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Graph neural networks for materials science and
chemistry
Patrick Reiser1,2, Marlen Neubert1, André Eberhard1, Luca Torresi 1,

Chen Zhou 1, Chen Shao1,6, Houssam Metni 1,3, Clint van Hoesel1,4,

Henrik Schopmans1,2, Timo Sommer 1,5,7 & Pascal Friederich 1,2✉

Machine learning plays an increasingly important role in many areas of chemistry and

materials science, being used to predict materials properties, accelerate simulations, design

new structures, and predict synthesis routes of new materials. Graph neural networks

(GNNs) are one of the fastest growing classes of machine learning models. They are of

particular relevance for chemistry and materials science, as they directly work on a graph or

structural representation of molecules and materials and therefore have full access to all

relevant information required to characterize materials. In this Review, we provide an over-

view of the basic principles of GNNs, widely used datasets, and state-of-the-art architectures,

followed by a discussion of a wide range of recent applications of GNNs in chemistry and

materials science, and concluding with a road-map for the further development and appli-

cation of GNNs.

Data science and machine learning have become an integral part of natural sciences,
discussed as the fourth pillar in science, next to experiment, theory, and simulation1.
Machine learning methods are increasingly applied in all steps of the materials devel-

opment cycle, from finding initial candidate materials using property prediction2,3, database
screening4,5 or even inverse materials design6,7, over the detailed analysis of materials in machine
learning accelerated simulations8,9, to the prediction of synthesis conditions10,11 and automated
experimental data analysis12,13 and experimental planning14. Machine learning models applied
in chemistry and materials science cover a wide spectrum of methods, ranging from classical
machine learning models such as decision tree ensembles to modern deep learning methods such
as convolutional neural networks15 and sequence models16 originally developed for challenges in
computer vision and natural language processing.

A recent addition to the toolbox of machine learning models for chemistry and materials
science are graph neural networks (GNNs), which operate on graph-structured data and have
strong ties to the field of geometric deep learning17–19. Aside from research on social and citation
networks as well as knowledge graphs, chemistry has been one of the main drivers in the
development of GNNs20,21. Graph neural networks can be interpreted as the generalization of
convolutional neural networks to irregular-shaped graph structures. While other machine
learning methods, e.g., convolutional neural networks are at the peak of publication activity,
GNNs are still rising exponentially, with hundreds of papers per year since 2019. Their archi-
tecture allows them to directly work on natural input representations of molecules and materials,
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which are chemical graphs of atoms and bonds, or even 3D
structures or point clouds of atoms. Therefore, GNNs have access
to a complete representation of materials on the atomic level22,
with a lot of flexibility to incorporate physical laws23, as well as
phenomena on larger scales, such as doping and disorder. Using
that information, GNNs can learn internal materials representa-
tions that are useful and informative for specific tasks such as the
prediction of given materials’ properties. Therefore, GNNs can
complement or even replace hand-crafted feature representations
which were and are widely used in the context of natural sciences
in general. A similar trend toward representation learning
methods has also been observed in other application areas during
the last years, where end-to-end trainable models show a sys-
tematic advantage over traditional feature-based methods24.
However, despite promising recent developments toward higher
sample efficiency25,26, this often comes at the cost of higher data
requirements27, potentially limiting the applicability of existing
GNNs to applications where large amounts of data are available.
Overall, GNNs outperformed conventional machine learning
models in predicting molecular properties throughout the last
years22,28,29. While GNNs are not as widely applied (yet) in
materials science as they are in chemistry, there are advantages
and the potential to outperform other machine learning methods
and thus boost virtual materials design and materials science in
general, which will be discussed in this article.

In section ‘Graph neural networks in materials science and
chemistry’, we will introduce the general formalism of GNNs and
discuss the way they transform the atomic structure of materials and
molecules and use it to predict materials’ properties. We will present
and compare state-of-the-art architectures and benchmark datasets,
as well as summarize initial efforts toward inverse materials design
based on GNNs. The section ‘Applications’ covers a wide range of
current application areas but also open challenges for GNNs in
chemistry and materials science. In section ‘Outlook’ we conclude
with a perspective on necessary and expected future developments
and so far unused potential of GNNs in materials science.

Graph neural networks in materials science and chemistry
Basic principles. In the most general sense, graphs are used to
describe abstract structures consisting of entities or objects
represented as vertices (or nodes) and their connections, called
edges. Formally, a graph is a tuple G= (V, E) of a set of vertices
v∈V and a set of edges ev,w= (v, w)∈ E, which defines the
connection between vertices. Potential tasks that can be solved
using graph neural networks (GNNs) include classification or
regression of graph properties on graph level (molecular property
prediction), node level (classification of members, i.e., nodes, of a
social graph), or edge level (prediction of relations, i.e., edges,
between objects in a scene graph). In materials science and
chemistry, most tasks involve graph-level predictions, which will
be the focus of this paper.

The concept of graphs is used in mathematical chemistry to
represent the structure of compounds. The molecular structure is
represented by an undirected graph, where nodes correspond to
atoms and edges correspond to chemical bonds. In fact, chemical
graphs were first considered as early as in 187430 and their idea
traces back further31, which may place them even before the
advent of the term graph in modern graph theory32. The
description of molecules as graphs can also be transferred to
solid-state materials, even though bonds might not be uniquely
defined in crystals, and the exact three-dimensional arrangement
of atoms plays a more decisive role.

Since their proposal17–19, GNNs have become a popular
machine learning method for processing irregularly shaped data
encoded as graphs. They can be seen as an alternative to

approaches, where predefined feature representations of mole-
cules or materials are used as input to conventional machine
learning models such as densely connected neural networks,
random forest models, or Gaussian process regression models. In
the case of GNNs, the full molecular structure or even geometry is
used as input and the GNN itself learns informative molecular
representations to predict given target properties. Due to their
popularity and wide applicability, a large number of different
GNN architectures have been proposed18,20,21,33–35. While the
exact architecture type can notably differ, ranging from the
initially proposed recursive GNNs18 to spectral neural filters35,36

and finally to spatial or convolutional GNNs34, most GNNs
designed for chemistry and materials science can be summarized
under the framework of Message Passing Graph Neural Networks
(MPNN) as suggested by Gilmer et al.21. In this section, we give
an overview of ideas of the message passing framework and
discuss how learned graph- or node-level embeddings can be used
for materials property prediction.

For MPNNs, associated node or edge information (e.g., atom
and bond types) is commonly provided by node attributes h0v 2
Rd and edge attributes h0e 2 Rc. Details about feature and
structure representations are discussed in Section ‘Structure
representation’. Using node and edge features in combination
with the graph’s structure, GNNs are capable of deriving a node-
level embedding of the graph, i.e., learned vectors representing
each atom including its individual chemical environment. This is
done in the so-called message passing phase, in which node
information is propagated in form of messages mv through edges
to neighboring nodes. The embedding of each node is then
updated based on all incoming messages. The locality of the
message passing is sought to be alleviated by repeating the
message passing phase t= 1…K times, in principle allowing
information to travel longer distances, i.e., within the K-hop
neighborhood. In practice, however, information from long-range
dependencies can be distorted in node bottlenecks, referred to as
over-squashing37, or be washed out, leaving indistinguishable
representations of neighboring nodes, known as over-
smoothing38. Note that for typical (not fully linear) molecules
and crystal unit cells with n atoms, only approximately log n
message passing steps are required to pass information to all
other atoms. The information processing is facilitated by the
learnable functions Ut(⋅) for node update and Mt(⋅) for the
message generation. Finally, in the readout phase, a graph-level
embedding y is obtained by pooling node embeddings of the
entire graph via a parametric readout function R(⋅). The final
representation of the graph is used for training both regression
and classification tasks. In summary, the MPNN scheme reads21:

mtþ1
v ¼ ∑

w2NðvÞ
Mtðhtv; htw; evwÞ ð1Þ

htþ1
v ¼ Utðhtv;mtþ1

v Þ ð2Þ

y ¼ RðfhKv jv 2 GgÞ; ð3Þ
where N(v)= {u∈V∣(v, u)∈ E} denotes the set of neighbors of
node v. Note that readout and aggregation can be in principle any
mathematical operation that is permutation invariant, e.g., a sum,
mean or maximum operation similar to Eq. (1) or learnable such
as the Set2Set encoder proposed by Vinyals et al.39, which was
originally used for the readout R(⋅). The learnable functions are
mostly neural networks and eventually determine the perfor-
mance characteristics of the GNN, both in prediction accuracy
and computational cost. Figure 1a shows a schematic of the
message passing scheme for the example of a molecular graph.
Message passing can also be understood as a convolution
operation running over each node in a graph. Different
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extensions and modifications of the message passing schemes are
discussed in Section ‘State-of-the-art architectures and bench-
marks’ and include edge updates40, skip connections41, and
geometric information26,42,43.

A main open research question of GNNs revolves around their
limited expressive performance for specific tasks44 and how
GNNs compare with Weisfeiler–Lehman hierarchy for graph
isomorphism testing45,46. With regard to this topic, there are
many promising extensions to GNNs proposed in literature, such
as hypergraph representations47,48, universal equivariant
models49 or higher-order graph networks50. Furthermore, the
challenge of over-smoothing due to commonly used aggregation
functions38, transfer and multitask learning51, as well as training
(in)stability52 are subject of current research.

Structure representation. Many graph networks directly use the
chemical graph as input, representing both molecules21 and

inorganic compounds24,53, and offering advantages over com-
positional or fixed-sized vector representations in terms of flex-
ibility and scalability. Consequently, GNNs can be applied for
tasks such as drug design or material screening54, which require
knowledge about functional groups, scaffolds55 or the full che-
mical structure and its topology. In molecular applications, the
chemical graph is often extracted from SMILES codes and aug-
mented with features that can be readily obtained from che-
minformatics software such as RDKit56 or OpenBabel57.
Common features for atoms, bonds, and the molecule itself are
listed in Table 1. Besides hand-crafted input features, learned
embeddings of molecules and materials motivated by word
embedding techniques in natural language processing have been
explored which can be used for downstream tasks48,58–60. For
specific tasks in chemistry, the connectivity of atoms in molecules
(i.e., the molecular graph) contains sufficient and complete
information to predict given molecular properties which do not
depend on the exact geometry. Geometry or stereochemical
information can be taken into account e.g., in form of additional
edge features representing the distance between atoms61. In
contrast to that, in materials applications, atom connectivity is
not well defined in most cases (apart from e.g., covalently linked
frameworks) and graphs have to be extracted from crystal
structures based on distance heuristics.

The sole chemical graph and its connectivity are often not
sufficient to accurately predict quantum-mechanical or
electronic-structure properties62 that strongly depend on the
exact molecular geometry, even though ground-state or equili-
brium geometries can in principle be inferred from the molecular
graph alone. In tasks that intrinsically involve geometric
dependencies, e.g., predicting the potential energy surface of
molecules and materials, it becomes obvious that geometric
information is required. The representation of positional and
geometric information to learn quantum properties has been
explored among others in the work of Lilienfeld et al.63 and
Behler et al.64 and lead to a large variety of descriptors. Some
examples of descriptors are atomic centered symmetry functions

Fig. 1 Overview of the message passing principle and performances of GNNS. a Schematic depiction of the message passing operation for molecules and
crystalline materials. b QM9 benchmark. Mean absolute error of the prediction of internal (red circles), highest occupied molecular orbital (HOMO, orange
triangles), and lowest unoccupied molecular orbital (LUMO, inverted blue triangles) energies for different GNN models since 2017.

Table 1 Table of typical (molecular) graph features used in
literature54,269.

Graph-level Attributes Description

nodes atom-type type of atoms (one-hot)
chirality R or S (one-hot or null)
degree number of covalent bonds (one-hot)
radical number of radical electrons (integer)
hybridization sp, sp2, sp3… (one-hot)
aromaticity part of an aromatic system (binary)
charge formal charge (integer)

edges bond-type single, double, … (one-hot)
conjugation is conjugated (binary)
ring bond is part of a ring (binary)
stereo None, Any, Z, E (one-hot)

graph weight average atomic weight (float)
bonds average bonds per atom (float)

They can be further combined with geometric features61.
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(ACSF)65,66, angular Fourier series (AFS)67, the smooth overlap
of atomic orbitals (SOAP)67, partial radial distribution function
(PRDF)68, many-body tensor (MBTR)69, Spectral London
Axilrod-Teller-Muto (SLATM)70 and the Faber-Christensen-
Huang-Lilienfeld (FCHL)71 representation. Many of those
descriptors expand geometric information into symmetry or
basis functions. The resulting vector representation is typically
used as input for conventional machine learning models such as
neural networks or Gaussian Processes. Geometric information
can also be used for node or edge representations in graph neural
networks. Graph networks have been adopting distances61,
bond72 and even dihedral angles26,73, motivated by the
comparison to force fields74. Angles or distances are similarly
expanded into Gaussian-like22, radial23 and spherical Fourier-
Bessel functions28. Although architectures such as the Behler-
Parinello (BP) neural network potentials8 or SchNet22 are not
strictly graph networks in terms of the chemical graph, and often
do not refer to themselves as such, they can be summarized
within the term geometric deep learning75,76.

Under the term geometric deep learning, architectures and
descriptors are summarized that focus on manifolds, geometric
data, or structured data77,78. This includes the work on 3D point
clouds79, which aims at learning segmentation and object
detection of a large number of 3D points. In the case of
PointNet++80 a graph is constructed which reduces the point set
from learned descriptors using the points’ features. Commonly,
adjacency matrices are defined by using distance cutoffs between
points in 3D clouds, while edges carry explicit information about
distances between nodes, i.e., points. Graph pooling or coarsening
algorithms81,82 that reduce the input representation and condense
structure information are also promising for GNNs to tackle
larger molecules such as proteins or polymers.

Eventually, the representation of materials for graph networks
can be structural or geometric but must follow certain symmetry
considerations83,84. For example molecules without external fields
have rotational and translation symmetries. If they are incorpo-
rated into the model and its representation, less data are required
and overall performance can be improved. This concept can be
extended to equivariant representations85,86, which in combina-
tion with equivariant filters, enable equivariant graph neural
networks29,87. Scalar features are extended to (directional)
features, like vectors and higher-order tensors (in the geometric
context of the term tensor), since, embedded in 3D Euclidean
space, they can transform predictably under geometric rotation,
reflection, and translation25,87.

For solid crystals and periodic structures, the periodicity and
space group symmetries are additional symmetries to be added to
the representation for GNNs. Periodic extensions of the crystal
graph2,53 of the unit cell have been introduced61 and their
representation builds on the idea of a k-point mesh of
Monkhorst-Pack grid points to sample the Brillouin zone88.

State-of-the-art architectures and benchmarks. Different
architectures have been proposed in the literature to improve the
performance of GNNs on typical tasks arising in chemistry and
materials sciences. Table 2 shows a list of popular benchmark
datasets for different materials classes, i.e., molecules62,89–99 or
crystals100–102, and respective supervised tasks, i.e., regression or
classification. While some datasets contain experimental data, the
largest datasets typically use computational methods to generate
labels. Most datasets in this table can be downloaded from data
collections such as TUDatasets103 and MoleculeNet95. While a
large variety of datasets and tasks exist for chemistry, there are
only a few large datasets for materials, limited to crystalline
structures. Recent datasets were constructed by filtering the

Materials Project (MP)100 and Open Quantum Materials Data-
base (OQMD)101 for specific targets such as electronic band-gap
or formation energy while removing incomplete data88.

In Section ‘Basic principles’, the message passing framework
for GNNs has been illustrated. Here, we will discuss modified and
extended GNN models, which are relevant for materials science
and chemistry. However, listing all graph network architectures
would be beyond the scope of this review.

Some of the earliest work on neural networks for molecular
graphs dates back to the 90s and 2000s, without explicitly
referring to the term graph neural network8,33. In 2017, a graph
convolutional network was proposed by Kipf et al.34 for semi-
supervised learning, which can be interpreted as a first-order
approximation of spectral graph convolutions35,36. In Table 3, we
distinguish GNN architectures that operate on the graph’s
spectrum in category spectral convolution and GCN models that
process the structure of the graph in spatial convolution, which in
principle includes message passing schemes that pass information
along edges in the graph. We added a soft distinction in this
category to separate models that follow the convolution naming
and models that explicitly refer to the term message passing and
its extension.

The addition of more complicated node aggregation functions
such as gated recurrent units104 or long short-term memories105

has been employed by GraphSAGE for inductive learning106. For
graph embedding tasks, a state- or super-node21, which is
connected to all nodes, extends the message passing framework to
help extract global graph information, in addition to the final
node aggregation step. A message passing neural network
(MPNN) with edge features capturing bond information was
applied to molecular graphs21 and crystal graphs53. A variant of
the original MPNN involves directed edge embeddings and
message passing between edges in D-MPNN40. Known from
models in natural language processing107, masked self-attention
layers which attend over the node’s neighborhood have been
suggested for graph attention networks108 and used explicitly for
molecules in Attentive Fingerprint models54. More attention-
based architectures are listed in Table 3.

Besides graph models which focus on the chemical graph, there
is a large group of models explicitly designed for learning
quantum properties. They commonly take atomic numbers and
positions as input and train on data derived from (approximate)
solutions of the steady-state Schrödinger equation. A popular
benchmark dataset is the QM9 dataset62 with 13 quantum
properties of small molecules with up to nine atoms apart from
hydrogen. The improvement of graph networks on QM9 property
prediction over the past few years is highlighted in Fig. 1b.
Among the first graph networks that reached chemical accuracy
on QM9 is SchNet22, which makes use of convolutional filters for
inter-atomic distances and applies skip connections between node
updates. One improvement to SchNet was to update the
positional features along the graph edges as seen in Jørgensen
et al.109. The application of GNNs to crystals using geometric
information has been explored by MEGNET61, which further
leverages global properties such as temperature, which is of
importance for solid-state crystalline systems. The potential
energy of molecules depends on bond angles and therefore, in
DimeNet28,72, edge embedding uses messages passing steps from
atomic triplets and bond pairs in order to incorporate angular
features. This formalism has been adopted in other recent
GNNs110,111 and can be further extended to include dihedral (or
torsion) angles26,112,113.

For explicit angle plus node information in directed edge
updates as in DimeNet28,72, the message passing essentially
operates on higher order paths73 or k-pairs of atoms50. This is
unfeasible for fully connected larger graphs because the number
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of multi-node interactions that need to be computed is
dramatically increasing. To reduce the computational costs,
models like MXMNet111 make use of multiplex graphs, which
selectively consider only specific edges when going to higher
order pathways for calculating bond angles110.

Note that the GNNs mentioned previously are invariant to the
translation and rotation of the molecules throughout space.
Recently, equivariant GNNs have been proposed29,43,85,114, which
transform equivariantly under symmetry operations of its
(positional) input, meaning the GNN’s features or its output
undergoes the same operations as well. The type of symmetry

operations is commonly specified in 3D-space by the correspond-
ing Euclidean group E(3). The special (isometric) subgroup of
E(3), which preserves handedness in transformation, is denoted
by SE(3). Symmetry operations preserving distance and a fixed
point form the orthogonal euclidean group. Analogously, the
orthogonal group is denoted by O(3) and its composable special
group by SO(3). For example, SO(3) contains rotations, O(3)
includes rotations plus reflections, SE(3) allows rotations plus
translations, and E(3) encompasses both rotations, translations
and reflections. For GNNs also the permutation equivariance
with respect to the input set of nodes can be considered and is
characterized the by symmetric group Sn. In TFN87 equivariant
filters are constructed based on learnable radial functions and
spherical harmonics for (geometric) feature vectors of different
order, namely scalars (type-0), vectors (type-1) and higher-order
tensors, which comprise a direct sum of irreducible representa-
tions of the O(3) symmetry group. Equivariant convolution layers
can be obtained by tensor-products thereof using Clebsch-
Gordan coefficients87. Simplifying to type-1 representations,
EGNN85 uses the relative squared distance and updates the
position of each particle as a vector field in a radial direction to
preserve E(3) equivariance. Equivariant graph models convey
directional information between atoms29 without higher-order
pathways and enable the prediction of tensorial properties114,115.
We have listed popular equivariant GNNs is a separate category
in Table 3.

Further adapted message passing steps allow for the determi-
nation of the molecular orbitals2,116–118. Molecular orbital
interactions can in turn be used for improving the prediction
performance2. Lastly, the mapping of atoms to non-Euclidean
space such as in the proposed hyperbolic GNNs119 can lead to
gains in representational efficiency. For a more in-depth
discussion of graph variants120 and graph taxonomy121 that goes
beyond Table 3, we refer to more general articles about
GNNs122,123, e.g., Zhou et al.121 and Wu et al.124.

With regard to the QM9 benchmark in Fig. 1b some models
have slightly lower performance for the total energy but can be
superior in other QM9 properties or achieve similar results with
much less computational effort. Some other factors that
complicate a stringent comparison are differences in train-test

Table 2 Table of common benchmark datasets for graph
learning tasks.

Molecules Size Tasks Type Description

QM789 7165 1 R DFT quantum calculations
QM7b90 7211 13 R DFT quantum calculations
QM962 133,885 12 R DFT quantum calculations
PDBBind91 23,496 1 R protein binding affinity
MD1792,93 >100,000 ≥1 R molecular dynamics

trajectories
FreeSolv94 643 1 R solvation free energy
Lipop95 4200 1 R lipophilicity
Tox2195 8014 12 C qualitative toxicity

measurement
ToxCast96 8615 617 C qualitative toxicity

measurement
BBBP97 2053 1 C blood–brain barrier

penetration
HIV95 41,913 1 C inhibition to virus HIV
SIDER98,99 1427 27 C adverse drug reaction

Crystals Size Tasks Type Description

MP100 ~144,595 ≥1 R, C Materials Project (MP)
OQMD101 ~1,022,603 ≥1 R, C Open Quantum Materials

Database
OC20102 ~133,934,018 ≥1 R Open Catalyst Project

Note that this list is not complete and merely serves as an overview of different sizes and
supervised learning tasks, which is either regression (R) or classification (C).

Table 3 Table of GNN models are sorted by categories.

Categories GNN architectures

Spectral convolution LanczosNet270, SpecConv271,272, CayleyNet273, ChebNet35

Spatial convolution GCN34, 123-GNN or k-GNN50, R-GCN274, GIN46

PatchySan275, C-SGEL276, GraphSAGE106, OGCNN2

CGCNN and iCGCNN225,233

Message passing MPNN21, D-MPNN40, MPSN44, MGN33

G-MPNN and MPNN-R277, PMP278

3D geometric message passing MEGNET61, DimeNet28,72, PhysNet23, MolNet83,279

PointNet++80, MXMNet111, SchNet22,109, ForceNet191,
GemNet26, Geomol113, ALIGNN110 and ALIGNN-d112,
GNNFF190, GeoCGNN88, SphereNet280, HGCN119

Attention and graph transformer GAT108, GATv2281, MAT51, AGNN282, AMPNN283

CapsGNN284, RGAT285, AttentiveFP54, AGN52

GACNN184, MEGAN130, SAMPN286, HamNet287

Equivariant models PaiNN29, NequIP25, TFN87, CGNet288,
Cormorant114, LieConv43, EGNN85, UNiTE115

SEGNN289, SE(3)T290, CNN-G291–293

Graph pooling DiffPool294, EdgePool295, gPool296

HGP-SL82, SAGPool81, iPool297, EigenPool298

Generative graph models CGVAE146, JT-VAE147, GCPN154, GeoMol113

GraphGAN151, DCGAN150

It is to note, that some models can also fall into more than one category and that this table can not list all relevant models but only give a grouping of a few popular models mentioned in the text. There is
no strict distinction between categories spatial convolution, message passing, and 3D geometric message passing. Generative models are discussed in Section ‘GNNs in generative models’.
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splits, cleaning steps, e.g., of ill-converged molecules in QM9,
multi-task vs. single task settings, where a separate model for each
QM9 target is usually trained61, and differences in used loss
metrics (a mean absolute error loss was found to yield lower
overall test errors23 than the mean squared error loss used in
previous models22, although the mean absolute error is typically
given as a benchmark reference). It has to be noted that
hyperparameters are generally very important and are often not
exhaustively optimized for GNNs which can cause differences in
performance apart from the model architecture125–127.

GNNs in generative models and reinforcement learning. An
important challenge in materials science is inverse materials
design, aiming to generate new materials or molecules that pos-
sess required properties and fulfill specific criteria128. GNN-based
generative methods have been suggested to deal with this chal-
lenge in the context of chemistry, e.g., for drug discovery129 and
retrosynthesis130. In most cases, only the chemical structure of
molecules is generated, i.e., the connectivity of the molecular
graph, without additional information on specific 3D geometry.

Initial graph generative models were designed to generate
graphs based on simplified theoretical assumptions, such as the
random Erdös-Renyi (ER) model131, and improvements thereof
using small-world approaches132 or the Kronecker graph
model133. While these traditional approaches attempt to model
real-world graphs, they are based on several assumptions about
the nature of graphs generated and are thus inflexible for many
data-related applications. Machine learning approaches for graph
generation are promising because they can directly learn to
generate realistic graphs from the distribution of observed data
while accommodating goal-directed tasks such as property
optimization. Examples include variational autoencoders
(VAEs)134, generative adversarial networks (GANs)135, reinforce-
ment learning136, recurrent neural networks (RNNs)137, and
flow-based generative models138–140.

Several architectures of VAEs have been developed to work
with different types of input data, such as images141, text-based
data142,143, or graphs144,145. Kipf et al. introduced a variational
graph auto-encoder (VGAE) to learn latent representations of
undirected graphs and applied it to a link prediction task in
citation networks144. Liu et al. introduced a Constrained Graph
Variational Autoencoder (CGVAE), in which node type informa-
tion is learned from and added to the latent vectors146. Starting
from a set of these latent node representations, CGVAE iteratively
forms valid molecules following hard valency constraints derived
from the explicit node types. Jin et al. introduced Junction Tree
Variational Autoencoder (JT-VAE) to work directly on molecular
graphs and achieved an improvement over baseline methods in
molecular design tasks147. The JT-VAE approach encodes and
decodes molecules in two steps: First, tree-structured objects
called junction trees are generated which represent trees of
molecular subgraphs and their arrangements. GNN-based
encoders and decoders are used to generate latent embeddings
of the junction trees. In parallel, molecular graph embeddings are
generated using GNNs, and junction trees are decoded into
molecular representations21. These are then encoded to a latent
vector and decoded back to their original representations using
graph and tree-based encoders and decoders. While this scheme
works well for molecules, it is hard to adapt for crystalline
materials, where the graphs are less tree-like and the definition of
scaffolds is not as straightforward.

GANs have shown promising results in a number of fields,
such as image148 or sequence149 generation, and have also been
applied to 3D grid representations of materials150 and graphs151.
De Cao et al. introduced MolGAN152 as a framework for

generating molecular graphs using GNNs. The generator learns to
directly output the graph’s representation. While the standard
GAN loss forces the generator to generate molecules following a
particular prior distribution, the authors add a reinforcement
learning (RL) objective to generate molecules with optimized
properties. The generation of invalid molecules is avoided by the
assignment of zero reward to them. While direct prediction of
outputs is appealing in methods using VAEs or GANs, they
usually predict outputs of small, fixed sizes. Therefore, another
branch of deep graph generative models employs sequential
decision-making procedures to overcome these limitations.

You et al. identify three challenging aspects when graphs are
generated directly137. First, as these methods need to model the
adjacency matrix in some form, the output size grows as Oðn2Þ for
graphs with a maximum number of n nodes. This is especially
undesirable for large and sparse graphs as the model dedicates
much of its capacity to learn which nodes are not connected.
Second, graph isomorphism complicates the calculation of
reconstruction losses for VAEs and usually involves expensive
graph matching procedures. Third, VAEs assume the outputs, e.g.,
the entries of an adjacency matrix, to be i.i.d., which is not true in
practice. As a solution, the authors propose GraphRNN, a
framework in which graphs are represented as sequences of node
and edge additions. By using recurrent networks, graph constitu-
ents are generated conditioned on previous additions, thus taking
into account the history of modifications. Another sequential graph
generation scheme was proposed by Li et al.153. In this framework,
the generation process is decomposed into modular steps, e.g.,
whether to add a node or which nodes to connect. Each module is a
fully-connected neural network modeling probabilities of executing
particular types of modifications.

You et al. suggested a purely RL-based approach based on
Graph Convolutional Policy Networks (GCPN)154 (see Fig. 2b).
In this setting, the agent explores the chemical space and
generates new molecular graphs by modifying the starting
molecules according to the reward function, representing the
molecular property to optimize. Atance et al. recently introduced
a similar RL approach based on Gated GNNs155, outperforming
other GNN-based approaches in molecular graph generation
tasks156. Another sequential approach based on conditional graph
generative models has been used by Li et al. on drug design
tasks157. The previous two works inspired recent molecular graph
generation frameworks such as GraphINVENT156.

More recently, attention has turned to generative modeling
based on normalizing flows (NFs)158, capable of modeling
complex target distributions by directly mapping them to simpler
ones using revertible bijective transformations. NFs potentially
offer significant improvements in the field of graph generation
because they allow exact evaluation and inference of the
probability distribution. This approach has been applied in a
number of molecular tasks129,159–161.

Overall, graph generative models have been extensively applied
for molecular materials and stayed up to date with recent
developments in the field of graph generation. However, these
remain under-explored for crystalline materials, mainly due to
graph representation challenges162. While finding such a reliable
graph representation is still an open question128 and will likely
remain case-specific, we believe that using generative models based
on GNNs is a promising research direction in inverse design,
especially given current breakthroughs such as normalizing flows.

Applications
After introducing the basic principles of GNNs as well as selected
GNN architectures and benchmark datasets, we will provide a
structured overview of GNN applications in chemistry and
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materials science. GNNs were successfully applied to a rich
variety of different challenges, ranging from property prediction
of molecules and materials over accelerated atomistic simulations
to predicting reactivity and synthesis routes of molecules and
materials. While other machine learning models such as densely
connected neural networks were successfully applied to these
tasks as well, state-of-the-art GNNs in many cases currently
outperform other models. However, there exists a range of open
challenges, including data requirements and data efficiency, as

well as a lack of fully GNN-based generative models for molecular
and materials design.

Molecular systems. Some of the first applications of GNNs and
probably also one of the main driving forces for the ongoing
development of GNN models are challenges in the area of
molecular chemistry. Most prevalent is the task of predicting
molecular properties, i.e., a regression or classification task which

Fig. 2 Overview of GNN applications for molecules and materials. a prediction of ADMET properties (adapted with permission from Feiberg et al.165,
Copyright 2020 American Chemical Society), GNNs accounting for environment effects of molecules (reproduced from ref. 179 with permission from the
Royal Society of Chemistry.), GNNs to predict the toxicity of molecules for bees (this illustration was published in ref. 184, Copyright Elsevier), b RL-based
approach for inverse molecular design based on Graph Convolutional Policy Networks (GCPN) (adapted from ref. 154), c template-free retrosynthesis
(adapted from ref. 221), d transferable excited states dynamics (reproduced from ref. 199 with permission from Springer Nature), coarse graining
(reproduced from ref. 194 with permission from the Royal Society of Chemistry), e explainable GNNs (adapted from ref. 311), f Crystal GNN to predict
methane adsorption volumes in metal organic frameworks (MOFs) (this illustration was published in ref. 234, Copyright Elsevier), doped structures (this
illustration was published in ref. 244, Copyright Elsevier), point defects (adapted with permission from Frey et al.245, Copyright 2020 American Chemical
Society) g reactions of Al2O3 surface in contact with HF gas (reproduced from ref. 190 with permission from Springer Nature), GNNs to predict
magnetostriction of polycrystalline systems (reproduced from ref. 240 with permission from Springer Nature), h a GNN classifier to predict if a system is in
a liquid or a glassy phase only by the positions of the atoms (reproduced from ref. 249 with permission from the Royal Society of Chemistry).
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is challenging to solve with conventional machine learning
models, as they typically require predefined molecular repre-
sentations (e.g., molecular feature vectors or molecular finger-
prints) which are informative for the label to predict. GNNs have
access to the full chemical graph or even molecular geometry and
learn to extract feature representations, which yields an advantage
over other machine learning models. Compared to domain
knowledge-informed feature representations combined with
conventional machine learning models, e.g., Gaussian process
regression, GNNs often have comparably high data requirements
but outperform conventional models when enough data is
available. Once trained, accurate machine learning models can
then be used to accelerate the high-throughput virtual screening
of molecules163,164 to find promising candidate molecules for
many different applications. However, property prediction is not
the only application of GNNs. They were also successfully applied
to provide trainable interatomic potentials to accelerate costly ab
initio molecular dynamics simulations, as well as to predict the
outcome of chemical reactions and synthetic routes.

Molecular property prediction. Among the most relevant mole-
cular properties in the area of drug discovery are the ADMET
(absorption, distribution, metabolism, exclusion, and toxicity)
properties of potential drug-like molecules (see Fig. 2a)165–168. A
review on GNNs for drug design can be found in Xiong et al.169.
In recent years, one application focus were Covid 19 related
challenges, where GNNs were used for e.g., finding new drug
candidates170 or detecting infections in medical images171,172.
Similar methods are also applicable to other challenges in drug
design and medicine.

Furthermore, GNNs were applied to predict electronic and
optical properties of molecules. For many applications such as
organic electronics, organic photovoltaics, and organic light-
emitting diodes, the energy of the highest occupied molecular
orbital (HOMO), the lowest unoccupied MO (LUMO), and the
optical gap are of high importance for the device efficiency. These
properties can therefore be found in numerous
databases62,90,173–177. Related properties include (transition) dipole
moment62,178, ionization potential, and electron affinity90. In
devices, these properties often depend on the molecular environ-
ment, which can be modeled and accounted for with GNNs (see
Fig. 2a)179. For certain applications such as opto-electronic
materials174,175, GNNs have been proposed to complement scalar
molecular properties with spectroscopic properties112.

The aforementioned properties are often determined using
computationally expensive simulation methods. Cheaper, mostly
semi-empirical methods can provide fast but potentially less
accurate estimates. GNNs have been used to represent Kohn-
Sham wavefunctions and energy levels in a minimal basis
representation180, as well as for delta-learning from semi-
empirical methods to DFT computed molecular properties177.
For applications where not enough data is available to train
GNNs, the representations learned by GNNs on large generic
datasets can also be transferred to supervised tasks with little
data20,181,182, where they are used as input for other machine
learning models such as gradient-boosted models183.

Further application areas of GNNs spread across all application
domains of molecular materials, including the prediction of
toxicity of molecules to bees (see Fig. 2a),184 determining the
quality of a material for fuel ignition185 and the classification of
different phases of materials, in particular water186. It should be
noted that another review paper on molecular property predic-
tion utilizing GNNs exists by Wieder et al.120. In many
application areas, tools such as GNNExplainer187 are used to
validate and analyze GNN predictions, e.g., in the prediction of
scents188 and for porous organic cages189.

Dynamics simulations. Molecular dynamics simulations are an
important tool for understanding dynamic processes and
mechanisms on a microscopic level in various areas of chemistry,
biology, and materials science. Besides the prediction of equili-
brium properties of molecules and materials, they also offer the
possibility to simulate excited states and non-equilibrium
dynamics, as well as slow processes and rare events.

In molecular dynamics simulations, total energy and forces are
needed in every time step to propagate the system. Computa-
tionally demanding ab initio methods that calculate the energy
and forces of a particular atomic configuration of a system at
every time step are therefore often too costly. Machine learning
methods can replace ab initio calculations to speed up
simulations while ideally retaining their accuracy9. Therefore,
long and highly accurate MD simulations can be performed based
on machine-learned potentials, which have not been possible
using classical force fields nor ab initio methods. GNNs are
perfectly suited for this task, as atomic forces depend on the
(local) atomic environment and global aggregation is not needed.

The concept of integrating machine learning models in
atomistic simulations was demonstrated multiple times using
for example SchNet22, PhysNet23, DimeNet28, or DimeNet++72.
However, there are several open challenges that need to be
overcome in order to move to larger systems, longer time scales,
higher data efficiency, better generalization and transferability,
and eventually more accurate and realistic applications. Usually,
machine learning models learn the potential energy surface and
calculate forces using derivatives of the energy predictions. This
ensures that energy predictions and forces are consistent. Since
only forces are required in MD simulations, architectures are
being developed in which these forces are predicted directly—so
that the costly derivative calculations are omitted. In the GNN
framework (GNNFF190), a message passing step builds upon an
embedding step in which node and edge features include atom
type and interatomic distances respectively. Force magnitudes per
atom are then calculated from the sum of the forces of the
neighboring atoms. Evaluation on the ISO17 database reveals
higher force accuracies compared to SchNet while being
1.6 × faster. The approach is also shown to be scalable to larger
systems. Due to the direct prediction of the forces, the energy of
the system is however not necessarily preserved, making the
model not suitable to predict energy-related properties.

ForceNet191 is based on an encoder-decoder architecture and
tries to completely capture 3D geometry through a specific design
of the message passing structure. In contrast to models such as
SchNet and DimeNet, ForceNet encodes physical information
without constraining the model architecture to enforce physical
invariances. Instead, physics-based data augmentation is per-
formed on the data level to achieve rotational invariance. The
evaluation was performed on the OC20 dataset which contains
DFT calculated energies and per-atom forces of more than 200
million large atomic structures (20–200 atoms) including non-
equilibrium structures from optimization trajectories. The result-
ing mean absolute force errors are comparable to DimeNet++,
while being faster in training and prediction.

A promising approach to encoding more physical information
about a system is the design of equivariant models. Models that
are based on equivariant message passing, e.g., PaiNN29,
NequIP25, NewtonNet192, are shown to significantly increase
data efficiency and predictive performance compared to models
that are based on invariant convolutions. The Neural Equivariant
Interatomic Potential (NequIP25) predicts both energy and forces
utilizing E(3)-equivariant convolutions over geometric tensors.
Evaluated on the MD17 data set its accuracy exceeds those of
existing models while needing up to three orders of magnitude
less training data. Due to its data efficiency, it was also used with
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coupled cluster (CCSD(T)) based training data, showing great
potential for applications where a prediction accuracy beyond
density functional theory (DFT) is needed. In order to further
improve data efficiency, GNNFF190 and NewtonNet192 introduce
more physical priors in the form of latent force vectors as well as
operators containing physical information. This leads to good
prediction accuracy with higher computational efficiency at only
1–10% of the training data compared to other models.

To improve generalization, hybrid models such as
SpookyNet193 explicitly include electronic structure information
such as total charge or spin state, not included in most machine-
learned potentials, by applying self-attention in a transformer
architecture. Empirical augmentations to include non-local and
long-range contributions such as electrostatic interaction and
dispersion improve transferability and at the same time enable
interpretability193.

GNN for large-scale MD simulations. Many applications
require models that scale to large system sizes. For example,
simulations of biological systems, e.g., to study protein dynamics
or drug binding mechanisms involve orders of magnitude more
atoms than many other applications, while configuration changes
occur on much longer timescales (10−3−103 s) than a typical MD
timestep (10−15 s). One way to address this enormous challenge is
the development of models in a QM/MM-inspired approach,
where only a small relevant subsystem, e.g., a reaction site, needs
to be simulated at ab initio accuracy, while the rest of the system
can be described using classical force fields.

GNNs also have the potential to support (adaptive) coarse-
graining methods. They were shown to be useful in mapping
atoms of a molecule into coarse-grained groups needed for large-
scale simulations. The Deep Supervised Graph Partitioning
Model (DSGPM)194 treats mapping operators as a graph
segmentation problem. It predicted a coarse-grained mapping
nearly indistinguishable from human annotations (see Fig. 2d).
Furthermore, the machine learning framework by Wang et al.195,
which generates a coarse-grained force field, was further
improved by Husic et al.196 replacing manual input features with
a GNN architecture making the models transferable across
different molecular systems such as small proteins.

Excited states dynamics. GNNs were also shown as a very
promising tool to tackle the challenging task of simulating excited
state dynamics of complex systems197. Unlike ground-state
dynamics, multiple potential energy surfaces as well as their
crossings and couplings must be considered, leading to a higher
dimensionality and complexity of the problem. Furthermore,
even the generation of reliable training data using quantum
mechanical calculations is challenging.

Westermayr et al. developed SchNarc198 for photodynamics
simulations by adapting SchNet for excited states potentials,
forces, and couplings, combining it with the MD framework
SHARC (surface hopping including arbitrary couplings). While
SchNarc is molecule specific and was applied to two compounds,
CH2NH

þ
2 and CSH2, Axelrod et al. developed the first

transferable excited state potential (see Fig. 2d)199. The diabatic
artificial neural network (DANN) is based on PaiNN combined
with a physics-informed diabatic model for photodynamic
simulations for virtual screening. The resulting machine-learned
potential is transferable among azobenzene derivatives and
estimated to be multiple orders of magnitude faster than the
underlying quantum mechanical calculation method, even
considering computational effort for transfer which required
additional training data.

Reaction prediction and retrosynthesis. While reliable property
prediction and simulation methods are crucial for virtual mole-
cular design, synthesis is often one of the main bottlenecks in the

overall development process of new molecules. Progress in
reaction prediction and retrosynthesis, i.e., the prediction of a
reaction outcome and the design of synthetic routes for a desired
product, can help to accelerate and also automate200 the devel-
opment of new molecules. However, the two problems are still
considered challenging due to the vast chemical space and cur-
rently require skills and experience from well-trained chemists.
Therefore, many machine learning algorithms, e.g., seq2seq
models and transformers, have been proposed for synthesis pre-
diction and retrosynthesis, aiming at reducing manual effort. In
many cases, molecules are embedded as SMILES codes, and
reaction predictions as well as retrosynthesis predictions are
formulated as natural language processing tasks201–204. Further-
more, fingerprints are widely used as structure encodings and
neural networks trained on them are able to predict the most
probable transformations for given molecules205,206. GNN based
graph embeddings have recently attracted growing attention, due
to the natural representation of molecular structures as graphs.

Prediction of reactivity with GNNs has been formalized into
reaction center identification and graph edit tasks. Jin et al.
developed a GNN-based approach to scoring each pair of
connected atoms with bond change likelihood, followed by the
selection of bonds with the highest score and transformation to
potential products using a Weisfeiler-Lehman Difference Network
(WLDN)207,208. The WLN architecture is also adopted by Struble
and coworkers209 to perform multitask prediction of aromatic C-H
functionalization reactions with site selectivity, while Guan et al.
predict reaction outcomes with regio-selectivity through combin-
ing molecule representations learned by the WLN with on-the-fly
calculated quantum mechanical descriptors210. In 2020, Nikitin
et al. introduced a strategy to treat reaction prediction as a node
classification problem, where the role of each node in the reactant
graphs is predicted by a GNN with a self-attention mechanism and
pseudo-global nodes211.

Furthermore, predicting reaction products as the result of a
sequence of graph editing actions on the reactant molecules has
also been investigated. One example is the work by Do et al.
where graph editing actions are predicted by a reinforcement
learning algorithm based on reactant and reagent molecule
representations generated by GNNs212. In 2019, Bradshaw et al.
developed a generative model that uses GNNs to predict a series
of electron movements for reactions, through which the products
and reaction mechanisms are predicted at the same time213.
Apart from product prediction, GNNs are also employed to
predict important reaction properties including bond dissociation
energies214,215, transition states216, and activation energies217.

For the retrosynthesis task, recent studies can be divided into
template-based and template-free approaches. The former matches
the graph embedding of the product molecule to a large number of
reaction templates, which determine bond changes and thus
predict possible reactants, while the latter bypass the templates and
directly modifies input graphs to generate synthetic precursors.
Examples of template-based retrosynthesis prediction include the
work by Dai et al., who predict the probability distribution of
reaction templates to be fitted to the reaction outcomes by a
Conditional Graph Logic Network (GLN)218. The reactants are
generated by the GLN as the result of a probability prediction given
the reaction outcome and the selected template. Another example
by Ishida et al. uses GCNs to classify single retrosynthesis steps into
reaction templates, where integrated gradients are applied to
visualize atom contributions toward the GCN prediction219. More
recently, Chen and coworkers proposed a framework based on
MPNNs with a global attention mechanism to predict the reaction
center of a target molecule, as well as the corresponding “local”
reaction template based on atoms and bonds in the reaction center,
which is then applied to generate reactants220.
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For template-free retrosynthesis, Yan et al. use an edge-
enhanced graph attention network to locate the reaction center in
product molecules, which are transformed through bond
dissociation into molecular fragments called synthons221. The
synthon graphs are converted to SMILES and expanded to
reactants by a sequence-to-sequence algorithm. At the same time,
Somnath et al. proposed an approach that uses GNNs to predict a
series of graph edits that transform a product into synthons that
are further completed into reactants with leaving groups
predicted by another GNN (see Fig. 2d)222. A similar strategy is
adopted by Shi et al., where synthons are expanded to reactants
by a variational graph translation223.

In 2021, Sacha et al. proposed a model that formulates both
retrosynthesis and forward synthesis tasks as a sequence of graph
edit actions that are predicted by an encoder-decoder structure
constructed by stacking graph convolutional layers130.

Crystalline and solid state systems. Compared to molecules,
crystal structures and solid-state materials have some additional
challenges, such as periodic boundary conditions for crystals and
multiple kinds of disorder, either in form of perturbations in the
crystal structure itself or in the (lack of) long-range ordering of
atoms. We will present different recent applications of GNNs in
solid state systems, from predicting global properties of crystal
structures with and without disorder, over driving atomistic
simulations, to the design of new materials aided by materials
synthesis prediction, active learning, and inverse design. Table 4
gives an overview of datasets used in the following applications.
We will also discuss approaches in which the trained GNN
models have been analyzed to enable further insight into specific
scientific questions, which is often equally important as accurate
numerical predictions.

Materials property prediction and materials design. GNNs can be
used to predict a multitude of materials properties, ranging from
formation energies24,224–228 and synthesizability prediction229

over band-gaps230–232 and other functional properties to
mechanical properties61,233. The most straightforward application
of property prediction models is the screening of large (unla-
beled) crystal databases, where exhaustive screening using

conventional simulation techniques (e.g., DFT) is often not fea-
sible. Screening using GNNs only requires labels from simulation
or experiment for the training set while providing fast predictions
on the full database - provided the model generalizes well.

Wang et al. use a crystal GNN to predict methane adsorption
volumes in metal-organic frameworks (MOFs)234. The pooling
function leverages domain knowledge by additionally including
structural properties (see Fig. 2f), e.g., the pore limiting diameter,
achieving better performance than previous work235. They apply
the model to the screening of a hypothetical MOF database by
Wilmer et al.236 and find several high-performing candidates234.
Gu et al. use an ensemble of attention crystal GNNs to screen alloy
catalysts for CO2 reduction237. Only bulk-relaxed structures
without the adsorbate (e.g., from the Materials Project (MP)100

database) are needed as input, removing the costly DFT relaxation
from the screening process. The performance approaches that of
base-line models trained on fully relaxed structures237.

An interesting application of GNNs was presented by Goodall
et al., who use GNNs for representation learning of chemical
formulas238. The chemical formula is represented as a dense
weighted graph, in which each node corresponds to a chemical
element weighted by the fraction of this element in the chemical
formula. This graph representation was used to train a GNN in a
supervised way to obtain a mapping from the chemical formula to
an embedding. It was demonstrated that this representation has a
better sample efficiency than other structure agnostic approaches.

Schmidt et al. use a crystal graph attention network for stability-
screening of non-relaxed hypothetical materials, predicting the
convex hull distance24. Only graph distances are included, making
the model usable for hypothetical materials where the exact
coordinates might be unknown. A vast database is used, combining
MP, AFLOW239 and group-internal datapoints. Transfer learning
then allows the screening of 15 million tetragonal perovskites of
composition ABCD2. Dai et al. use GNNs to predict magnetostric-
tion of polycrystalline systems (see Fig. 2g)240. Instead of using
GNNs to model the atoms in the unit cell, individual grains and
their interactions to neighboring grains are represented by nodes
and edges in the GNN. This shows that GNNs can be used on
different scales to predict materials properties.

Typically, screening of materials databases using ML models is
only possible if training data is available which covers the target
materials distribution, i.e., which adequately allows generalization
to the rest of the database. Active learning offers a promising
solution when the available data does not fulfill this criterion.
Based on uncertainty quantification, the training dataset can then
be iteratively extended to include previously uncertain data points
and thereby efficiently explore the chemical space. Lu et al. use
active learning to search for 2D ferromagnetic materials with a
custom crystal graph multilayer descriptor in a small dataset241.
Further applications of active learning based GNNs in materials
science are promising and can be expected in the future.

Disordered systems and defects. Disordered materials are a wide
and particularly interesting field of study, as the effects of disorder
can influence or even dominate material properties. Disorder
ranges from weak disorder (defects, dislocations, grain bound-
aries) to strong disorder (e.g., glassy systems and inhomogeneous
systems such as porous materials) and includes topological/
structural disorder, orientational disorder (spins, dipoles), or
substitutional disorder (chemical doping, compositional
disorder)242. Due to its inherent multi-scale nature, disorder
poses severe challenges not only to materials modeling and
simulation, but also to materials synthesis, characterization, and
fundamental description. Graph neural networks can be extended
to model various forms of disordered systems and predict their
local and global properties. In contrast to quantum mechanical

Table 4 Selected application-specific datasets for solid-state
systems.

Dataset Size

AFLOW239 - calculated properties of materials >3,400,000
Inorganic Crystal Structure Database (ICSD)299 -
extensive and well curated experimental database

≈210,000

Pure carbon and C-H-N-O structures at different
pressures300

≈200,000

Materials Project100 - calculated properties of materials ≈145,000
Hypothetical MOF database236 137,953
NREL Materials Database (NRELMatDB)301 -
computational materials database focused on renewable
energy applications

≈60,000

CO and H surface binding energy dataset302 ≈40,000
Inorganic materials synthesis recipes303 19,488
Perovskite structures and energies304 18,928
CoRE MOF database305 - Experimental MOF database >14,000
bcc iron structures with energies and various kinds of
defects306

12,193

MOF methane adsorption volume of CoRE MOFs (from
GCMC)234

10,102

Elemental boron structures with energies307 5038
Computational 2D Materials Database (C2DB)308,309 ≈4000
DDEC MOF point charges310 2932
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methods such as DFT, crystalline systems with substitutional
disorder can be modeled using larger, more representative unit
cells or by defining atoms/nodes with mixed occupations. Fur-
thermore, amorphous systems can be modeled explicitly by using
representative simulation boxes and aggregating over learned
atom representations characteristic of the properties of the
amorphous system. In the following, we will present seminal
work in that direction.

One important challenge for machine learning models is how
to represent substitutional disorder such as doping and fractional
occupancies in the crystal graph. Chen et al. addressed this
question with a MEGNet model with trainable 16-dimensional
embeddings for each atom which were pre-trained on a dataset
with only ordered structures243. The pre-trained embeddings
were used to represent doped crystal sites by doing a weighted
average of the elemental embeddings, weighted with (logarithmic
or appropriately scaled) occupancies of the elements on the
crystal sites. Additionally, it was also demonstrated how to
perform multi-fidelity training with band gaps of different levels
of DFT by encoding the DFT level in the global state of the
MEGNet. Similarly, Wang et al. have trained a crystal GNN
model on predicting the phase stability of materials (see Fig. 2f),
classifying materials as metal or insulator and predicting the band
gap of semiconductors244. They train a crystal GNN on undoped
crystal structures and use this trained model to predict the
properties of doped crystal structures, which they validate with
DFT calculations. They find that the crystal GNN and the DFT
usually predict the same trend, despite the crystal GNN not being
trained on doped crystal structures244. Frey et al. use a crystal
GNN model to predicted the properties of 2D materials with
point defects (see Fig. 2f)245. However, the crystal GNN is only
used to screen the properties of ordered structures to find
promising host structures. The properties of the disordered
structures were then partially calculated with DFT to train a
random forest model on physics-based features which was used to
screen additional structures. Another study predicted the proper-
ties of bcc iron structures with point defects246.

A very special application of GNNs is glassy systems. There have
been works that predicted the properties of glasses247 and which
used inverse design to find glasses with new properties248. Swanson
et al. trained a classifier on predicting if a system is in a liquid or a
glassy phase only by the positions of the atoms (see Fig. 2h)249.
They verified that a GNN was significantly better than a CNN for
this task and used self-attention to interpret the reasoning of the
trained classifier. Consequently, the trained GNN was interpreted
to find previously unknown relationships. Three simple and
previously unknown formulas were developed, which describe the
reasoning of the classifier and which could be used to differentiate
the two phases. Initial work on predicting polymer properties using
GNNs was based on learning representations of single
monomers250 or of unit cells of crystalline polymers251.

Aiding simulations. Analogous to atomistic dynamics simulations
of molecular systems, GNNs can also be used to simulate the
dynamic behavior of crystals, i.e., to predict potential energy,
forces, and partial charges, in order to drive molecular dynamics
simulations. To predict forces for molecular dynamics of crystals,
most approaches use conventional machine learning methods252,
but there are first examples that use GNNs190,253. Raza et al. use a
GNN with node-level readouts to predict partial charges of MOFs
for molecular simulations of gas adsorption254. For each atom, a
probability distribution of charge is learned and optimized
globally using the maximum likelihood principle under a charge
neutrality constraint. Park et al. predict forces for molecular
dynamics directly using a GNN with edge-level readouts that are
used to predict the magnitude of the force between atoms190 (see

also Section ‘Molecular systems’). This avoids calculating the
derivative of the potential energy and speeds up the simulation,
yielding good accuracy in chemical reactions occurring at the
surface of a test system of Al2O3 in contact with HF gas (see
Fig. 2g). Also, good scaling accuracy transferring a model trained
on a 1 × 2 × 1 supercell to a 1 × 2 × 2 supercell (Li7P3S11) is
achieved. This approach allows simulations of a larger scale than
possible using ab initio methods with similar accuracy and might
make it possible to simulate mesoscopic phenomena such as grain
boundaries in the future.

Solid state synthesis prediction. While predicting synthesizability
overall229 is important in the design process of new materials,
predicting the products of solid state synthesis is a challenging
task and interesting application area of GNNs. Malik et al. have
developed a pipeline to predict the major outcome of solid-state
reactions255. In this pipeline, GNNs were used to represent the
precursors of a reaction in a set-like fashion as a dense graph
while a long short-term memory layer is used to represent the
series of processing actions in the reaction. Current limitations in
the availability of systematic (experimental) synthesis data,
including reaction conditions11, hinder further progress in this
area. The use of electronic lab notebooks and repositories speci-
fically designed for chemistry and materials science has a large
potential to alleviate that challenge256,257.

Periodic graph generation. A major requirement for the graph-
based inverse design of crystal structures is the possibility to gen-
erate new periodic graphs based on a vector representation.
Recently, this problem has been addressed with a new architecture
called PGD-VAE162, a variational autoencoder capable of gen-
erating new periodic graph structures. Another work using a VAE
focuses on predicting stable crystal structures using GNNs258. New
structures are generated in a three-step approach: First, the com-
position, lattice, and number of atoms of a sampled point in the
latent space are decoded using a multilayer perceptron. Afterward,
a random structure with these properties is assembled and a GNN
trained on moving atoms to their equilibrium positions is used to
generate stable structures. Despite these promising efforts, the
design of solid state materials and crystal structures using GNNs is
only at the beginning. Multiple challenges need to be solved to
achieve wide applicability and transferability of methods to mul-
tiple classes of materials, ranging from densely packed crystals over
porous materials to amorphous systems need to be solved.

Outlook
GNNs became a very versatile and important tool very quickly. A
lot has been achieved already, not only in terms of fundamental
method development tailor-made for requirements of materials
science and chemistry (see Section ‘Graph neural networks in
materials science and chemistry’), but also in terms of applica-
tions (see Section ‘Applications’), where GNNs were successfully
applied for materials simulation, screening, design, and synthesis.
However, there is a wide range of open questions and challenges
which need to be solved in order to leverage the full potential of
GNNs in materials science and chemistry.

Despite the growing amount of research and publications on
GNN model development and application, GNN models remain
expert tools, i.e., they are comparably hard to implement, adapt,
transfer, train, and apply to given datasets and applications.
Libraries such as PyTorch Geometric259, DGL260 or the Keras
based KGCNN261 implement a selection of state-of-the-art GNN
layers and models. However, the use of such libraries in many
cases requires expert knowledge which goes beyond the knowl-
edge needed for the successful application of more established
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machine learning models. One of the reasons for this is certainly
related to the fast development of new GNN variants which are
partially hard to compare. The widespread use and further devel-
opment of common benchmarks (e.g., the QM9 dataset) as well as
open communication of models and training workflows, including
open-source code, inspired by common practice in the machine
learning community, are essential for a reliable quantitative com-
parison of future developments. However, non-optimal hyper-
parameters and the (prohibitively) high computational cost of
hyperparameter optimization is an open challenge. A further
challenge hindering the transfer of state-of-the-art models to
applications is the discrepancy in the data distribution between
widely used benchmark datasets (e.g., QM9) and actually relevant
datasets, which typically contain larger molecules (i.e., larger
graphs), which are more diverse, e.g., in terms of the chemical
elements used and in the size variance, and which sample the
chemical or materials space less densely then QM9262.

Generally, there is more research and model development
activity for molecules and chemistry, compared to materials sci-
ence. As a consequence, the transfer of existing GNNs to new
application areas (e.g., porous or amorphous materials) might be
challenging and requires further development of GNN models.
To some extent, this can be attributed to a lack of generic
benchmark datasets for crystalline materials and, even more
importantly, (partially) disordered structures and amorphous
materials. OC20 is one of the few examples of datasets covering
both materials science and chemistry102. Nonetheless, there are
many promising application areas of GNNs for solid-state
materials. In contrast to quantum mechanical simulation meth-
ods such as DFT, GNNs are particularly suited for representing
disordered systems and predicting their properties, e.g., systems
with compositional disorder such as high-entropy alloys. How-
ever, there is a lack of large datasets of disordered systems, par-
ticularly labeled datasets with consistent measured or simulated
properties. Overall, screening of (hypothetical) materials spaces
with predictive ML models promises the rapid discovery of new
materials with optimized target properties, especially when
combined with transfer and active learning to improve data
efficiency and reduce computational cost.

The first steps towards GNN-based generative models exist, but
there are many open challenges of reliability and transferability.
Despite the high potential of GNN-based algorithms for the
inverse design of new molecules and materials, convincing suc-
cess stories of ML-designed materials are rare. To make gen-
erative models more application-relevant, new methods are
required that e.g., allow to include constraints in the design
process, in the simplest case symmetries of generated molecules
and materials, or in more complex scenarios additional (empirical
or analytical) objectives such as synthesizability. A large step in
that direction is new representations, not only for organic
molecules but also for (3D) materials263–265.

Finally, more research on the explainability and interpretability
of GNNs and machine learning in general will help to better
understand underlying correlations and eventually causal rela-
tions in large and complex datasets, eventually contributing to
scientific understanding and progress266–268.
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