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Strain-tuned topological phase transition and
unconventional Zeeman effect in ZrTe5
microcrystals
Apurva Gaikwad1,8, Song Sun 2,3,8, Peipei Wang4, Liyuan Zhang 4, Jennifer Cano 1,5✉, Xi Dai 6,7✉ &

Xu Du 1✉

The geometric phase of an electronic wave function, also known as Berry phase, is the

fundamental basis of the topological properties in solids. This phase can be tuned by mod-

ulating the band structure of a material, providing a way to drive a topological phase tran-

sition. However, despite significant efforts in designing and understanding topological

materials, it remains still challenging to tune a given material across different topological

phases while tracing the impact of the Berry phase on its quantum transport properties. Here,

we report these two effects in a magnetotransport study of ZrTe5. By tuning the band

structure with uniaxial strain, we use quantum oscillations to directly map a weak-to-strong

topological insulator phase transition through a gapless Dirac semimetal phase. Moreover,

we demonstrate the impact of the strain-tunable spin-dependent Berry phase on the Zeeman

effect through the amplitude of the quantum oscillations. We show that such a spin-

dependent Berry phase, largely neglected in solid-state systems, is critical in modeling

quantum oscillations in Dirac bands of topological materials.
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Topological phase transitions in many materials can be
described by a massive Dirac equation at a time reversal
invariant momenta. When the energy gap closes and

reopens, the mass term in the corresponding Dirac equation
changes sign, which can be reflected by the evolution of Berry
phase along the Fermi surface if the system is slightly doped1–6.
Both the evolution of the band gap and the Berry phase can be
probed in quantizing magnetic fields, where Shubnikov de Haas
(SdH) oscillations from Landau level quantization provides a tool
to probe “Fermiology”7–11. In addition to Landau level quanti-
zation, the Zeeman effect splits the spin-degenerate Landau levels.
The difference in the Berry phases between the spin-split Landau
levels plays a crucial rule in the SdH oscillations. Interestingly,
while the Zeeman effect has been extensively studied over the past
decades12,13, its connection to band topology and non-trivial
Berry phase has emerged only recently. A Dirac band with a finite
mass gap hosts spin-dependent Berry phase which can modify the
SdH oscillations through the Zeeman effect, as recently demon-
strated in the spin-zero effect14,15. Such a spin-dependent Berry
phase is expected to be fundamentally generic for Dirac-like
bands, and is band parameter dependent. It is therefore desirable
to conduct a comprehensive study of such effect in a system with
tunable band parameters.

Despite the significant developments in topological materials
study in recent years, it remains a challenge to tune between
different topological phases, and correspondingly the Berry phase,
in the same material. Strain is a widely proposed mechanism for
driving a topological phase transition16–26. And transition metal
pentatelluride ZrTe5 is a promising material for such study. ZrTe5
is a van der Waals layered material with orthorhombic lattice
structure, with layer planes extending along the a- and c- lattice
directions and stacking along the b direction. Its electronic
properties of is largely dominated by the Fermi surface centered
around the Γ point with a Dirac dispersion, but can also have
contribution from the parabolic side bands with Fermi surfaces
centered between the R and E points in the Brillouin zone (see
Supplementary Note 2). ZrTe5 hosts intriguing properties such as
a resistance peak (Lifshitz transition)27–29, chiral magnetic

effect30, and 3D quantum Hall effect31. In its 3D bulk form, ZrTe5
has a Dirac-like low energy band structure, with sample-
dependent mass gap rendering the material from Dirac semi-
metal to topological insulator30,32–36, suggesting extreme sensi-
tivity to lattice deformations. Recently a strain-induced weak
topological insulator (WTI) to strong topolgical insulator (STI)
transition has been proposed37,38, followed by experimental evi-
dence in angle-resolved photoemission spectroscopy (ARPES)
study39, and indirect charge transport evidences via the chiral
anomaly effect40. A charge transport study of the quantum
oscillations which directly map the topological phase transition is
still lacking. Such bulk transport measurements would be com-
plementary to the surface-sensitive ARPES study, and also reveal
the spin-dependent Berry phase over tunable band parameters.

In this work, we study charge transport and SdH oscillations in
ZrTe5 under tunable uniaxial strain. In a magnetic field perpen-
dicular to the a–c plane and the applied current, SdH oscillations
and their evolution over strain allow direct mapping of the WTI-
STI transition through the closing and reopening of the Dirac
band mass gap. The dependence of the SdH oscillation amplitude
on the Fermi energy and Dirac mass gap, tunable through the
strain, is analyzed and compared with the quantum oscillation
theory. Our results reveal that the spin-dependent Berry phase
intrinsic to the Dirac bands, which has been largely neglected in
previous studies, is critical in modeling the SdH oscillations in
such topological materials.

Results and discussion
Magnetotransport under tunable strain. The samples studied in
this work are ZrTe5 microcrystals mechanically exfoliated onto
flexible Polyimide substrates (Fig. 1a–c), which allow application
of external tensile and compressive strains along the a-axis
through substrate bending, over a wide temperature range from
room temperature down to below 4K (see Methods: Sample
fabrication and characterization, and Supplementary Note 3).
Our ZrTe5 exhibits a strain-tunable resistance peak at Tp ≈ 140
K(Fig. 1e). At T= 20K a non-monotonic resistance versus strain
dependence is observed (Fig. 1f), consistent with the report in

Fig. 1 ZrTe5 under strain. a Crystal structure of ZrTe5. b Optical microscope image of ZrTe5 microcrystal on Polyimide substrate with predefined current
and voltage electrodes. c Atomic force microscope image of the sample. d The cross section of the ZrTe5 crystal, with a thickness of ~190 nm. e Resistance
versus temperature dependence under various external strains. f Non-monotonic strain dependence of resistance at the fixed temperature of 20K, showing
a resistance minimum at compressive strain≈−0.2%. Inset: application of uniaxial strain through substrate bending.
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macroscopic ZrTe5 crystals40. A large strain gauge factor ranging
102−103 generally presents throughout the temperature range up
to room temperature. The gauge factor observed here is very large
compared to that of the metal thin films (~2), and is comparable
to typical single crystal semiconductors such as Si and Ge (~100).
The large gauge factor manifests a strain-sensitive band structure
and a small Fermi surface.

Next, we characterize the electrical resistance in magnetic field
perpendicular to the a–c crystal plane. At the base temperature of
≈4K, SdH oscillations are clearly visible on the magnetoresistance
background and evolve with changing strain (Fig. 2a). Plotting
the oscillatory part ΔR versus inverse magnetic field 1/B, equally
spaced resistance oscillations can be resolved (Fig. 2b). In the
limits of large compressive and tensile strains applied here, the
oscillation amplitude monotonically decreases with increasing 1/
B. Under mild compressive strains, however, the SdH oscillation
amplitude appears non-monotonic, suggesting contributions
from more than a single Fermi surface.

Analysis of SdH oscillations. Our analysis of the SdH oscillations
focuses on mapping out the strain-dependent mass gap, Fermi
level, and the spin-dependent Berry phase. We model ZrTe5 by an
anisotropic Dirac Hamiltonian (see Methods: Computing the g-
factor). Starting from a full Hamiltonian including all the Bloch
bands, we divide the Hilbert space into a low energy subspace
consisting of the Dirac bands, and a high energy subspace con-
taining all the other bands. When a magnetic field is applied, the
vector potential couples the two subspaces and must be

downfolded into the low energy bands at the Fermi level, which
gives rise to the nonzero g-factor terms in the two-band Dirac
model for the low energy subspace, gp and gs. We note that such a
down folding process includes the contribution to the orbital
magnetic moments (the importance of which in the analysis of
quantum oscillations has been recently pointed out11) from the
high energy bands and the contribution from the low energy
bands can be captured by the Landau quantization with the Berry
curvature being considered15,41.

In quantizing magnetic fields, the extremal cross-sectional area
of the Fermi surface is SF= π(μ2− Δ2)/(ℏ2v2). The corresponding

cyclotron mass is mc ¼ _2∂Sk
2π∂μ ¼ μ

v2. Here μ is the Fermi energy, Δ is
the mass gap, and v ≈ 5 × 105 m s−1 is the Dirac band velocity in
the a–c plane32. The SdH oscillations can be modeled with the
Lifshitz–Kosevich (LK) formula: up to the second order in the B
field, each single band contributes to the SdH oscillations:

ΔR=R0 / RDRT cos
_SF
eB

þ ϕB þ π þ δ

� �
ð1Þ

We note that the conventional (parabolic band) LK formula and
its Dirac version42 have the same mathematical form with their
corresponding band parameters (see Supplementary Note 5). In
Eq. (1) R0 is the zero magnetic field resistance. Defined for Dirac
band, RD ¼ expð�2π2kBTdjμj=_eBv2Þ is the amplitude reduction
factor from disorder scattering, where Td is the Dingle
temperature characterizing the level of disorder,and kB is the
Boltzmann constant. RT ¼ ξ= sinhðξÞ is the amplitude reduction

Fig. 2 Magnetotransport measurements on ZrTe5 under strain. a Resistance versus magnetic field in various external strains. The curves are shifted in
proportion to the strain for clarity, from the bottom to the top: −0.44, −0.34, −0.3, −0.24, −0.21, −0.19, −0.17, −0.15, −0.13, −0.11, −0.09, −0.07,
−0.05, −0.03, 0, 0.1, 0.2, 0.3%. b SdH oscillations versus inverse magnetic field in various external strains. The curves ares shifted in proportion to the
strain for clarity, from the bottom to the top: −0.44, −0.34, −0.3, −0.24, −0.17, −0.11, −0.05, 0, 0.1, 0.2, 0.3%. Symbols are experimental data and solid
lines are simulations using the two-component LK formula. c Landau index, obtained from SdH oscillations, versus inverse magnetic field in large
compressive and tensile strains (red square: −0.34%, green sqaure: −0.24%, brown circle: 0.2%, blue circle 0.3%). Here resistance peaks and valleys are
assigned integer and half integer indices, respectively. The inset show the pockets of Fermi surface, with the Dirac band at the Γ point and a parabolic side
band between the R and E points dominating the SdH oscillations under strong compressive and tensile strains, respectively. d, e SdH amplitude versus
inverse magnetic field and temperature in strong compressive (−0.3%) and tensile (0.3%) strains. The symbols are experimental data and the solid lines
are fittings using the LK formula. From the fittings, the effective cyclotron mass and Dingle temperature can be obtained. The vertical error bars denote the
uncertainty in identifying the SdH oscillation amplitude. f Under medium strains the SdH oscillations (open symbols) are directly simulated (solid lines)
with the two-component LK formula at various temperatures: black: 3K; red: 8K; and blue: 12K.
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factor from temperature, where ξ= 2π2kBTμ/ℏeBv2. ϕB is the
Berry phase, and δ= ± π/4 in 3D materials.

Zeeman effect and spin-dependent Berry phase. Now we con-
sider the Zeeman effect, which splits a spin-degenerate band into
two, each with a different Fermi surface extremal cross-sectional
area: SF↑/↓= SF ± αB, and Berry phase: ϕB↑/↓= ϕB ± ϕs15. Here α
describes the splitting of extremal cross-sectional area of the
Fermi surface and ϕs is the spin-dependent part of the Berry
phase. Due to the strong spin-orbit coupling in ZrTe5 spin is not a
good quantum number at general momenta: here spin up and
spin down refer to “pseudo spins” defined as the two eigenstates
of the mirror reflection operator through the kz= 0 plane, which
contains the extremum projection of the Fermi surface. The
overall quantum oscillation is a summation of the two oscillation

terms from the two spin bands: cos
_SF"
eB þ ϕB" þ π þ δ

� �
þ

cos
_SF#
eB þ ϕB# þ π þ δ

� �
¼ 2 cos _SF

eB þ ϕB þ π þ δ
� �

cos _α
e þ ϕs
� �

Interestingly SF and ϕB, which are the common (spin-indepen-
dent) part of the two spin bands before the Zeeman splitting,
determines the period and phase offset of the quantum oscilla-
tions; while the difference between the two spin bands determines
the amplitude.

For systems with non-trivial Berry curvature, the Berry phase
splitting ϕs along the Fermi surface will be nonzero. In particular,
for a Dirac electron system, we find (see Methods: Quantum
oscillations)

ϕs ¼ π
Δ

μ
ð2Þ

ϕB" ¼ π þ ϕs ¼ π 1þ Δ
μ

� �
ϕB# ¼ π � ϕs ¼ π 1� Δ

μ

� � ð3Þ

Defining the Zeeman effect-induced SdH amplitude reduction
factor: Rs ¼ cos _α

e þ ϕs
� �

, we derive for the Dirac band:

ΔR=R0 ¼ ARDRTRs cos
πðμ2 � Δ2Þ

eB_v2
þ δ

� �
; ð4Þ

Further, the coefficient α is computed from the g-factor tensor
obtained from first-principle calculations at given values of
Δ and μF.

Under large compressive and large tensile strains, we observed
approximately single SdH oscillation frequencies and a mono-
tonic decay of SdH oscillation amplitude over increasing 1/B,
suggesting that SdH oscillations are dominated by single bands
there. The linear dependence of the Landau level indices on 1/B
(Fig. 2c) extrapolates to the index values of close to 0 and 1/2 at 1/
B= 0, corresponding to a SdH oscillation phase change from
approximately zero to π. Fitting the 1/B and T dependence of the
SdH oscillation amplitude to the LK formula (examples shown in
Fig. 2d–f) provides estimations to the cyclotron mass and the
Dingle temperature at these particular strains.

More generally, the SdH oscillations show a complex 1/B
dependence which can be modeled considering contributions
from two bands: ΔR= ΔR1+ ΔR2. Here band 1 is a Dirac band
(with corresponding Fermi surface centered around the Γ point)
with a common Berry phase of π for its two spins bands and
hence a overall SdH phase which is much smaller than π (Fig. 2c).
Band 2, a “trivial” parabolic band (with corresponding Fermi
surface between the R and E points) possess a overall SdH phase
which is close to π. We note that evidence of charge transport
contribution from a secondary band has been reported
previously28. The change of SdH phase shown in Fig. 2c is due

to the strain-evolution of the relative contribution from the two
bands, instead of band topology transition within the same band.

Figure 2b compares the measured SdH oscillations with the
two-component LK formula simulations at base temperatures.
Here the Dirac band SdH oscillations are modeled with Eq. (4),
while the SdH oscillations from the trivial band are modeled with
the conventional LK formula, with parameters including Td,
Fermi energy and cyclotron mass mc. The band parameters used
in the simulations are chosen so that they evolve smoothly with
changing strain, and yield SdH oscillations which agrees with the
experimental observations (with small deviations which may be
attributed to the choices of background curves when extracting
the oscillatory part of the data). The more general comparisons
including temperature dependence are shown in the Supplemen-
tary Note 4. Figure 3 plots the key simulation parameters. Here
we also include the estimated uncertainties of the parameters
beyond which the simulated SdH oscillations deviate noticeably
from the measurements. Focusing on the the Dirac band, a
closing and re-opening of mass gap with tuning external strain
happens at a compressive strain of ≈− 0.2%. This, remarkably, is
a direct transport evidence of the theoretically predicted WTI to
STI transition. Associated with such transition, the Fermi energy
(measured from the center of the mass gap) shows a non-
monotonic strain dependence, reaching a minimum close to the
transition strain where mass gap vanishes. From the mass gap and
the Fermi energy, we calculate the electron doping: μ− Δ, which
characterizes the energy of the Fermi level in relation to the
bottom of the conduction band. The result indicates a maximum
electron doping at the WTI-STI transition, which decreases when
strain-tuned away from the transition. Generally the analysis of
the band parameters suggests a band evolution with strain which
is depicted in Fig. 4a.

Compared to the previous (ARPES and chiral magnetic effect)
reports on WTI-STI transition, a similar order of magnitude of
strain was applied in our studied here ( ≈ few− 0.1%). The
absolute value of the strain at the transition point, however, is
randomly shifted by a random built-in stress (typically tensile),
resulting from the hot-transfer fabrication process. We note that
the observed STI-WTI transition coincides with the minimum
resistance point (Fig. 1e), consistent with the previous experi-
mental study on chiral magnetic effect in ZrTe5 under strain40.
The strain-tunable bandgap observed through our magnetotran-
sport, within the range of strain of a ≈ few− 0.1%, varies by a few
10 meV. This is in good agreement with the previous report on
ARPES study of ZrTe5 under strain39.

Next we focus on the impact of Zeeman effect on SdH
oscillation amplitude (Rs). Experimentally we obtain Rs at every
strain by quantitative simulation of the SdH oscillations. We then
compare the results with the theoretical expectation:
Rs ¼ cos _α

e þ ϕs
� �

. Here _α
e , which is associated with the splitting

of extremal cross-sectional area of the Fermi surface, follows (see
Methods: Quantum oscillations):

_α

e
¼ �π

Δ

μ
� π

μ

mev2
gpz
2

1þ Δ

μ

� �
� gsz

2
1� Δ

μ

� �� �
ð5Þ

We adopt the g-factors for the s and p orbitals
gpz ¼ 9:66; gsz ¼ �6:45, as computed from first-principle calcu-
lations (DFT-mBJ)41. We note that Eq (5) represents a
generalization of the calculation in Ref. 11 by including the
effect of higher energy non-Dirac bands, which cause gp and gs
to deviate from one. ϕs, which is associated with the Berry phase
splitting along the Fermi surface (Fig. 4b), is calculated from the
mass gap and Fermi energy obtained from simulating the SdH
oscillations: ϕs ¼ π Δ

μ. The theory shows good qualitative
agreement with the data on the strain dependence of Rs, as
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illustrated in Fig. 3f with the band parameters tuned along the
trajectory in the (Δ, μ) parameter space shown in Fig. 3e. By
contrast, the conventional modeling of Zeeman effect on SdH
oscillations which only considers the Fermi surface splitting
(Eq. (5)) completely fails to match with the experimental
observations. This comparison definitively highlights the

importance of spin-dependent Berry phase in the Zeeman
effect. We also note that in our theoretical model, the value of
RS is dependent on both the amplitude and the sign of the
energy gap Δ. The quantitative comparison between the
theoretical model and our data on RS, as shown in Fig. 3e
and f, therefore reveals a sign-change in band gap near where its

Fig. 3 Strain tuning of band structure and spin-dependent Berry phase. a Strain dependence of SdH oscillation period in inverse magnetic field, for the
Dirac band (band 1) and the trivial band (band 2).The results are obtained by simulating the SdH oscillations. The semitransparent data points correspond
to when the band has relatively small contribution to the SdH oscillations. The vertical error bars present the interval beyond which the simulated SdH
oscillations become noticeably different from the data. For low strains, the error bars are too short to be displayed. The mean values and uncertainties for
the other simulation parameters are listed in Supplementary Note 4. b, c Strain tuning of mass gap size and Fermi energy. The mass gap and the Fermi
energy are obtained by simulating the magnetic field and temperature dependence of the SdH oscillation curves with the two-component LK formula.
Tuning the external strain from compressive to tensile, the mass gap closes and reopens at around −0.2%, consistent with the STI-WTI topological phase
transition. The vertical error bars are determined through standard error propagation. d Strain dependence of doping energy, the energy of the Fermi
surface counted from the bottom of the conduction band. The vertical error bars are determined through standard error propagation. e Theoretical intensity
plot of SdH oscillation amplitude reduction factor from Zeeman effect, RS, as functions of Fermi energy and mass gap. The dotted line shows the boundary
between the STI phase (positive mass gap) and the WTI phase (negative mass gap). The symbols in the mass gap-Fermi energy parameter space
correspond to the experimental data points at various external strains, evolving following the arrow from compressive to tensile. By convention we assign a
negative sign to the mass gap on the WTI side with external strain larger than≈− 0.2%. f Theory(solid lines)/experiment(open symbols) comparison of
RS as functions of mass gap and Fermi energy at various strains. The experimental values of RS are scaled by a common constant factor of 0.6 for
comparison with the theory. The theoretical model qualitatively reproduces the experiment results by considering the spin-dependent Berry phase. By
contrast, the inset shows the theoretical curve without considering the spin-dependent phase, which fails to explain the experimental data (see
Supplementary Note 6). The vertical error bars are determined through standard error propagation.

Fig. 4 Evolution of band structure and Zeeman effect over strain. a Evolution of Dirac band and Fermi level through the STI to WTI phase transition with
increasingly tensile strain. b Schematic energy dispersion with kz= 0 and magnetic field in the z(b) direction. Green circles indicate the boundary of
extremal cross-sections for the spin bands. The spin-dependent Berry phases are ϕ and− ϕ over the two circles. c spin-dependent Berry phase ϕs as a
function of strain, calculated with mass gap and Fermi energy obtained from the SdH oscillations. d Strain tuning of effective g-factor. In both (c and d), the
vertical error bars are determined through standard error propagation.
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amplitude vanishes. This is consistent with the occurrence of a
topological phase transition.

The significant strain-tunability of the spin-dependent Berry
phase ϕs is shown in Fig. 4c. Accompanied by the topological
phase transition where the mass gap vanishes, ϕs passes through
zero when the system is in the Dirac semimetal phase. We also
compute the effective g-factor by comparing Rs with the
conventional Zeeman effect-induced SdH amplitude reduction
factor cosðπgmc=ð2meÞÞ7,32. This leads to g= 2me(ℏα/e+ ϕs)/
(πmc), whose strong strain tunability is shown Fig. 4d.

Conclusion
In conclusion, we have carried out a magnetotransport study on
the evolution of band topology and non-trvial Berry phase over
strain-tunable band parameters in ZrTe5. The strain-dependent
SdH oscillations allow direct mapping of the closing and
reopening of the Dirac band mass gap, which is consistent with a
WTI-STI transition in ZrTe5. Moreover we observed the non-
trivial Berry phase and its dependence on band parameters over
the transition. Such a spin-dependent Berry phase is generic and
intrinsic to Dirac band structure, and is a critical factor in
modeling Zeeman effect in SdH oscillations in topological
materials.

Methods
Sample fabrication and characterization. The samples studied in this work are
ZrTe5 microcrystals mechanically exfoliated onto flexible Polyimide substrates
(Fig. 1a, b), which allow application of tensile and compressive strains over a wide
temperature range from room temperature down to 4K. ZrTe5 single crystals were
synthesized by chemical vapor transport method, with iodine as transport agency.
Stoichiometry amounts of Zr(4N) and Te(5N) powder, together with 5mg/mL I2,
were loaded into a quartz tube under argon atmosphere. The quartz tube was flame
sealed and then placed in a two-zone furnace, a temperature gradient from 480 °C
to 400 °C was applied. After 4 weeks reaction, golden, ribbon-shaped single crystals
were obtained, of typical size about 0.6 × 0.6 × 5mm. The X-ray diffraction char-
acterization of the crystals is shown in the Supplementary Note 1.

To avoid degradation of the material from ambient exposure, the crystals are
exfoliated and press-contacted on predefined gold electrodes on 120 μm-thick
Polyimide substrates in Ar environment, and are encapsulated with poly(methyl
methacrylate) (PMMA) which both protects the crystals from degradation and
facilitates the application of strain. A detailed description on the sample fabrication
and on the contact/crystal interface can be found in reference43. Uniaxial strain is
applied through substrate bending. The strain homogeneity is facilitated by the
total emersion of the crystal in PMMA, and more importantly the extremely small
ratio of crystal thickness (~190 nm) to the total crystal length (~100 μm, we note
that the length of the crystal outside the electrodes also helps creating an uniform
strain throughout the thickness of the crystal). All measurements were done with
electric current applied along the a-axis. Typical contact resistance over a 10 μm2

contact area is between few hundred ohms to a few kilo-ohms, and does not change
significantly over the application of strain through substrate bending. Uniaxial
strain is applied to the samples using a four-point bending setup, with motorized
precision control to the substrate curvature44,45. Because the substrate is much
thicker than the microcrystals, significant uniaxial strain can be achieved at
relatively mild substrate curvatures under which the strain on the microcrystals is
predominantly tensile/compressive due to the elongation/compression of the top
substrate surface where the microcrystals are PMMA-pinned. Besides external
strain applied through substrate bending, both the crystals, the substrates, and the
encapsulating PMMA layer go through thermal expansion/contraction upon
temperature change. Because of such complication it is difficult to precisely
characterize the absolute strain on the crystals. Here we focus on the dependence of
the transport characteristics on the change of strain induced by substrate bending,
which is described in the discussion below as “external strain”. In
magnetotransport measurements, we limit the temperature range between 3 and
20K, where the change of thermal expansion is small in comparison to the range of
the external strain. All charge transport measurements were performed in a Oxford
Variable Temperature Insert with a superconducting magnet, using standard lock-
in technique.

Computing the g-factor. To compute the effect of Zeeman coupling on quantum
oscillations, we study the k ⋅ p Hamiltonian near Γ, which is an anisotropic gapped
Dirac Hamiltonian41:

HðkÞ ¼ Δσ0 _∑ivikiσi
_∑ivikiσ i �Δσ0

� �
; ð6Þ

in the basis p; 12
�� 	

, p;� 1
2

�� 	
, s; 12
�� 	

, s;� 1
2

�� 	
, where ± 1

2 refers to the z-component of
spin. In Eq. (6), Δ is half the mass gap; vx,y,z are the anisotropic Dirac cone
velocities; σx,y,z are the Pauli matrices; and σ0 is the 2 × 2 identity matrix. The
eigenvalues of H(k) are

E ± ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ _2 ∑

i
v2i k

2
i

r
; ð7Þ

where all bands are doubly-degenerate due to the combination of time-reversal and
inversion symmetry. The eigenvectors are given by

ψ ±
m;k

��� E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ± þ Δ

2E ±

s
um

_v
E ±þΔ p � σum

 !
; ð8Þ

where u1= (1, 0)T, u2 = (0, 1)T and we have defined the rescaled coordinates
pi = viki/v.

The Zeeman coupling for the four-band model is:

HZ
0 ¼ μB

∑ig
p
i Bi 0

0 ∑ig
s
iBi

 !
; ð9Þ

where gs;px;y;z are the matrix-valued g-factors for the s and p orbitals, which are
anisotropic due to the crystal symmetry and which differ from their bare value due
to coupling with all the other bands not in the four-band model.

To compute the quantum oscillations, we must downfold this four-band model
into the two bands at the Fermi level. We seek an effectiveg-factor for the two
degenerate bands that make up the Fermi surface, such that when projected onto
those bands, the Zeeman Hamiltonian takes the form:

HZ
mm0 ¼ μBgmm0 � B; ð10Þ

where μB ¼ e_
2me

is the Bohr magneton and m;m0 index the two bands at the Fermi

surface.
The effective g-factor has two contributions:

g ¼ g0 þ gD; ð11Þ

where g0 is the projection of gs and gp (defined by HZ
0 ) onto the two conduction

bands at the Fermi level and gD is an extra orbital contribution that we will describe
below. For a magnetic field in the z direction, using the expressions for the
conduction band eigenstates from Eq. (8),

g0;z ¼
Eþ þ Δ

2Eþ

� �
gpz þ gsz

_2v2ðp2z � p2x � p2yÞ
ðEþ þ ΔÞ2

 !
σz ; ð12Þ

where the Pauli matrix σz acts in the basis of the two bands at the Fermi level.
Ultimately, we will only need the g-factor at the extremum of the Fermi surface,
where pz= 0 and _2v2ðp2x þ p2yÞ ¼ μ2 � Δ2. In this case,

gext0;z ¼
1
2

gpz 1þ 1
γ

� �
� gsz 1� 1

γ

� �� �
σz ð13Þ

where γ ¼ μ
Δ is a dimensionless constant.

Returning to the second term in Eq. (11), gD is the orbital contribution to the
g-factor from the Dirac cone46:

gD;mm0 ðkÞ ¼ ime

_2
∑
ijk
εijk êk ∂iψm;k

D ��� HðkÞ � Em;k

� �
∂jψm0 ;k

��� E
; ð14Þ

where ψm,k are the eigenvectors of Eq. (6).
The first step to evaluate gD is to find the derivatives of the eigenstates:

∂ ψm;k

��� E
∂pi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E þ Δ

2E

r � Δ_2v2pi
2E2ðEþΔÞ um

� ðΔþ2EÞ_3v3pi
ðEþΔÞ22E2 p � σum þ _v

EþΔ σium

0
@

1
A; ð15Þ

where we have dropped the subscript/superscript ± on E and ψ to reduce clutter.
After some algebra, it follows that:

H � Em;k

� � ∂ ψm;k

��� E
∂pi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E þ Δ

2E

r
1

EðE þ ΔÞ
Δ_2v2pium þ iE_2v2∑jkεjikpjσkum

_3v3pip � σum � EðE þ ΔÞ_vσ ium

 !
;

ð16Þ
which yields the matrix element

∂ψm;k

∂pi

� ����HðkÞ � Em;k

∂ψm0 ;k

∂pj

�����
+

¼ _2v2

2E2 uym
�i_2v2εjklpipkσ l þ i_2v2εiklpjpkσ l

E þ Δ
� iEεijkσk þ

_2v2pipj
E

� Eδij

" #
um0

ð17Þ
The terms symmetric under the exchange of the i and j indices (i.e., the last two
terms) will cancel in the sum in Eq. (14). Thus, applying Eq. (14), the extra orbital

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00316-5

6 COMMUNICATIONS MATERIALS |            (2022) 3:94 | https://doi.org/10.1038/s43246-022-00316-5 | www.nature.com/commsmat

www.nature.com/commsmat


contribution to the g-factor is given by:

gD ¼ gL

2~γ2
∑
ijk

~γεijkεijkσk �
2_2v2=Δ2

1þ ~γ
∑
qr
εiqrεijkpqpjσr

� 
vivj
v2

êk ð18Þ

where gL � mev
2

Δ and ~γ � E
Δ are dimensionless constants.

We now simplify this result by taking B in the z-direction and restricting to the
boundary of the extremal cross-section, where pz= 0 and _2v2ðp2x þ p2y Þ ¼ μ2 � Δ2.
Plugging this into Eq. (18), we obtain the z-component of g:

gextD;z ¼
gL

~γ2
vxvy
v2

σz ð19Þ

The total effective g-factor at the extremal cross-section of the Fermi surface is
found by combining Eqs. (13) and (19):

gextz ¼ meΔvxvy
μ2

þ gpz
2

1þ Δ

μ

� �
� gsz

2
1� Δ

μ

� �� 
σz ð20Þ

This expression shows that the g-factor in the ẑ-direction is independent of
momentum on the boundary of the extremal cross-section and is diagonal, i.e.,
jψm;ki are eigenstates of the Zeeman coupling.

Quantum oscillations. We now discuss the quantum oscillations of the anisotropic
Dirac semi-metal. As discussed in the main text, the quantum oscillations for a
doubly degenerate electronlike Fermi surface are proportional to

ΔR=R0 / cos
_SF
eB

þ ϕB þ π þ δ

� �
cos

_α

e
þ ϕs

� �
ð21Þ

where ϕB,↑/↓= ϕB ± ϕs are the Berry phases around the extremal Fermi surface for
each of the two spins and SF,↑/↓= SF ± αB are the extremal areas of the Fermi
surface for each spin.

The Berry connection is defined by46: Amm0 ðkÞ ¼ ∑kihψm;kj ∂
∂kk

jψm0 ;kiek . By
plugging in the expressions for the eigenstates and derivatives of eigenstates in Eqs.
(8) and (15), we find the explicit expression:

AðkÞ ¼ _2v

Δ2

1
2~γð~γþ 1Þ ðpyσz � pzσyÞvxexþ

h
ðpzσx � pxσzÞvyey þ ðpxσy � pyσxÞvzez

i ð22Þ

To find the Berry phase, we ultimately need A(k) ⋅ dk on the extremal cross-section,
where pz= 0 and dk is in the x–y plane, which yields:

AðkÞ � dk ¼ _2vxvy
Δ2

σz
2~γð~γþ 1Þ kyex � kxey

� �
� dk; ð23Þ

where σz is acting in the space of the two conduction bands at the Fermi level. We
find the Berry phase around each extremal ring of the Fermi surface by integrating
over the the boundary of the extremal cross-section:I

AðkÞ � dk ¼ _2vxvy
2Δ2~γð~γþ 1Þ

I
kyex � kxey
� �

� dk ð24Þ

The loop integral can be turned into an area integral using Stokes theorem:Z Z
∇k ´ kyex � kxey

� �
� dSk ¼ �2

Z Z
dSk ð25Þ

¼ �2π
μ2 � Δ2

vyvx
; ð26Þ

which yields:

ϕB;"=# ¼ π 1 ±
Δ

μ

� �
; ð27Þ

where we have added 2π in order to ensure the Berry phase in the range of 0 to 2π.
The last term that we need to evaluate the Lifschitz-Kosevich formula is the area

of the extremal Fermi surfaces. Since the effective g-factor at the extremal Fermi
surfaces (Eq. (20)) is diagonal in the basis of the two conduction bands, the two
extremal Fermi surfaces satisfy the equation:

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ _2v2xk

2
x þ _2v2yk

2
y

q
± μBg

ext
z B; ð28Þ

accounting for the fact that the magnetic field is in the z direction and the extremal
Fermi surfaces have pz= 0. Thus, each extremal cross-section forms an ellipse
whose area is given by:

S ¼ π

_2vxvy
μ� μBg

ext
z B

� �2 � Δ2
h i

ð29Þ

Thus, the area-splitting term α in Eq. (21) is given by:

α ¼ � πeμgextz

_mevxvy
; ð30Þ

where we have used μB= eℏ/2me. Plugging in the result for gextz from Eq. (20),

_α

e
¼ � πΔ

μ
� πμ

mevxvy

gpz
2

1þ Δ

μ

� �
� gsz

2
1� Δ

μ

� �� 
ð31Þ

Plugging in the calculation of the Berry phase (Eq. (27)) and the area difference
(Eq. (31)) to the Lifschitz-Kosevich formula (Eq. (21)), we derive the expression for
quantum oscillations:

Δρ / cos
πμ

mevxvy

gpz
2

1þ Δ

μ

� �
� gsz

2
1� Δ

μ

� ��  !
cos

_SF
eB

±
π

4

� �
ð32Þ
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