L= 400 nm and W= 1 μm. a Source-drain
resistance as a function of the pulse number for 20 consecutive cycles. On the bottom, the corresponding duration tw of each pulse is provided.
b Superposition of the data points shown in a) and represented as a function of the pulse number in each cycle, to visualize the small cycle-to-cycle
variations and potentiation and depression shape.

Fig. 1 Structural data of the FeFET. a Schematic illustration of the FeFET, indicating a source (S), a drain (D), a gate (G), a WOx channel, a ferroelectric
HZO gate dielectric, G access metal line (M1, M2), S access metal line (M3), and D access metal line (M4). b Channel length effect: The dynamic range of
120 devices with a channel width of 600 nm and a varying channel length from 300 nm to 2 μm.Write pulses with an amplitude (Vw) from −6 V to 6 V and
width (tw) of 500 μs were applied. The same data for (tw= 500ms are available in Supplementary Fig. 6a. The boxes extend from the lower to upper
quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Flier points are those past the end of
the whiskers.
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by a factor 2 (Supplementary Note 6). The absence of a saturation
and a change of slope indicates that the resistance modulation for
tw > 3 μs is based on an additional and slower physical process
with respect to the previous regime (tw > 3 μs): the first regime
(tw > 3 μs) is attributed to the ferroelectric switching as it is
known to occur at very fast timescales38. In the second regime
(tw > 3 μs), the energy of each pulse was potentially large enough
to additionally enable oxygen migration33,39 between HZO and
WOx. The oxidation or reduction of the WOx channel in turn
adds to the modulation of RSD.

The underlying conduction mechanisms of the two regimes are
discussed next. Several electrode-limited and bulk-limited con-
duction mechanisms depend on temperature in different ways40.
Temperature-dependent IDS � VDS measurements of the channel
were performed (20° C–60 °C) after programming the device in
the LRS (Vw= 6V) and in the HRS (Vw ¼ �6 V). From Fig. 2b,
we observe that fast, ferroelectric effects occur already from pulse
widths of 100 ns. The onset of the change of regime is observed
for pulses of 3 μs. To reveal that there are indeed two different
mechanisms to modulate the resistance, the effect of the
temperature on the DR was investigated at different timescales.
Write pulses of tw= 500 μs (where the ferroelectric effect is fully
saturated and oxygen migration just starts) and longer write pulse
trains of 90 · tw= 100 ms (to enhance the oxygen migration) were
applied.

No difference in the conduction mechanism between the two
timescales was observed, as discussed in Supplementary Note 7.
Both the LRS and HRS show a linear ID-VDS characteristic and
are best fitted with the ohmic conduction model41.

In contrast, comparing the DR as a function of temperature for
the two timescales (Fig. 3a, b) displays a clear difference. For the
pulses where the ferroelectric effect dominates (tw= 500 μs), the
DR decreases with increasing temperature. This moderate effect
can be attributed to a phase transition from the orthorhombic
ferroelectric phase of HZO to its tetragonal, anti-ferroelectric phase
at elevated temperatures, as observed in ZrO2

42 and Si:HfO2
43.

From 50° C–60 °C, an increase in the dynamic range is observed,
indicating an additional mechanism that modulates the resistance
becoming dominant. This is explained by the chosen pulse width of
tw= 500 μs that ensures saturation of the polarization but is also
large enough for the second effect to become noticeable (predicted
by Fig. 2b for pulses above 3 µs). In contrast, for the slower
timescale, an increase in the dynamic range with temperature is
observed in the whole temperature range and is one to two orders
of magnitude larger. From 50° C–60 °C, the relative increase in the
dynamic range is the highest. The temperature range was limited to
20° C–60 °C since above, irreversible changes of the gate were
observed for some devices when applying a bias of 6 V. These
observations are consistent with increased oxygen-ion mobility at
elevated temperatures, which facilitates the channels oxidation or

reduction. In this scenario, the observed increase of the DR for
500 μs pulses above 50° C suggests a dual dependency of the
oxygen-ion mobility on the temperature and on the pulse duration.
The different types of behavior with temperature confirm the
presence of two effects modulating our channel resistance. A
schematic diagram illustrating the two effects can be found in
Supplementary Fig. 10.

Retention measurements at elevated temperatures (85 °C) and
with long write pulses (tw= 500 ms display a DR of almost three
orders of magnitude, a direct consequence of the aforementioned
increased oxygen-ion mobility (Fig. 3c). The larger the resistance
change obtained within this retention study, the faster (hours
to minutes) it drifted back. The improved retention of the
intermediate states compared to the extreme states rules out the
effect of a depolarization field, as observed by Muller et al. in
TiN/SiHfO2/TiN capacitors44. Furthermore, the observation that
both the LRS and HRS relax towards intermediate resistances
confirm that the dominant mechanism is not a depolarization
field due to a limited number of carriers in the WOx. Therefore, a
resistance modulation by displacing oxygen-ions will eventually
relax back to equilibrium by ion-diffusion processes, introducing
the possibility to tune the plasticity timescale by controlling the
oxygen-ion mobility. The more consecutive pulses are applied,
the larger the resistance change and the longer the relaxation
back to a stable long-term state. This characteristic can be used
to implement short-term plasticity45. In dedicated neuromorphic
hardware, the above-mentioned relaxation occurs on long
timescales (seconds, minutes, hours): this should then also hold
for the stimuli or events processed by the network, as for
example in the application field of health monitoring or
autonomous driving. At shorter timescales, our ferroelectric
synaptic functionalities ascribed to the existence of a threshold
voltage for domain switching (coercive field), makes our devices
good candidates for implementation in spiking neural networks.
For example, spike-timing-dependent plasticity (STDP) was
reported in perovskite46 and hafnia47 based thin films. Finally,
the gradual and field-driven switching of the ferroelectric
domains is well suited for implementing voltage-based STDP
models48–50. In recent work, Garg et al.51 showed that such
unsupervised, voltage-dependent-plasticity learning rules out-
performs STDP in classification tasks.

Building on this finding of multiple timescales and physical
locations where the RSD modulation occurs, we envision adding a
4th electrode with a non-ferroelectric gate on top of the WOx

dielectric to further oxidize or reduce the channel without
affecting the ferroelectric state. This additional terminal provides
a volatile resistance component to tune the switching dynamics,
similarly to52. Having such an additional volatile component
permits the implementation of a wide range of neuromorphic
engineering paradigms53.

(c)

Fig. 3 Temperature-dependent measurements. Dynamic range modulation with temperature for a tw= 500 μs and b longer write pulse trains of 90 ·
tw= 100ms. c Retention measurements at elevated temperature (85 °C) for long set pulses tw= 500ms.
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Characteristics for ANNs. In contrast to SNNs, where a tunable
plasticity is desired, the efficient operation of ANNs on analog
memristive crossbar arrays requires artificial synapses that behave
as long-term memory with long data retention and low varia-
bility. Figure 4a shows a single potentiation and (depression)
cycle of RSD by increasing (decreasing) Vw from 0 V to 6 V
(−0.6 V to −6 V) in 25 mV steps. The programming and RSD
measurement protocols are described in the section “Methods,
Electrical characterization”; for a sampling bias of 200 mV, the
conduction in the channel is Ohmic. The pulse duration tw was
kept constant at 500 μs. The 241 (217) steps for the potentiation
(depression) exhibit a quasi-continuous resistance range with a
monotonic change of the resistance and a DR of 16. The Cycle-to-
Cycle Variability (CtCV) was analyzed by performing 40 sub-
range cycles of depression (−0.6 V to −5 V) and potentiation
(−1.25V to −5.5 V) as shown in Fig. 4b. The corresponding Vw
to each pulse is given at the bottom. Figure 4c is a superposition
of all 40 cycles to help visualize the CtCV. By reducing the Vw
range, the DR decreases to 10:4 on average. Figure 4d is a
visualization of the CtCV (standard deviation) as a percentage of
the channel resistance range (HRS-LRS). The CtCV does not
exceed 6% and is as low as 1:9% on average.

To study the device-to-device variability, 20 identical FeFETs
were measured and the normalized standard deviation of the HRS
(39%), LRS (39%), and DR (28%) was extracted. The device-to-
device variability can be explained by process variations across
the sample. The polycrystalline nature of HZO results in different
ferroelectric properties from device to device19. Also, the WOx

conductivity is rather sensitive to its oxygen content and can be
reduced at elevated temperatures (>250 °C) by other oxides or
nitrides interfacing it, such as SiO2, Al2O3, or SiN. Hence, local
temperature differences during processing can cause different
local reduction states of the WOx.

The performance of our FeFETs as artificial synapses in a
crossbar array was investigated by using the MLP+
NeuroSimV3.054 framework. The on-line learning accuracy of a
pseudo-crossbar array of 400 input, 250 hidden, and 10 output
neurons trained on the MNIST database was simulated by using

the aforementioned values. The non-linearity (NL) parameters
were extracted by fitting the potentiation and depression curves
according to ref. 54 (Fig. 5a). They are 2:32 and �4:63 for the
potentiation and depression, respectively. Moreover, Fig. 4a
shows that operating the FeFET in a subloop regime (±3V) would
improve the linearity even further, but at the cost of a smaller
dynamic range. Here, the MLP+ NeuroSimV3.0 code was slightly
adapted (Supplementary information Note 8) to apply a random
Conductance Range Variation (CRV) to every device in the
network, which takes into account our device-to-device varia-
bility. The spread of the HRS, LRS, and DR around the average
(No var) are depicted in Fig. 5b, c. Figure 5d reports the learning
accuracy on the MNIST database. By only considering the NL
parameters and the Finite Number-of-States (FNoS) as a non-
ideality, an excellent performance of 92% recognition accuracy is
achieved. This metrics show that the proposed technology
compares to state-of-the-art FeFET evaluated with the same
platform (Supplementary Table 3). By further introducing the
CtCV to the simulation, the performance remains as high as 89%
and with the HRS, LRS, and DR spread included, still 88% is
reached.

We then perform endurance and retention tests to evaluate the
benefit of using a metallic oxide channel, compared to state-of-the-
art FeFET on Si, for which is typically reported an endurance of
106 19 cycles, although lately up to 108 55 cycles were reported. The
endurance of a FeFET with L= 800 nm and W= 600 nm is shown
in Fig. 6a. Cycling pulses of ±3 V and ±4V with a frequency of
100 KHz were applied to the gate, while the source and drain were
grounded. When switching at ±3V we observed a small continuous
decay of the DR to ~70% of its initial value after 1010 cycles, but no
failure could be identified. To the best of our knowledge this is the
best endurance reported on hafnia-based FeFETs. Especially when
compared with Si-based channel FeFETs this is a major improve-
ment. Increasing the cycling voltage to ± 4V (on another device
with the same dimensions) accelerated the fatigue and the device
failed after 8�109 cycles. Cycling at even higher fields was not tested
as online learning happens in small changes and not by constantly
switching between the extreme states.

Fig. 4 Potentiation and depression cycles with a constant pulse width scheme. The FeFET has a channel length of 300 nm and a channel width of 2 μm:
a one potentiation (0 V to 6 V) and depression (−0.6 V to −6 V) cycle with a constant tw= 500 μs showing quasi-continuous channel resistance states
(dep: 241 states, pot: 217). b 40 sub-range potentiation (0.6 V to 5 V, 171 levels) and depression (1.25 V to −5.5 V, 169 levels) cycles. Channel resistance
RSD as a function of pulse number (top) and the corresponding Vw (bottom) are reported. c Superposition of all 40 cycles from (b) to visualize the cycle-to-
cycle variability. d Standard deviation of a channel resistance state normalized by the resistance window (HRS-LRS) for each Vw.
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With a channel resistance between 20MΩ and 2 GΩ (depend-
ing on the geometry) and a read voltage of 100 mV, between
5 pW and 500 pW are dissipated during a read operation
(Pread ¼ V2

SD=RSD). The write operation of a single device
(tw= 500 μs) to the high gate impedance (Supplementary Fig. 4b)
has a lower energy consumption, between 1.7 fJ and 1.2 pJ for Vw
of 1V and 6V , respectively (Ewrite ¼ tw�V2

w=RG). The low-power
operation, long endurance, and promising MNIST classification
performance make this a viable candidate for large crossbar
implementations for ANN training.

Retention measurements are depicted in Fig. 6b. By fitting a
linear regression in the log-log scale, no drift is observed for the
intermediate states. Both, the LRS and HRS display a small drift
towards lower values. Extrapolating the fit to 10 years yields a
change of about 11% and 15%, respectively. This excellent
retention time confirms the advantage of using metal-oxide thin
films over Si as channels as there is no back-switching of the
ferroelectric domains due to charge trapping at the oxide
interlayer formed between Si and the ferroelectric56. This low
drift opens the path to inference and memory applications for the
FeFET devices presented in this study.

Conclusion
We demonstrated a scaled (sub-µm) BEOL-compatible FeFET
artificial synapse with an amorphous WOx < 3 channel. The device
concept was engineered to leverage two controllable resistance
modulation mechanisms activated on two different write pulse
timescales: a fast ferroelectric field effect (tw < 3 μs) and an oxi-
dation/reduction of the channel by oxygen movement at a slower
timescale (tw > 3 μs). Key enablers were the control of the channel
oxidation state and of its thickness down to 4 nm, as well as
having the channel in direct contact with the ferroelectric HZO
gate without the formation of a spurious interlayer.

The dual nature of the resistance modulation mechanisms was
derived from the write time-dependent dynamics and from the two
different potentiation and depression slopes. The temperature-
dependent current measurements showed opposite dynamic range
trends for the two timescales, confirming that the resistance
changes originate from two different mechanisms. Moreover, the
temperature-dependent retention measurements highlighted the role
of the oxygen drift across the layers in the slow regime (tw > 3 μs).

With this extra option to extend the dynamic range, our scaled
FeFETs have a dynamic HRS/LRS ratio at room temperature that

Fig. 5 Online learning performed with MLP+ NeuroSimV3.0. a Exponential fit of the potentiation and depression curves to extract the corresponding non-
linearity parameter. b, c Histogram of the HRS, LRS, and DR after taking the device-to-device variability into account. dMNIST classification performance of
our FeFETs with different degrees of non-idealities included: non-linearity factors and finite number of steps (purple), + cycle to cycle variation (gray), and
+ conductance range variation (blue).

Fig. 6 Endurance and retention. a Endurance of a FeFET with L= 800 nm andW= 600 nm. Triangular pulses with a frequency of 100 kHz were applied up
to 1010 cycles. The amplitude of the pulses was ±3 V and ±4 V. The evolution of the HRS and LRS (left axis) and the corresponding dynamic range (right
axis) are shown. b Retention measurements at room temperature for a FeFET with L= 300 nm and W= 2 μm showing a good retention of >10 years for
the four programmed states. Only the HRS has a small drift. The solid lines are the experimental data and the dashed lines are linear extrapolations in the
log-log scale.
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is 30 times larger than the state-of-the art24. The plasticity of our
synapse shows a different response over multiple timescales,
making our FeFETs interesting candidates for neuromorphic
engineering. The ohmic nature and a resistance of our WOx

channel in the MΩ regime are excellent features for precise and
low-power readout operations. The extremely fine-grained, quasi-
continuous monotonic resistance changes with more than
200 steps between the LRS and HRS, together with an excellent
cycle-to-cycle variability led to a good MNIST classification
accuracy of 88% with the NeuroSim framework. The endurance
was extended to >1010 cycles and an excellent retention of >10
years was obtained with only little dynamic range loss. Therefore,
our FeFET technology is not only promising for online learning
but also for in-memory computing and neural network inference
applications. A 4th electrode acting as top gate could introduce a
volatile component, a desired property for bio-inspired neuro-
morphic engineering paradigms.

Methods
Sample preparation. Our FeFET is a back-gated device to allow the crystallization
of the ferroelectric HZO gate dielectric before the deposition of the thin-film WOx

channel. First, 500 nm SiO2 were formed by thermally oxidizing the Si substrate. A
100 nm thick W layer was deposited by sputtering and consecutively etched in a
Reactive Ion Etcher (RIE) with an SF6 plasma to form the first gate metal level
(M1). Then, a 100 nm thick SiO2 passivation was deposited by Plasma-Enhanced
Chemical Vapor Deposition (PECVD) at 300 °C and vias to M1 were etched using
an RIE with a CHF3/O2 plasma. M2 was deposited as M1 and continued by a
10 nm TiN layer deposited using a tetrakis- (dimethylamino)titanium (TDMAT)
precursor and N2/H2 plasma in an Oxford Instruments plasma-enhanced atomic
layer deposition (PEALD) system. To avoid large topographies, 600 nm of SiO2

were deposited on top of M2 and then removed by chemical mechanical polishing
(CMP) until only a thin layer of SiO2 was left above M2. This effectively removed
the topography introduced by M1 and M2 (Supplementary Fig. 3d). The last few
nm of SiO2 were then etched by RIE to expose the TiN on top of M2. An ~10 nm
thick layer of HZO was grown in a process using alternating cycles of tetrakis-
(ethylmethylamino)-hafnium (TEMAH) and bis-(methyl-η5-cyclopentadienyl)-
methoxymethyl-zirconium (ZrCMMM) at 300 °C and then capped by 30 nm of W
deposited by sputtering. The crystallization of the HZO was then performed by a
millisecond flash lamp anneal (ms-FLA)30 where the sample was heated to 375 °C.
After the crystallization the W was removed by a wet etch in H2O2 at 50 °C. 4 nm
of WOx was then deposited using a bis-(tert-butylimino)-bis-(dimethylamino)-
tungsten precursor and an oxygen plasma at 375 °C in a PEALD system. To fully
oxidize the WOx, it was annealed in a rapid thermal annealer at 350 °C with
50 sccm O2 for 6 min. After the structuring of the WOx by an SF6 plasma in the
RIE, source (S) and drain (D) contacts (Pt/W) were deposited on top of the WOx

channel by lift-off. Finally, the structures were passivated by 100 nm of SiO2 and
two metal levels (M3, M4) were fabricated as M1 and M2.

Structural characterization. Grazing-Incidence X-Ray Diffraction (GIXRD)
measurements were executed on a Bruker D8 Discover diffractometer equipped
with a copper rotating anode generator. Cross-sectional cuts and lamellas for
Scanning Transmission Electron Microscope (STEM) analyses were prepared by
Focused Ion Beam (FIB) using an FEI Helios NanoLab 450 S. STEM analysis was
carried out on a double spherical aberration-corrected JEOL JEM-ARM200F
microscope. Bright-Field STEM (BF-STEM) images were acquired at 200 kV, and
energy-dispersive X-ray spectroscopy (EDS) line profiles were performed using a
liquid-nitrogen-free silicon drift detector.

Electrical characterization. The electrical characterization was performed using a
probestation in atmosphere. For the temperature-dependent measurements, the
stage was heated and the temperature controlled by a thermocouple. Otherwise,
the measurements were performed at room temperature. Potentiation and
depression, resistance, retention, endurance, and capacitance measurements were
performed on an Agilent B1500A with a B1530A waveform generator/fast mea-
surement unit and a B1520A multi-frequency capacitance measurement unit.
Write pulses were generated by a remote sense unit module close to the probe and
applied to the gate while source and drain were grounded. To read the channel
resistance, four sampling points at VDS= 200 mV and VDS=−200 mV were taken
with the source measurement unit at the source while the drain was grounded and
the gate was floating. PUND measurements on MFSM capacitors were performed
on a TF analyzer 2000 from aixACCT. The PUND signal of ±5 V at 1 kHz was
applied to the W/TiN contact (equivalent of the gate in a FeFET) of the W/TiN/
HZO/WOx/W capacitor, while the other side was grounded. Before the PUND

measurement, devices were woken up by 105 fully switching cycles with an
amplitude of ±4 V.

Data availability
The data that support the findings of this study have been included in the manuscript
and supplementary information. Any additional data are available from the
corresponding author upon reasonable request.
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