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Qubits based on merons in magnetic nanodisks
Jing Xia1, Xichao Zhang1, Xiaoxi Liu 1, Yan Zhou 2 & Motohiko Ezawa 3✉

A meron is a classical topological soliton having a half topological charge. It could be

materialized in a magnetic disk. However, it will become a quantum mechanical object when

its size is of the order of nanometers. Here, we propose to use a nanoscale meron in a

magnetic nanodisk as a qubit, where the up and down directions of the core spin are assigned

to be the qubit states 0j i and 1j i. We first numerically show that a meron with the radius

containing as small as 7 spins can be stabilized in a ferromagnetic nanodisk classically. Then,

we show theoretically that universal quantum computation is possible based on merons by

explicitly constructing the arbitrary phase-shift gate, Hadamard gate, and CNOT gate. They

are executed by applying a magnetic field or spin-polarized current. Our results may be useful

for the implementation of quantum computation based on topological spin textures in

nanomagnets.
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Quantum computation is carried out with the use of
quantum mechanical states1–3, where superpositions and
entanglements play essential roles. In order to execute

arbitrary quantum algorithms, it is enough to construct the π/4
phase-shift gate, the Hadamard gate, and the controlled-NOT-
(CNOT) gate. Namely, universal quantum computation is made
possible by these three gates according to the Solovay–Kitaev
theorem4–6.

A fundamental problem is how to construct qubits with the use
of actual materials. Attempts have been made in
superconductors7, photonic systems8, quantum dots9, trapped
ions10, and nuclear magnetic resonance11,12. Recently, qubits
based on nanoscale skyrmions have also been proposed13,14. It is
worth mentioning that skyrmions are typical topological spin
textures in magnetic materials with chiral exchange
interactions15–18. They can be found in both two-dimensional
and three-dimensional magnetic nanostructures17–21 and there-
fore, are promising candidates for classical and quantum appli-
cations based on magnetic materials13,14,22. However, the
simplest example of a qubit is a single spin, where the up spin is
assigned to the quantum state 0j i and the down spin is assigned
to the state 1j i. The one-qubit gate operation is executed by
applying a magnetic field, where the Rabi precession changes the
direction of the spin. The Heisenberg interaction gives a two-
qubit gate operation9,12.

Instead of using an isolated single spin, we focus on the core
spin in a nanoscale disk made of a chiral ferromagnet, where the
magnetic dipole–dipole interaction (DDI) and the easy-plane
magnetic anisotropy force the spin direction to show a clockwise
or anticlockwise circular rotation in disk geometry, forming a
vortex-like structure called a meron23–33. Four typical spin con-
figurations of merons are illustrated in Fig. 1. Due to the
Dzyaloshinskii–Moriya interaction (DMI), the degenerated

ground states are given by the left-handed merons30 as shown in
Fig. 1a, b, which serve as a classical bit.

The meron structure is also a topological spin texture and is
topologically protected when the sample size is infinitely large.
However, when its size is of the order of 100 nm, it is known to be
quite stable and yet to be possible to reverse the core spin. The
core-spin direction can be reversed and read out by using a
magnetic field23,26,28 or spin-polarized current24,25,27. Hence, a
random-access memory has been proposed based on merons25.

In this work, we propose to use a nanoscale meron in a
magnetic nanodisk as a qubit, where it simulates a single spin
with a longer relaxation time. First, we study numerically how
much the size of a classical meron can be made small. We find
that a meron with a radius containing as small as 7 spins are
stable by assuming typical material parameters. It is of the order
of 3 nm as the lattice constant is 0.4 nm. When the radius of the
magnetic nanodisk is of the order of nanometers, the quantum
effect will be dominant. A nanoscale meron is uniquely specified
by the direction of the core spin. Thus, we assign the up-spin state
as 0j i and the down-spin state as 1j i. Their superposition is
allowed quantum mechanically, which represents the qubit.

The Zeeman effect due to a perpendicular constant magnetic
field induces the Pauli-Z operation to this qubit. By controlling
the time duration of the Zeeman field, it is possible to construct
an arbitrary phase-shift gate including the π/4 phase shift gate.
Furthermore, by applying an in-plane constant magnetic field, it
is possible to flip a spin, which acts as the Pauli-X gate. A
sequential application of the Pauli-Z and Pauli-X gates produces
the Hadamard gate. Finally, the Ising interaction between layered
merons produces the controlled-Z (CZ) gate. A sequential
application of the CZ and Pauli-Z gates produces the CNOT gate.

Results and discussion
Classical meron in a chiral magnet. A meron is formed when the
spin system has a disk geometry. It is a vortex-like circulating
structure of spins, where the spins on the circumference lie within
the plane while the core spin points upward or downward,
forming the Bloch structure due to the DDI, as illustrated in
Fig. 1.

The spin texture located at the coordinate center is parame-
trized as

m x; y
� � ¼ ðsin θðrÞ cos ϕ; sin θðrÞ sinϕ; cos θðrÞÞ; ð1Þ

with

ϕ ¼ φþ ηþ π=2; ð2Þ
where φ is the azimuthal angle (0 ≤ φ < 2π) satisyfing x ¼ r cosφ,
y ¼ r sinφ. The polar angle θ is subject to

θð0Þ ¼ 0; π; lim
r!R

θðrÞ ¼ π=2; ð3Þ

where R is the radius of the nanodisk.
A meron is specified by the spin-circulation direction called the

chirality c= ±1 and the core-spin direction called the polarity
p= ±1. Here, c= 1 (c=−1) for the anti-clockwise (clockwise)
rotation, and p= 1 (p=−1) for the up (down) spin. The meron
with cp= 1 is called right-handed and the one with cp=−1 is
called left-handed.

There are four degenerate merons with c= ±1 and p= ±1 in
the absence of the DMI. However, the DMI correlates the polarity
and the chirality. The DMI is induced by the inversion symmetry
breaking due to the interface between the nanodisk and the
substrate30. As a result, the left-handed merons are energetically
favored30. We assign the merons with p= 1 and p=−1 to the
classical states 0j i and 1j i, respectively.

|1>|0>

right-handed up-spin meron

left-handed up-spin meron left-handed down-spin meron

right-handed down-spin meron

p=1,   c=-1

p=-1,   c=-1p=1,   c=1   

p=-1,   c=1

dc

ba

Fig. 1 Schematic illustration of Bloch-type merons. a A Bloch-type meron
with polarity p= 1 and chirality c= 1 representing the qubit state 0j i. b A
Bloch-type meron with p=−1 and c=−1 representing 1j i. c A Bloch-type
meron with p= 1 and c=−1. d A Bloch-type meron with p=−1 and c= 1.
a and b are the left-handed merons, while c and d are right-handed merons.
The right-handed merons have higher energy than the left-handed merons
due to the DMI considered in this work. The arrow represents the spin
direction. The out-of-plane spin components are color-coded by the red and
blue color scheme: the red arrow points in the +z direction and the blue
arrow points in the −z direction.
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Comments are in order. First, there is a difference from the
conventional definition in Eq. (2) by angle π/2, which makes
η= 0, π correspond to c= 1,−1, respectively. Second, θ(0)= 0, π
correspond to p= 1,−1, respectively, in the boundary conditions
(3).

There are two topological numbers defining the meron. One is
the skyrmion number,

Q � � 1
4π

Z
m rð Þ � ð∂xm rð Þ ´ ∂ym rð ÞÞdxdy; ð4Þ

which is given by Q= p/2 depending on the polarity p. Note that
Q is a half-integer for the meron.

The other is the winding number defined by

ω �
Z

m ´
∂m
∂φ

� �
z

dφ ¼ c; ð5Þ

which depends on the chirality c.
It is a nontrivial problem how much the size of a meron can be

made small. Let us call it a meron with a radius n when its radius
contains n spins. We have performed simulations on the stability
of a relaxed static meron with radius n, n= 3, 4,⋯, 10, by
embedding it in the (2n−1) × (2n−1) square lattice, as shown in
Fig. 2. The simulations are carried out under the framework of
micromagnetics (see the “Methods” section), where we include
the ferromagnetic exchange, the DMI, the magnetic DDI, and the
easy-plane magnetic anisotropy. As a concrete instance, we have
used the material parameters Aex= 0.32 pJ m−1, D= 0.5 mJ m−2,
and Ms= 152 kAm−1. We also considered an in-plane magnetic
anisotropy K=−0.5 MJ m−3, which favors in-plane spin textures
and could assist in stabilizing the meron state. The simulated state
of a typical meron is demonstrated in Fig. 2 for n= 3, 4,⋯, 10.
We find that a meron is formed for n ≥ 7.

There are two key features with respect to a meron. One is that
a small-size meron is stabilized for a small value of the exchange
interaction. It is understood that the exchange interaction
becomes large for a large spin angle between the adjacent spins.
The spin angle becomes large and the small exchange interaction
has an advantage for a nanoscale meron. The other feature is that
the large easy-plane magnetic anisotropy stabilizes a nanoscale
meron. It is natural because the meron has an in-plane vortex
structure except for the core. The radius can be as small as
7 spins. The requirement of the exchange interaction and the

easy-plane magnetic anisotropy is relaxed for a larger size of
a meron.

Core-spin qubit. We consider a nanodisk in the order of nan-
ometers, where a superposition of the up and down spins is a
quantum mechanical state. In this regime, the up and down states
of the core spin may act as a qubit. We assign the meron with the
up core spin (p= 1) as the quantum state 0j i and the one with the
down core-spin (p=−1) as the quantum state 1j i, as illustrated
in Fig. 1. We propose to construct various quantum gates by
controlling the meron core spin.

Pauli-Z gate. When we apply an external constant magnetic field
Bz along the z-axis, the Zeeman effect splits the energy between
the up and down spins. The effective Hamiltonian is given by

Hz ¼ αzσz ¼ αzð 0j i 0h j � 1j i 1h jÞ; ð6Þ

where αz is a constant proportional to Bz. The Pauli-Z gate is
constructed by the unitary evolution of Hz, and given by UZ= σz
(see the “Methods” section).

We have numerically evaluated the energy under such a
magnetic field in Fig. 3. The energy difference depending on the
polarity is of the order of 10−22 J at 100 mT, from which it follows
that the operating time is of the order of 1 ps based on Eq. (16).

Pauli-X gate. There are several ways to flip the core spin, such as
by applying in-plane magnetic field34, in-plane oscillating mag-
netic field35, currents24,36,37, rotating magnetic fields38–40, and
spin-polarized current41,42. In any case, the effective Hamiltonian
is given by

Hx ¼ αxσx ¼ αxð 0j i 1h j þ 1j i 0h jÞ; ð7Þ

where αx is a constant. The Pauli-X gate is constructed by the
unitary evolution of Hx, and given by UX= σx (see the “Methods”
section).

We have numerically analyzed the spin–flip process, by
applying an external constant pulse in-plane magnetic field. We
see explicitly how each spin rotates to flip the core spin within a
meron in Fig. 4. It follows that the switching time of the vortex
core direction is of the order of 200 ps.

n = 3 n = 4 n = 5 n = 6

n = 10n = 9n = 8n = 7

Fig. 2 A simulated state for a meron for radius n= 3, 4,⋯, 10. The in-
plane spin direction is indicated by the arrow. The out-of-plane spin
component is color-coded: white is in-plane and red is out of the plane. The
material parameters used in the simulation are: the exchange constant
Aex= 0.32 pJ m−1, Dzyaloshinskii–Moriya interaction (DMI) constant
D= 0.5 mJ m−2, saturation magnetizationMs= 152 kAm−1, and anisotropy
constant K=−0.5MJm−3. More details are given in the “Methods”
section.
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Fig. 3 Total energy of a meron with p= ± 1 as a function of applied
perpendicular magnetic field Bz. The radius of a meron is n= 7. The
simulation parameters are given in the caption of Fig. 2. More details are
given in the “Methods” section.
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Ising gate. We consider a bilayer nanodisk, where two nanodisks
are placed vertically (Fig. 5a). The exchange interaction between
two spins reads

HIsing ¼ Jexchangeσ
ð1Þ
z � σð2Þz ; ð8Þ

where the two nanodisks are placed vertically (Fig. 5a). The Ising
gate is constructed by the unitary evolution of HIsing, and given by
UZZ ¼ σð1Þz � σð2Þz (see the “Methods” section).

We have numerically evaluated the energy difference between
the identical and opposite polarities, which is ~ 3.6 × 10−22 J. The
operating time is ~0.23 ps based on Eq. (25). The detailed
energies of the bilayer merons are shown in Fig. 5b.

Universal quantum gates. The phase-shift gate is constructed
with the use of Hz. The Hadamard gate is constructed with the
use of Hz and Hx. The CNOT gate is constructed with by HIsing

and Hz. See the “Methods” section for more details.

Thermal effect. We study thermal stability at finite temperatures.
The results are given in Fig. 6. The dynamics of the total mz are
shown in Fig. 6a, where it is seen that the core spin does not flip
below 3 K, but flips above 3 K. The time evolution of the

Pontryagin number is shown in Fig. 6b. It is stable below 3 K. The
time evolution of the spatial profile of the spin configuration is
shown in Fig. 6c. The meron texture is destroyed above 3 K.
These phenomena correspond to the core spin flipping dynamics
in Fig. 6a. Thus, we need to cool down a sample below 3 K.

Relaxation time and coherent time. The skyrmion-number
conservation prohibits the core spin to flip when the sample is
infinitely large. Then, the relaxation time is infinite. This is
topological protection. Physically, it follows from the fact that it
costs infinitely large energy to inverse spin directions in an infi-
nitely large sample. The topological protection is lost when the
sample size is small. Indeed, when its size is of the order of
100 nm, it is possible to flip the core spin by applying magnetic
field23,26,28 or spin-polarized current24,25,27.

The two merons representing 0j i and 1j i are obstructed by an
energy barrier made of the exchange energy, easy-plane magnetic
anisotropy, and the DDI. We make an estimation for a small-size
classical meron based on the energy (9) in the “Methods” section.
The size dependence of various energies including the total,
exchange, DMI, easy-plane magnetic anisotropy, and magnetic
DDI energies is shown in Fig. 7. The total energy increases as the
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Fig. 4 The switching of the polarity of a meron induced by an in-plane magnetic field pulse. a The out-of-plane component of the reduced magnetization
mz as a function of time. The initial state is a meron (p= 1) relaxed in the disk with 13 spins in the diameter (i.e., the radius of the meron is n= 7). The in-
plane magnetic field of Hx= 400mT is applied for 60 ps (indicated by the cyan area), followed by the relaxation until t= 1000 ps. The meron is switched
to the state with p=−1 after the application of the in-plane field. b The in-plane components of the reduced magnetization mx and my as functions of time.
c Selected top-view snapshots showing the spin configuration in the nanodisk during the field-induced switching of the meron polarity. The simulation
parameters are given in the caption of Fig. 2. More details are given in the “Methods” section.
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increase of the meron size as shown in Fig. 7a. The total energy is
mainly determined by the exchange energy as shown in Fig. 7b.
Roughly speaking, the relaxation time is proportional to the total
energy because it is necessary to overcome the total energy to flip
the core spin.

There are some features in the size dependence of the energy.
The DMI decreases as the increase of meron size as shown in
Fig. 7c. It is understood as follows. The DMI is proportional to
the spin angles between the adjacent sites. The spin angle is small
for larger size merons because the spin texture becomes smooth.
As a result, the DMI energy is smaller for larger size merons.

The magnetic anisotropy energy and the DDI energy
monotonically increase as the increase of size of a meron as
shown in Fig. 7d, e.

The mean magnetization becomes smaller for larger-size
merons as shown in Fig. 7f. It means that the size of the core
spin is almost identical and the total spin texture looks more like
a vortex structure for larger-size merons.

Initialization. We apply a magnetic field to the sample and raise
the temperature, where the system is a paramagnet. We have
numerically checked that the polarity is chosen to be up by
applying a small external magnetic field. When we cool down the
sample, left-handed up-spin merons are nucleated. This is the
initialization of the quantum state 00 � � � 0j i.

Read out. The polarity can be observed by the full-field soft X-ray
transmission microscopy30,31, magnetic force microscopy24,43, or
magnetic tunneling junction44. The polarity is fixed to be up or down
by the observation. Hence, the quantum state is fixed to be
s1s2 � � � sN
�� �

with sj= 0, 1 as in the standard quantum computation.

Conclusions
We have explicitly analyzed how the Pauli-X, Pauli-Z, and Ising
gate operations proceed in a meron-based system. It seems to be a
puzzle that the core spin of a meron can be flipped by applying an
in-plane constant magnetic field because it is well-known that the
spin direction of a ferromagnet cannot be flipped. We have
demonstrated how each spin is flipped inside a meron under an
in-plane constant magnetic field in Fig. 4. We find that the

following process continuously occurs: The spin pointing upward
at the core moves to the edge and tilts to the horizontal plane, and
then, the spin at the symmetric edge point across the center tilts
downward to the south pole and moves to the core.

The numerical estimation suggests that the minimum size of a
meron is of the order of 3 nm. The present proposal will excite
experimental studies on magnetic nanodisks to pursue how small
a nanodisk can be manufactured.

Methods
Simulations of spin configurations. The static spin configurations in the magnetic
nanodisk are simulated by using the GPU-accelerated micromagnetic simulator
MUMAX3 developed at Ghent University45. The energy density of the system is
given by

E ¼ �Aex ∑hi;ji
mi �mj �∑

i
Kðmi � ezÞ2 �Ms ∑

i
B �mi

� μ0Ms ∑
i
mi � 12Hdd � ∑

hi;ji
Deij � ðmi ´mjÞ;

ð9Þ

where mi represents the local magnetic moment orientation (i.e., ∣mi∣= 1), and Aex

represents the ferromagnetic exchange constant. K is the easy-plane anisotropy
constant, which is a negative number. The axis direction ez is normal to the easy
plane. Ms represents saturation magnetization. B is the applied magnetic field. Hdd

is the magnetic-dipole–dipole interaction. The last term represents the bulk DMI
with eij being the unit vector pointing between the lattice site i and j, and D being
the magnitude of the DMI, which stabilizes Bloch-type merons. The simulations of
spin dynamics at zero and finite temperatures are carried out by using the
micromagnetic simulator OOMMF46, where the spin dynamics at zero temperature
is described by the Landau–Lifshitz–Gilbert (LLG) equation

dm
dt

¼ �γ0m ´ heff þ α m ´
dm
dt

� �
; ð10Þ

where

heff ¼ � 1
μ0Ms

� δE
δm

ð11Þ

is the effective field. α is the Gilbert damping parameter, and γ0 is the absolute gyro-
magnetic ratio. The thermal effect is described by the stochastic LLG equation, where a
highly irregular fluctuating field hf is added to the effective field heff, satisfying

hhiðx; tÞi ¼ 0;

hhiðx; tÞhjðx0; t0Þi ¼
2αkBT

Msγ0μ0V
δijδðx � x0Þδðt � t0Þ; ð12Þ

where i and j are Cartesian components, kB is the Boltzmann constant, T is the
temperature, V is the volume, and δij and δ(…) stand for the Kronecker and Dirac delta
symbols, respectively. The finite-temperature simulations are performed with a fixed
time step of 2 × 10−15 s, while the time step in zero-temperature simulations is adaptive.

Fig. 5 The Ising interaction between two merons. a Schematic illustration for the Ising interaction between two merons. Dark green cylinders represent a
spacer. b The contribution of different energy terms to the total energy ETotal of a relaxed exchange-coupled bilayer meron with identical or opposite core-
spin direction, including the intralayer exchange energy EA, DMI energy EDMI, interlayer exchange energy EInter, anisotropy energy EK, and dipole–dipole
interaction (DDI) energy EDDI. The total energy difference for the exchange-coupled bilayer merons with identical and opposite core-spin directions equals
3.6 × 10−22 J. The radius of the meron is n= 7, and we have used AInter= 0.005 pJ m−1. The simulation parameters are given in the caption of Fig. 2. More
details are given in the “Methods” section.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00311-w ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:88 | https://doi.org/10.1038/s43246-022-00311-w |www.nature.com/commsmat 5

www.nature.com/commsmat
www.nature.com/commsmat


The square lattice with a circular shape is used for simulations with the lattice constant
being 0.4 nm, i.e., the mesh size is 0.4 nm× 0.4 nm. Open boundary conditions are used
for all sample edges. The nanodisk is assumed to be a 1-nm-thick with bulk DMI. The
following material parameters are used as default parameters: Aex= 0.32 pJm−1,
α= 0.3, Ms= 152 kAm−1, D= 0.5mJm−2, and K=−0.5mJm−3.

Construction of quantum gates. The Schrödinger equation for qubits is

i_
d
dt

ψ
�� � ¼ H ψ

�� �
; ð13Þ

with the Hamiltonian

H ¼ αzσz þ αxσx ð14Þ
for a single qubit, and

HIsing ¼ Jexchangeσ
ð1Þ
z � σð2Þz ð15Þ

for two qubits. We control the coefficient Bz, Bx, and Jexchange temporally. We first
discuss single-qubit gates.

Pauli-Z gate. We set Bx= 0 and

αz tð Þ ¼ _θ=2t0 ð16Þ

for 0 ≤ t ≤ t0 and αz tð Þ ¼ 0 otherwise. The solution of the Schrödinger equation
reads

UZ θð Þ ¼ exp � i
_
σz

Z t0

0
αz tð Þdt

� 	
¼ exp � iθ

2
σz

� 	
: ð17Þ

This is the z rotation gate by the angle θ. It gives an arbitrary phase-shift gate

Uθ ¼ eiθ=2UZ �θð Þ ¼ diagð1; eiθÞ: ð18Þ
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Fig. 6 The meron dynamics at finite temperatures. a The out-of-plane spin component mz as functions of time at different temperatures T. A relaxed
meron with p=+1 is placed at the nanodisk with n= 7 at t= 0 ps. The thermal fluctuations reduce the stability of the meron state. b The topological
charge of the system Q as functions of time at different temperatures. For a relaxed meron at zero temperature, the topological charge equals 0.5.
c Selected top-view snapshots of the spin configurations in the nanodisk at different temperatures. The radius of the meron is n= 7, and the damping
parameter α= 0.1. The simulation parameters are given in the caption of Fig. 2. More details are given in the “Methods” section.
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In particular, the Pauli-Z gate UZ≡ σz is constructed by setting θ= π as
UZ ¼ iUZ πð Þ.

Pauli-X gate. In a similar way, we set Bz= 0 and

αx ¼ _θ=2t0 ð19Þ

for 0 ≤ t ≤ t0 and Bz tð Þ ¼ 0 otherwise. The solution of the Schrödinger equation
reads

UX θð Þ ¼ exp � i
_
σx

Z t0

0
αx tð Þdt

� 	
¼ exp � iθ

2
σx

� 	
: ð20Þ

This is the x rotation gate by the angle θ. The Pauli-X gate UX≡ σx is constructed
by setting θ= π as UX ¼ iUX πð Þ.

π/4 phase-shift gate. The π/4 phase-shift gate is realized by the z rotation (17)
with the angle −π/4 as

UT ¼ eiπ=8UZ � π

4


 �
; ð21Þ

up to the overall phase factor eiπ/8.

Hadamard gate. The Hadamard gate is defined by

UH � 1ffiffiffi
2

p 1 1

1 �1

� �
; ð22Þ

which is realized by a sequential application of the z rotation and the x rotation47 as

UH ¼ �iUZ
π

2


 �
UX

π

2


 �
UZ

π

2


 �
; ð23Þ

with the use of Eqs. (17) and (20). The quantum circuit representation of Eq. (23) is
shown in Fig. 8a.

Ising coupling gate. Next, we discuss the two-qubit gate. We manually control dm
as a function of time. Then, the time evolution is given by

U ¼ exp � i
_

Z t0

0
HIsing dmðtÞ

� �
dt

� 	
ð24Þ

with dm= dm(t) in Eq. (15). If we set

J int dmðtÞ
� � ¼ _θ=2t0 ð25Þ

for 0 ≤ t ≤ t0 and J int dmðtÞ
� � ¼ 0 otherwise, we obtain the Ising coupling gate

UZZ θð Þ � exp � iθ
2
σ 1ð Þ
z σ 2ð Þ

z

� 	
; ð26Þ

acting on the 2-qubit in the neighboring layers. By setting θ= π, we obtain the
Ising coupling gate UZZ≡ (1,−1,−1, 1) as UZZ= iUZZ(π).

CZ gate. The controlled-Z (CZ) gate UCZ is a unitary operation acting on two
adjacent qubits defined by

UCZ ¼ diag:ð1; 1; 1;�1Þ; ð27Þ

and constructed as48

UCZ ¼ eiπ=4U 1ð Þ
Z

π

2


 �
U ð2Þ

Z
π

2


 �
U 1ð Þ

ZZ � π

2


 �
; ð28Þ

whose quantum circuit representation is shown in Fig. 8b.
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Fig. 7 Size dependence of the energy of the meron in units of Joule. a The total energy. b The exchange energy. c The DMI energy. d The easy-plane
magnetic anisotropy energy. e The magnetic dipole–dipole energy. f The normalized out-of-plane magnetization. The radius of the meron is n= 7. The
simulation parameters are given in the caption of Fig. 2. More details are given in the “Methods” section.

Fig. 8 Quantum circuit representations. a The Hadamard gate in terms of
a sequential application of rotation gates as in Eq. (23). b The CZ gate in
terms of a sequential application of the z rotation gate and the Ising
coupling gate UZZ as in Eq. (28). c Quantum circuit representations of the
equivalence between the CNOT gate as in Eq. (30) and the CZ gate with
the application of the Hadamard gates. U1!2

CNOT.
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CNOT gate. The CNOT gate U1!2
CNOT is defined by

U1!2
CNOT �

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA; ð29Þ

which is constructed by a sequential application of the CZ gate and the Hadamard
gate as

U1!2
CNOT ¼ U 2ð Þ

H UCZU
2ð Þ
H ; ð30Þ

where the control qubit is the meron in the first layer and the target qubit is the
meron in the second layer. The corresponding quantum circuit representation is
shown in Fig. 8c.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The micromagnetic simulator MuMax is publicly accessible at https://mumax.github.io/
index.html. The micromagnetic simulator OOMMF is publicly accessible at https://math.
nist.gov/oommf.
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