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Learning the dynamics of metamaterials from
diffracted waves with convolutional neural
networks
Yuxin Zhai 1, Hyung-Suk Kwon 1, Yunseok Choi 2, Dylan Kovacevich 1 & Bogdan-Ioan Popa 1✉

Conventional methods used to identify the dynamical properties of unknown media from

scattered mechanical waves rely on analytical or numerical manipulations of the wave

equation. These methods show their limitations in scenarios where the analyzed medium is

moderately sized and the diffraction from the material edges influences the scattered fields

significantly, such as non-destructive diagnostics and metamaterial characterization. Here,

we show that convolutional neural networks can interpret the diffracted fields and learn the

mapping between the scattered fields and all the effective material parameters including

mass density and stiffness tensors from a small set of numerical simulations. Furthermore,

networks trained with synthetic data can process physical measurements and are very robust

to measurement errors. More importantly, the trained network provides insight into the

dynamic behavior of matter including quantitative measures of the scattered field sensitivity

to each material property and how the sensitivity changes depending on the material

under test.
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Assessing dynamic material properties from scattered
elastic waves is at the center of numerous remote sensing
applications, including acoustic and elastic imaging, non-

invasive diagnostics, and metamaterial design and characteriza-
tion. In most cases, the wave equation is inverted using numerical
or analytical methods that rely on limiting assumptions. For
example, all the components of the mass density and stiffness
tensors of unknown materials could be extracted from free-space
scattered acoustic waves, but these methods require material
samples large enough so that the diffraction from the sample
edges does not contaminate the scattered field1,2.

In many scenarios of interest (e.g., medical diagnostics and
metamaterial design), the samples are small and the aforemen-
tioned analytical free-space methods do not apply. For instance,
the mechanical properties of biological tissue were shown to be
modified by pathological processes. State-of-the-art non-invasive
techniques, including impediography and elastography ensonify
biological tissue in vivo with ultrasound beams and infer a small
subset of parameters such as impedance, Young’s or shear moduli
of potentially small abnormal regions from the scattered
ultrasound3,4. However, biological tissue is a complex anisotropic
material characterized by numerous distinct stiffness and mass
density tensor components. Extracting all of these components
(not just a small subset) is critical for assessing tissue health and
diagnosing possible abnormalities early on while the affected area
is small.

Even though diffracted waves potentially contain important
information about the elastic behavior of materials, making sense
of these complicated fields is still not well understood, and dif-
fracted fields are usually avoided5–8. Diffraction-avoiding tech-
niques have recently been employed extensively in metamaterial
research. Metamaterial design validation is typically done by
fabricating small prototypes whose dynamic behavior is measured
in a series of experiments in which waveguides are used to
mitigate the influence of edge diffraction on the scattered fields9.
These methods involve placing the sample under test inside
carefully designed waveguides and inverting reflection and
transmission coefficients to obtain material properties such as
dynamic mass density and various elastic moduli10–14. However,
these methods are either unsuitable in applications in which the
sample cannot be manipulated (e.g., in non-invasive diagnostics,
imaging) or cumbersome to apply (e.g., for materials operating in
aqueous environments in which the waveguide itself con-
taminates the scattered fields)15.

Instead of mitigating the effects of diffraction, this work shows
that convolutional neural networks (CNNs) can effectively
interpret the diffracted fields to extract important information
about the dynamical behavior of complex media, as follows. First,
we show that CNNs can efficiently estimate the mapping between
scattered acoustic fields and macroscopic material parameters
from relatively few examples of numerically simulated near-field
spatial distributions scattered by material samples having ran-
domly chosen macroscopic parameters. More importantly, we
show that CNNs trained exclusively with self-labeled synthetic
data can process acoustic field measurements and accurately
estimate the effective material parameters of physical samples.
Second, we introduce methods to analyze the trained neural
networks to obtain quantitative measures of how sensitive the
scattered fields are to each macroscopic property. These methods
could be leveraged in material design to prioritize the realization
of one material property over another. Another consequence of
this sensitivity analysis is obtaining an upper boundary for the
shear modulus below which a solid material behaves acoustically
as a fluid. We will show that this finding has significant relevance
to transformation acoustics applied to the design of metamaterials
operating in aqueous environments16–18. Third, we show that

further analysis of the trained network reveals regions of the
scattered fields that contain the most information on the mac-
roscopic material parameters. These regions located around the
edges of the sample under test provide direct evidence that fields
diffracted by the sample edges contain significant information
about the sample’s behavior under elastic wave excitation.

Results and discussion
Approach. Figure 1a shows a typical scenario in which a material
sample is ensonified by a source situated in the far field. The
sample is small enough that the sound diffracted by the material’s
edges dominates the scattered acoustic field. Our goal is to train a
convolutional neural network that estimates all the elastic mate-
rial parameters of the sample, including its effective dynamic
stiffness tensor and mass density and to analyze the trained CNN
to obtain insight into the physical behavior of matter excited by
mechanical waves.

For illustration purposes and without loss of generality, we
assume that the sample has a rectangular shape of width W,
height H, and thickness T and is placed in a background fluid of
known mass density ρ0 and bulk modulus K0. The acoustic
pressure scattered by the sample is recorded in front and behind
it on planes situated at known distances d1 and d2 away from the
sample, which we call reflection and, respectively, transmission
planes.

To highlight the difficulties imposed by edge diffraction effects,
Fig. 1b shows the scattered pressure distribution (amplitude and
phase) obtained for an aluminum block of dimensions W=H=
4λ and T= 0.16λ, where λ is the wavelength of the omnidirec-
tional source ensonifying the block at 120 kHz. The fields were
computed numerically on the reflection and transmission planes
using Comsol Multiphysics, a finite element solver of the acoustic
wave equation. The simulation assumed a water background
(ρ0= 1000 kg m−3, K0= 2.15 GPa) and the acoustic pressure
fields are reported relative to the incident spherical wave. The
superposition between the diffracted, reflected, and transmitted
fields give rise to complex patterns in both the scattered pressure
amplitude and phase. This complicated field distribution makes
inverting the scattered pressure very challenging using analytical
approaches1,2. Nevertheless, the pattern details are very sensitive
to changes in the macroscopic material parameters inside the
material, which is critical to the success of our CNN-based
approach.

Our aim is to find the mapping g : F ! M between the set of
scattered fields F obtained on the reflection and transmission
planes and the set of macroscopic material parameters M. An
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Fig. 1 Material characterization from scattered fields. a The unknown
sample is ensonified by a source and the scattered fields are recorded on
the reflection and transmission planes located at distances d1 and d2 in front
and, respectively, behind the sample. Two sources labeled 1 and 2 are
considered in this paper; b The scattered fields for an aluminum sample
were computed numerically and show complicated patterns caused by the
interference of edge-diffracted waves.
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element f 2 F may be represented by the four images shown in
Fig. 1b. An element m in the N-dimensional set M comprises all
the N unknown macroscopic properties of the sample. In general,
m may contain components of the stiffness, mass density, and
Willis parameter tensors.

The inverse mapping g�1 : M ! F can be readily computed
with numerical solvers such as Comsol Multiphysics or through
measurements. We will solve the much more difficult problem of
determining g by computing g−1(m) for m 2 MT � M, where
MT represents a small set of examples called training set. We will
show that CNNs taking as input the set of scattered field patterns
(e.g., see Fig. 1b) and outputting the material parameters m will
extrapolate this set of examples to find g(f) for any f 2 F .

CNNs are ideal at finding patterns in images such as f and
associating them to the scatterer identity encoded in the effective
macroscopic material parameters m. This pattern recognition
problem is very similar to a standard computer vision task in
which CNNs are asked to recognize familiar objects in photos19.
The resurgence of CNN research during the last decade is in part
the result of the remarkable success of neural networks at solving
this type of pattern recognition problem. Moreover, research on
CNNs produced methods to analyze the trained algorithms to
obtain important insight into the workings of the pattern
recognition process20.

This suggests that modified versions of the computer vision
CNNs should be able to solve our pattern recognition task and
find the mapping g. More importantly, it suggests that analysis of
the trained CNN may provide important insight into the physics
of the sample in addition to the material properties we are seeking
to find.

Application to elastic metamaterials. We illustrate the capability
of the CNN in an example in which an isotropic metamaterial
designed to operate underwater is composed of copper spheres
2 mm in diameter placed in a polylactide (PLA) frame, as
depicted in Fig. 2. The frame is 3D-printed and the thickness of
each frame wall is 0.2 mm. Unlike acoustic or electromagnetic
media, elastic metamaterials with square lattices and unit cells
with C4 rotational symmetry could be anisotropic, especially
when the effective shear modulus is high21. However, the aniso-
tropy level is typically much smaller than the ~5% accuracy of our
method. In addition, we expect that the effective shear modulus of
our metamaterial is modest since the components of the structure
are not glued together but held in place by pressure fitting the

copper spheres inside the plastic matrix. Therefore, the meta-
material shown in Fig. 2 is under a very good approximation
isotropic.

Solid metamaterials functioning in dense backgrounds are
notoriously difficult to design and characterize. Unlike the vast
majority of cases reported in the literature involving metamater-
ials in air, in aqueous environments, mechanical waves propagate
through the solids composing the metamaterial, and parameters
such as the friction force between the spheres and the plastic
matrix keeping the spheres in place significantly influence the
effective macroscopic properties of the sample but are very hard
to measure. In these situations, methods that predict macroscopic
properties based on the material microstructure22–26 become very
challenging to apply.

For instance, the shear modulus has been shown to be very low
when the friction force between the solid inclusions composing a
metamaterial is small17,27 with negative effects on the mechanical
integrity of the sample. Conversely, when the friction force is
large (in the limit, the spheres in Fig. 2 are fused to their frame),
the shear will be in the gigapascals range. A question of interest
becomes whether mechanically robust structures in which the
friction force is large could be used in underwater transformation
acoustics devices that rely on zero shear. Remarkably, we will
show shortly that analysis of the trained CNN provides definitive
answers.

The sample shown in Fig. 2 has dimensions W=H= 4λ and
T= 0.16λ at the operating frequency of 120 kHz and is
characterized by N= 4 unknown material properties. These are
the mass density ρ, the bulk modulus K, the shear modulus G, and
the stiffness loss tangent factor η. The stiffness tensor can be
determined from these parameters as (1+ iη)C(K, G), where C is
the stiffness tensor of lossless isotropic solids having the elasticity
moduli K and G, and i is the imaginary unit.

In this work, our CNN is a modified version of AlexNet, a
neural network that proved particularly effective at pattern
recognition in images19. These computer vision tasks are
significantly more difficult than ours for several reasons. First,
the process of sound scattering is linear, and there is significant
redundancy in the spatial distribution of the scattered fields.
Second, there is no overlap between the sound scattered by the
sample under test and other nearby objects. Third, the sample is
ensonified from the same angle in all cases using the same known
source. All these factors suggest that significantly less training
data is needed in this work than in the computer vision image
classification problem, which points to employing a simpler
network having fewer unknown weights rather than the much
deeper networks used in computer vision. In our case we
experimented with various network depths and converged on the
following architecture.

Our network consists of four convolutional layers followed by
two fully connected layers, as described in Supplementary Note 1.
The network is trained with maps f= g−1(m) obtained in
numerical simulations performed with Comsol Multiphyics,
where m � ðρ;K;G; ηÞ 2 MT and MT contains 8000 material
parameter quadruples sampled randomly in a very large space
chosen as follows (see Supplementary Note 2 for training details
and Supplementary Note 3 for the reason why 8000 material
parameter quadruples are selected). The dynamical mass density
ρ is searched in the range 400–6000 kg m−3. These are very
conservative bounds because the effective dynamical ρ is likely to
be lower than the static density of ~3000 kg m−3 since more
sound propagates through the plastic matrix (same impedance as
water) than copper. Similarly, the bulk modulus was sampled in
the interval 0.5–12 GPa (K0= 2.15 GPa for water). There is
currently little knowledge and research on the dynamical shear
modulus of metamaterials, which is reflected in the larger

5 
cm

5 cm

Fig. 2 Metamaterial sample. The sample consists of copper spheres
embedded in a 3D-printed polylactide (PLA) matrix. The inset shows a
zoomed-in section of the metamaterial featuring the placement of spheres
inside the plastic matrix.
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searching interval for G, namely 30 kPa–50 GPa. This search
space was chosen to encompass the shear of copper (45 GPa).
There is no reason to look below 30 kPa because a material with
such a low shear behaves like a true fluid (G= 0) for all practical
purposes. In fact, we will show that the analysis of the trained
CNN reveals that shear below 50MPa has a negligible effect on
the elastic behavior of isotropic media. The loss parameter η is
searched in the interval 0 (no loss) – 0.5 (high loss).

The training set was obtained by randomly sampling the values
of ρ, log10ðKÞ, log10ðGÞ, and η. As explained above, the elastic
moduli (bulk and shear) are searched in very large intervals
spanning multiple orders of magnitude, therefore their logarithm
is sampled uniformly instead of their linear values.

The sample is ensonified by an omnidirectional point source
located at coordinates x= 0, y=−7.1 cm, and z= 18.5 cm relative
to the center of the metamaterial [see source location 1 in Fig. 1a].
The simulation domain is surrounded by reflectionless, perfectly
matched layers (PML), and the quasi-spherical incident wave is
implemented as a background pressure domain condition. The
acoustic pressure is recorded on 8λ by 8λ reflection and
transmission planes situated d1= 2.7λ and respectively d2= 1.5λ
from the metamaterial. The values of d1 and d2 were chosen based
on the experimental setup, which will be discussed later. The
amplitude and phase recorded on these planes are used as inputs f
to the network (each image is a 51 × 51 matrix). All simulated
fields are normalized to the incident pressure.

The performance of the CNN model trained with the material
parameter set MT (i.e., labels) and the corresponding scattered
fields g�1ðMT Þ (i.e., CNN inputs) is quantified using a validation
set MV and its corresponding scattered fields g�1ðMV Þ, whereMT and MV do not have any elements in common. For each
ground truth material parameter quadruple m � ðρ;K;G; ηÞ 2
MV we feed the corresponding field distribution f= g−1(m) to
the CNN to obtain an estimation of these material parameters
m̂ � ðρ̂; K̂; Ĝ; η̂Þ ¼ gðf Þ.

Physical insights provided by CNN analysis. Figure 3 compares the
ground truthm versus the CNN-estimated m̂ for all the elements in
the validation set. For each material parameter, the figure provides
the R2 28 and SMAPE metrics29. The comparisons show that all the
four unknown material parameters are very well estimated by the
CNN. One notable exception is the shear modulus G which
deserves a longer discussion, as follows.

The validation set analysis may be interpreted in two ways. In the
first interpretation, Fig. 3 provides confidence bounds on m̂. For
example, the estimation error for ρ, η and log10ðKÞ is ±50 kgm−3,
±0.05, ±0.1 in all cases. Interestingly, the CNN appears to fail to
evaluate the shear modulus correctly for values below ~50MPa. To
understand the causes of this behavior we need to consider the
second interpretation of the plots m̂ versus m.

In the second interpretation, Fig. 3 quantifies the influence of
each material property on the scattered near-field. The mass
density has the most influence on the scattered field distribution
and therefore ρ̂ is very close to its real value for all the examples
in the validation set. At the opposite spectrum lies the shear
modulus. For G < 50MPa, the estimation log10ðĜÞ tends to
converge to a constant value.

This behavior reveals an important physical insight into the
relationship between the shear modulus and the scattered field it
generates. The training process minimizes the mean-square-error
loss function k m̂�mk2 to evaluate how good the CNN
estimation is and to update the weights of the convolutional
and fully connected layers. The neural network detects no effect
of G on the scattered fields for low values of G and therefore
chooses the estimations log10ðĜÞ on a line situated halfway in

between the minimum and maximum values of log10ðGÞ to
minimize the loss function over the entire validation set. This
important conclusion is further validated in Supplementary
Note 4 with numerical simulations that show quantitatively
how the scattered fields change as the shear modulus increases
from 0 to higher values.

This interpretation is an especially remarkable result in the
context of transformation acoustics (TA). Unlike TA devices
operating in air, TA devices functioning in dense environments
(e.g., water) require fluid-like media having G= 0, which is
challenging to obtain in structures composed of solids. It has been
shown that metamaterials composed of loosely connected
solids30,31, soft rubbers16,18, and oiled interfaces17,27 might work
but these approaches typically result in flimsy devices lacking
structural robustness. The validation set analysis reveals that a
metamaterial with an effective G < 50 MPa behaves acoustically
indistinguishable from a fluid and thus extremely low shear
modulus is not needed.

Having established the ability of the CNN to estimate all the
unknown material parameters, we assess the ability of the neural
network to process measured fields and extract the effective
material parameters of the fabricated metamaterial shown in
Fig. 2. The metamaterial is hung by a 0.1 mm diameter copper
wire at the center of a 0.5 m × 0.5 m × 0.5 m water tank. A
hydrophone connected to a Verasonics Vantage 64 research
ultrasound machine is placed at the source location 1, shown in
Fig. 1a, having coordinates (0, −7.1 cm, 18.5 cm). The hydro-
phone sends quasi-spherical waves in the form of five-cycle
Gaussian pulses centered at 120 kHz. A second hydrophone scans
the reflection and transmission planes shown in Fig. 1a and
records the reflected and transmitted waves, which are then
normalized to the incident field to replicate the conditions
simulated in Comsol Multiphysics and used to train the CNN.
The distances between the reflection and transmission planes are
set to d1= 3.4 cm and, respectively, d2= 1.9 cm. These distances
were chosen to allow the scanning hydrophone to move without
touching the sample.

The measured normalized reflected and transmitted fields are
shown in Fig. 4a. These scattered fields are fed to the CNN, which
produced the following estimatedmaterial properties: K̂ ¼ 2:5 GPa,
Ĝ ¼ 0:72MPa, ρ̂ ¼ 1285:1 kgm−3, and η̂ ¼ 0:252. These values
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Fig. 3 Validation set analysis. The analysis shows with solid blue circles
the CNN-estimated material properties, m̂, versus their real values (ground
truth), m, where m represents log10ðKÞ, log10ðGÞ, ρ, and η. The m̂ ¼ m
ground truth line is shown with a solid magenta line. The R2 and SMAPE
metrics of each parameter are listed in the lower right corner of each panel.
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are validated by simulating in Comsol Multiphysics the acoustic
fields scattered from a continuous homogeneous material having
these estimated properties and comparing the measured scattered
fields against the simulations. Figure 4 shows the excellent
agreement between measurements and simulations. Remarkably,
every single feature in the measured acoustic pressure is captured
by the simulation. To quantify the similarity between the measured
and simulated scattered fields, we defined a figure of merit
analogous to R2 to better quantify the match. In this case, we
defined R2 for the transmission and reflection planes as R2 ¼
1� k S�Mk2F= k S� Sk2F , where S and M are the simulated and
respectively measured spatial 2D fields obtained on either the
reflection or the transmission planes, S is the spatial average of the
simulated field, and ∣∣ ⋅ ∣∣F is the Frobenius norm, i.e., the Euclidean
norm of a matrix. We obtained R2= 0.92 on the transmission plane
and R2= 0.85 on the reflection plane.

The accuracy of the determined macroscopic properties was
further confirmed through numerical simulations in which only
the mass density was modified from the estimated value by
several percentages while all the other material parameters were
kept unchanged (see Supplementary Note 5 and Supplementary
Fig. 5). We also confirmed the correctness of the evaluated
macroscopic properties by comparing the measurements and
simulations for a different position of the source relative to the
metamaterial sample, namely source location 2 in Fig. 1a having
coordinates (0, 0, 18.5 cm). The comparison between the
measured and simulated acoustic pressure for this ensonification
is presented in Supplementary Note 5 and Supplementary Fig. 6
and shows the same excellent match.

All these comparisons demonstrate the robustness of the CNN
at extracting macroscopic effective properties in experiments.
There are small discrepancies between the measurements and
simulations caused by the misalignment of the submerged sample
inside the water tank. For instance, the sample was not perfectly
vertical and was also rotated slightly about the normal to its
surface. As a result, the acoustic fields shown in Fig. 4 are not
symmetric as they would be in the ideal case. Nevertheless, the
sound diffracted by the sample edges generates rich features in
the scattered fields that do not change because of misalignment
and other experimental errors, which explains the CNNs
robustness to experimental errors.

In this work, we expressed the stiffness tensor in terms of
bulk and shear moduli. Other stiffness quantities could also be
estimated by the CNN, such as Young’s modulus and Lamé
parameters. For instance, Supplementary Note 6 shows the CNN-
estimated Young’s modulus, which is consistent with the
estimated K and G presented in Fig. 3.

Furthermore, we analyze the trained CNN to extract more
information on the dynamical behavior of materials. In particular, we
are interested in understanding what sub-regions of the scattered field
contain the most information on the identity of the sample. To
address this issue, we occluded different portions of the input testing
image with a 3 × 3 mask of pixels, i.e., the same size as the
convolutional kernels used by the CNN. The mask is moved in all
four input images by steps of 1 pixel, and the changes in the CNN
output were recorded. Figure 5 shows the average change of each
material parameter on a logarithmic scale for the reflection and
transmission sides for the entire validation data. Larger values
indicate regions targeted by the CNN that most influence the CNN
outputs.

Figure 5 shows that the bulk modulus is determined mostly
from the fields reflected and transmitted through the sample
because the area that most influences this parameter is inside the
specular projection of the sample in the measurements planes
marked with dotted rectangles in the figure. The other three
material parameters are mostly determined from the diffracted
fields, as demonstrated by regions of high influence on these
parameters located around the edges of the material. This
constitutes direct evidence of the importance of diffracted fields
on the estimated material parameters.

Conclusions. We presented a CNN-based approach to construct
the direct map of scattered acoustic fields-to-elastic macroscopic
material properties. The CNN is trained exclusively with self-
labeled data obtained in numerical simulations but can robustly
process measurements. More importantly, analysis of the trained
CNN reveals important insight into the dynamic behavior of
elastic materials. For example, it reveals quantitative bounds for
the shear modulus for which the sample behaves acoustically like
a fluid, which is very relevant to the design of underwater
transformation acoustics devices. In addition, it shows the regions
around the metamaterial where the acoustic pressure should be
sampled to extract most information on the metamaterial effec-
tive macroscopic properties. This analysis produced direct evi-
dence of the importance of diffracted fields to characterize
unknown media from scattered fields. Furthermore, validation set
analysis indicates confidence bounds on the extracted material
parameters. Although our method is illustrated for an isotropic
elastic metamaterial, the CNN approach shown here is general in
that it could, in principle, be applied to extract unknown material
properties for a wide range of complex media from biological
tissue to Willis media and anisotropic materials. This work also
shows that neural network-based approaches may become an
important tool to characterize and analyze the dynamical beha-
vior of complex media.
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Fig. 4 Measured versus simulated scattered acoustic fields. Comparisons
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the scattered fields (logarithmic scale). Higher changes indicate regions
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projection of the material sample onto the a reflection and b transmission
planes.
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Method
Experimental apparatus. The experimental measurements are done inside a water
tank composed of transparent polycarbonate plates 50 cm× 50 cm× 0.6 cm that are
held together with T-slot aluminum rails. The metamaterial sample measured in the
experiment is made up of a 3D-printed PLA frame with 22 × 22 slots and the matching
number of copper spheres. The height and the width of the PLA frame are both 5 cm,
the wall forming the slots is 0.2mm in thickness, and the diameter of all copper spheres
is 2mm. The overall thickness of the metamaterial is the same as the copper sphere
diameter. A Reson TC 4013 hydrophone connected to a Verasonics Vantage 64
research ultrasound machine serves as the acoustic source and produces quasi-spherical
waves towards the metamaterial. The spatial and temporal distribution of the acoustic
field is measured by a second Reson TC 4013 hydrophone connected to the same
ultrasound machine that raster scans the area in front of and behind the metamaterial
sample. The frequency spectrum of the measure acoustic field is obtained from the
Fourier transformation of the time domain measurements.

Acoustic fields simulations. Comsol Multiphysics is employed to obtain all
simulated acoustic fields. The simulation has the same setup as the experiment.
Since the water tank and the metamaterial are symmetric, the simulation domain
and metamaterial defined in Comsol Multiphysics only contain parts on one side of
the y-z plane shown in Fig. 1a to reduce computation complexity. The y-z plane of
the simulation has the symmetry boundary condition, and the rest of the domain is
surrounded by reflectionless, perfectly matched layers (PML). The quasi-spherical
incident wave is implemented as a background pressure domain condition. Comsol
Multiphysics is integrated with MATLAB via the LiveLink for MATLAB, which
allows us to control the simulation from MATLAB code. The material properties of
the sample are selected randomly and automatically via the MATLAB code while
running different simulation cases.

Data availability
The data that support the findings of this study are available from the authors on
reasonable request.

Code availability
The code that support the findings of this study are available from the authors on
reasonable request.
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