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Predicting the formation of fractionally doped
perovskite oxides by a function-confined machine
learning method
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Fractionally doped perovskites oxides (FDPOs) have demonstrated ubiquitous applications

such as energy conversion, storage and harvesting, catalysis, sensor, superconductor, fer-

roelectric, piezoelectric, magnetic, and luminescence. Hence, an accurate, cost-effective, and

easy-to-use methodology to discover new compositions is much needed. Here, we developed

a function-confined machine learning methodology to discover new FDPOs with high pre-

diction accuracy from limited experimental data. By focusing on a specific application, namely

solar thermochemical hydrogen production, we collected 632 training data and defined 21

desirable features. Our gradient boosting classifier model achieved a high prediction accuracy

of 95.4% and a high F1 score of 0.921. Furthermore, when verified on additional 36 experi-

mental data from existing literature, the model showed a prediction accuracy of 94.4%. With

the help of this machine learning approach, we identified and synthesized 11 new FDPO

compositions, 7 of which are relevant for solar thermochemical hydrogen production. We

believe this confined machine learning methodology can be used to discover, from limited

data, FDPOs with other specific application purposes.
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Perovskite materials derived from the mineral of CaTiO3

have the general formula ABX3, in which A and B are
cations, and X is an anion. Perovskites have a typical crystal

structure shown in Fig. 1. The smaller B-site cation has six-fold
coordination and forms a BX6 octahedron. Eight BX6 octahedra
share corners to form a dodecahedron interstitial space for
accommodating a twelve-fold coordinated larger A-site cation.
The X is usually an oxygen, halogen or chalcogen anion, which
can tolerate many vacancies. Perovskites have demonstrated
ubiquitous applications to energy conversion/storage/harvesting,
catalysis, sensor, superconductor, ferroelectric, piezoelectric,
magnetic, and luminescence due to the numerous unique prop-
erties caused by their versatile compositions and flexible crystal
structure symmetries.

Hybrid organic-inorganic perovskites (HOIPs) and inorganic
perovskites (IPs) are the two main perovskites. HOIPs have a
positively charged organic group (e.g., methylammonium, MA;
formamidinium, FA) in A site, a metal cation (e.g., Pb, Sn) in B site,
and a halogen anion (e.g., I, Cl, Br) in X site1. As semiconductors,
HOIPs showed excellent optical and electrical properties and found
extensive applications to solar cells2–5, photodetectors6,
photocatalysis7, and light-emitting8. IPs usually denote perovskites
oxides with metal cations in A and B sites and oxygen anions in the
X site. Perovskite oxides allow fractionally doping multiple metals
in both A and B sites and forming crystal structures with
~15 symmetries, enabling almost infinite compositions with unique
properties. Instead of the simple ABO3 perovskite oxides, the
fractionally doped perovskite oxides (FDPOs) with a generic for-
mula of A1

x1
A2
x2
� � �Am

xm
B1
y1
B2
y2
� � �Bn

yn
O3 (Am and Bn are metal

cations, m ≥ 1, n ≥ 1, x1+ x2+…xm= 1, y1+ y2+…yn= 1) have
demonstrated pervasive applications. Mn and Sr doped LaAlO3 was
the first experimentally proved perovskite oxide to efficiently split
water and carbon dioxide to produce hydrogen and carbon mon-
oxide based on the high-temperature and low-temperature solar
thermochemical redox cycles9. Ba0.5Sr0.5Co0.8Fe0.2O3-δ showed
extremely high performance as an oxygen-permeable membrane
and the cathode of oxygen-ion conducting solid oxide fuel cells (O-
SOFCs)10,11. Perovskite oxides of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ and
BaCo0.4Fe0.4Zr0.1Y0.1O3-δ demonstrated promising performance as
an electrolyte and an oxygen electrode for protonic ceramic fuel/
electrolysis cells (PCFCs and PCECs)12,13. Doped lanthanum gal-
late oxide (La1-xSrxGa1-yMgyO3-δ) showed high ionic conductivity
at intermediate temperatures (~600 °C) as an O-SOFC electrolyte

material14. YBa2Cu3O7 has become a state-of-the-art super-
conductor for many years as one perovskite-derived structure15.
BaTiO3 and BaNi0.5Nb0.5O3 showed promising ferroelectric and
piezoelectric properties16,17. Perovskite manganites with a general
formula R1-xAxMnO3 (R= rare-earth cation, A= divalent
alkaline-earth cation) attracted much attention due to their colossal
magnetoresistance and magnetocaloric effect18,19. Therefore, dis-
covering new FDPOs with desired geometrical symmetries and
properties for targeted applications has become one of the most
important research topics in many materials science fields. How-
ever, FDPOs allow nearly 90% of the elements from the periodic
table to come into the perovskite structures and fractionally doping,
resulting in almost infinite complex compositions, which may be
the targeted perovskite oxides. The prerequisite for discovering new
perovskite oxides is to make quick and accurate predictions to
determine if the designed compositions are perovskite or not before
the time-consuming and expensive theoretical computation,
experimental synthesis, and property characterization.

Establishing a link descriptor between composition and
structure via basic elemental and simple oxide properties has
attracted a significant effort to predict new perovskite oxides.
Historically, simple geometrical factors were in use for predicting
the formability of perovskite oxides. The Goldschmidt tolerance
factor calculated from the ionic radii of A and B cations and

oxygen anion (0:75≤ t ¼ rAþrOð Þ
ffiffi

2
p

rBþrOð Þ ≤ 1:05) was the most com-

monly used criterion to determine if a new composition was a
perovskite or not20–24. Considering that the stable octahedron
BO6 was the basic unit for perovskite structure, the octahedral
factor (0:414≤ μ ¼ rB=rO ≤ 0:732) defined as the ratio between
B-site cation and oxygen anion was a prerequisite to forming the
perovskite structure25,26. The combination of the octahedral
factor and the tolerance factor showed improvement in the pre-
diction accuracy21. Most recently, a new tolerance factor
(τ ¼ rO

rB
� nAðnA � rA=rB

ln rA=rBð ÞÞ< 4:18) (where nA is the oxidation

state of A, ri is the ionic radius of ion i, and rA > rB by definition)
integrated A-site cation oxidation state information with the
geometry properties demonstrated an improved prediction
accuracy for simple (ABO3) and double perovskite oxides
(A2B1B2O6)27. To further improve the prediction accuracy, based
on two-dimensional structure map technology, a series of scien-
tific works also studied the effect of different feature pairs on the
formability of simple perovskite oxides, which involved the ionic
radii of A and B ions21, the bond length between A or B site and
oxygen atom23, the tolerance factor and octahedral factor21,26.
However, the two-dimensional structure map only utilized one
feature pair to predict, which did not simultaneously consider
more than two features to improve prediction accuracy further.
Besides, first-principles density functional theory (DFT) calcula-
tions were also adopted to predict the formability of perovskite
oxides. Emery et al. calculated the formation energies for 5,329
ABO3 combinations generated by inserting 73 metals and semi-
metals into A and B sites, respectively, which quickly predicted
395 thermodynamically stable simple perovskite oxides28.
Although DFT calculation showed a promising future for pre-
dicting perovskite oxides, it still has not shown very successful
predicting performance for the infinite FDPOs. Computing many
complicated compositions needs more complex unit cells related
to time-consuming and expensive DFT computations.

In recent years, the machine learning method has emerged as a
powerful tool to accelerate new materials discovery. Several
research groups applied machine learning techniques with DFT
calculated results as training data to identify promising simple
perovskite and double perovskite candidates29–32. Balachandran
et al. used the random forest and gradient tree boosting classifiers

Fig. 1 The schematic drawing of the crystal structure of fractionally
doped perovskites. The chemical formula of fractionally doped perovskites
is AxA’1-xByB’1-yO3-δ, where 1≥ x≥ 0, 1≥ y≥ 0 and 3-δ represents oxygen
nonstoichiometry.
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to correctly classify 90% of their database as perovskites or non-
perovskites using DFT as a source of training data33. Ye et al.
utilized deep neural networks to predict the formation energy of
ABO3 perovskites using DFT training data34. However, most
machine learning prediction work focused on the simple ABO3 or
double perovskites calculated from the DFT method. Utilizing the
machine learning tool to predict new complex FDPOs based on
experimental perovskite structure data has not been reported yet.
The more reliable perovskite and non-perovskite experimental
data are not ready yet. The extensive selection of features for
predicting perovskite structures still needs significant effort. In
the current work, we confined the FDPO study to a specific
application of the solar thermochemical hydrogen (STCH) pro-
duction for ensuring high-quality machine learning using a lim-
ited amount of data, serving as a case study for other functional
FDPOs. We established a reasonable experimental database,
selected 21 basic features, and screened six models to predict
FDPOs. The verification based on literature data and the synth-
esis by solid-state reaction and modified Pechini method and
XRD characterization proved the successful prediction of FDPOs
using our model.

Results
Data collection. The prerequisite to using machine learning to
predict FDPOs is to collect enough reliable data for the given
compositions with identified crystal structures, either perovskite
or non-perovskite. Instead of the data derived from DFT calcu-
lation, the experimental data from Inorganic Crystal Structure
Database (ICSD) and sporadic literature served as the crucial data
sources. However, all data must be manually examined and
compared to the original literature by the person with experience
in FDPOs to ensure data reliability. Collecting a large quantity of
data (e.g., more than 1000) takes too long or costs too much to
perform efficiently. Furthermore, sometimes we don’t have
enough data available to train the model. Therefore, we confined
the FDPO study to a specific application of the solar thermo-
chemical hydrogen (STCH) production for ensuring high-quality
machine learning using a limited amount of data, serving as a case
study for other functional FDPOs.

We searched the ICSD database by inputting key STCH
elements, setting the total element numbers, and downloaded
eligible FDPO data experimentally obtained at room temperature
under atmospheric pressure. Since the first experimental report of
SrxLa1-xAlyMn1-yO3-δ as excellent STCH materials with promising
oxygen exchange capacity and high hydrogen production yield,
FDPOs containing La, Sr, Mn, and O have become one of the
most popular STCH material systems9. With La, Sr, Mn, and O as
STCH key elements and 4, 5, 6, and 7 as the total element
numbers, we downloaded 578 perovskite data. Furthermore, the
most recent studies (e.g., CaTi1-xFexO3

35 and BaCexMn1-xO3
36)

indicated that some Ca, Ba, or Ti-doped FDPOs exhibited fast
reaction kinetics as the potential STCH materials. So we also
searched the ICSD database with Ca, Mn, and O as key STCH
elements and 4, 5, and 6 as total element numbers, resulting in
another 661 eligible perovskite data. In addition, using Ba and Ti
as crucial elements and a total element number of 5, we got 166
eligible perovskite data. In summary, we downloaded around
1400 experimental FDPO data from the ICSD database by
confining the specific application of STCH materials.

We established several rules to thoroughly clean up the raw
data to improve the data’s reliability. First, many repeated data in
our data set resulted from the overlapped searching and the
repeated reports. We manually checked the data set and removed
all the repeated data points. Secondly, we were interested in the
FDPOs, which were stable under room temperature and

atmospheric pressure, which urged us to rule out some
thermodynamically metastable compounds from our data set.
Furthermore, some compounds did not show the desired unity
for A and B metal sites, which did not qualify them for reliability.
We also removed some unrealistic perovskite data involved in
radioactive elements or expensive rare earth elements by
considering the safety and economic viability. While looking
into original literature to verify the data reliability during the
cleaning process, we found some perovskite oxides containing
one or more elements among La, Sr, Mn, Ca, Ba, and Ti elements
did not show in our data set. We treated these as reliable data and
added them to our data set. Finally, we obtained a data set
consisting of 516 FDPOs (Supplementary Data 1).

The collection of the non-perovskite compounds for the
negative data point for machine learning was not a trivial work.
We first searched the ICSD database for pyroxene, ilmenite, or
other non-perovskite structures with a doped ABO3 formula. The
stability at room temperature under atmospheric pressure was
also additional confinement. The inputting elements of these
compositions were the same as the chosen perovskites, e.g., Ca,
Ba, Mn, and Ti. We also double-checked these non-perovskites by
tracing back to the original literature. Some mislabeled non-
perovskite compounds in the ICSD database, which were
confirmed to be perovskite by further studying literature, were
removed from our non-perovskite data set. We obtained 96 non-
perovskite data points from the ICSD database. The non-
perovskites with mixed phases commonly occurred during the
experimental synthesis, which did not show in the ICSD database.
We extensively searched sporadic literature and collected another
20 non-perovskites with mixed phases. Finally, we obtained 116
non-perovskite data in our data set (Supplementary Data 1).

Figure 2 summarizes the chemical space of these compounds in
our data set. Our STCH FDPO data set contains 31 elements (viz.
Li, Na, Mg, Al, K, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Zn, Ga, Sr, Y, Nb,
Ag, Ba, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb, Pb, and Bi) in A site,
26 elements (viz. Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Ga, Ge, Y, Zr, Nb, Mo, In, Sn, Ce, Yb, Ta, W, and Pb) in B site,
and 41 elements in total. The numbers at the corner of each
element show the perovskite compound numbers, which contain
that element. The chemical space significantly expanded the key
STCH elements we used to search perovskite compounds in the
ICSD database, which provides us more opportunities to establish
new potential PDFOs to serve as STCH materials for future study.

Features selection and models selection. The feature selection
was initialized by summarizing the popular perovskite structure

Fig. 2 The chemical space of the database. The background colors indicate
different subcategories and numbers exhibit the appearance frequency of
different elements in A or B site.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00269-9 ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:42 | https://doi.org/10.1038/s43246-022-00269-9 | www.nature.com/commsmat 3

www.nature.com/commsmat
www.nature.com/commsmat


descriptors commonly reported in the literature. Historically, the
widely used descriptors for predicting the formability of per-
ovskites were the Goldschmidt tolerance factor (t) and the octa-
hedral factor (µ) defined by the radii of the metal and oxygen
ions21,37,38. Recently, the new tolerance factor (τ) further inclu-
ded the information of the oxidation state of A (nA) besides the
ionic radii to improve the predictability27. These three features
are closely related to the A and B elements’ ionic radii and oxi-
dation states. In addition, although it has not been studied
extensively as a perovskite formation descriptor, the ratio between
A-site cation to oxygen anion (rA/rO) is a parallel factor to the
octahedral factor. Therefore, we selected Goldschmidt tolerance
factor (t), octahedral factor (µ), rA/rO, new toleration factor (τ),
ionic radii (rA and rB), and oxidation states (OA and OB) of A site
and B site elements as our features. The previous prediction of
simple ABO3 perovskite oxides by machine learning indicated
that, besides the ionic radii of A-site and B-site cations, the tol-
erance factor and the octahedral factor, the A-O and B-O bond
lengths and the Villars’ Mendeleev numbers also played a critical
role to decide if a known composition could form perovskite
structure or not30. Therefore, we also chose the dAO, dBO, MA,
and MB as our features for predicting FDPOs.

Besides the 12 commonly used features (rA, rB, OA, OB, t, µ, rA/
rO, τ, dAO, dBO, MA, and MB) for predicting the formability of
simple perovskites, we further introduced another 9 features for
emphasizing the contribution of multiple dopant ions in both A
and B sites of FDPOs. The multiple dopants introduced the size
discrepancy, resulting in phase separation of perovskite or the
transformation to other structures. The size variance factor
(σ2 ¼ ∑iyir

2
i � ð∑iyiriÞ2)39, which described the mismatch in

A-site ion radii in perovskite, was correlated to phase separation
of perovskites. We adapted the size variance factors for both
A-site and B-site ions as our new features. Furthermore, the
differences in the size scales of different atoms pairs (i.e., rA max/
rO, rBmax/rO, rAmin/rO, rBmin/rO, rAmax/rAmin, and rBmax/rBmin)
were also defined as new features further to investigate the size
effect on the formability of FDPOs. Moreover, the multiple
dopants commonly broke electroneutrality in FDPOs, relating to
the formation of oxygen nonstoichiometry in the perovskite
structures. However, the large nonstoichiometric oxygen or the
big offset of electroneutrality can break the perovskite structure.
Therefore, we defined a new factor of (OA+OB)/6 to include the
electroneutrality effect. As summarized in Supplementary Table 1,
we selected 21 features of rA, rB, OA, OB, t, τ, rB/rO(µ), rA/rO, dAO,
dBO, MA, MB, rAmax/rO, rBmax/rO, rAmin/rO, rBmin/rO, rAmax/rAmin,
rBmax/rBmin, σ2(A),σ2(B), and (OA + OB)/6 to perform our model
training. Here, the fractionally doped ABO3 involved multiple
A-site and B-site cations. Therefore, we took the average using a
weighted linear combination based on the fractions of the
multiple elements to get the features for each fractionally doped
ABO3 composition (including both positive and negative data).
Here, we simplified the expression by using the original symbols
to express the average features.

The feature calculation started from the basic element proper-
ties such as ionic radius, stable oxidation state, bond length, and
Mendeleev number for the individual primary elements from an
easily accessible database and literature (Supplementary Tables 2
and 3). Then we either took average or did calculations based on
the feature definition equations on getting the values for the 21
features. We adapted the ionic radii and oxidation states for all
the A-site and B-site elements shown in Fig. 2. Typically,
coordination number (CN), oxidation state, electronic spin, etc.
affect the ionic radius for each element40. The CNs for A-site and
B-site ions in the perovskite structure are 12 and 6, respectively.
Usually, the 12-fold coordinated A-site ions have ionic radii

much bigger than B-site ions, relating to lower oxidation states
(e.g., +1, +2, and +3). The smaller 6-fold coordinated B-site ions
have higher and sometimes multiple oxidation states (e.g., +4,
+3, +2). It is easy to find the Shannon ionic radii for the 6-fold
coordinated B-site cations. However, some A-site elements don’t
have the Shannon ionic radii available with a CN of 12. Instead of
directly deriving the ionic radii from the Shannon database, we
adapted the newly complemented Shannon ionic radii by using
the data from Ouyang’s work41. The data-driven method SISSO
extrapolated the Shannon radii to unusual oxidation states and
arbitrary CNs, allowing the easy access of 12-coordinated A-site

ions. As for the bond length, an empirical correlation sij ¼
expðd0�dij

B Þ was used to describe the relationship between the bond
length dij and the bond valence sij in the bond-valence theory,
where d0 and B were constants whose values were determined
empirically for each pair of atoms that form bonds42,43. Assuming
sij equal to the ideal valence of the atom, the quotient of the
natural valence divided by the number of the nearest oppositely
charged ions (CN), we estimated the ideal bond length dij. In our
case, atoms in the A site and B site were both bonded to oxygen
atoms. Then we could get the ideal bond length dAO and dBO. As
for the Mendeleev numbers, Villars et al. found an expression
involving the Mendeleev number to predict the formability of
compounds for any binary, ternary, or quaternary system44.
Many researchers have adopted the Mendeleev number for the
prediction of simple perovskite oxides30,33,45.

Based on the primary element properties of ionic radius, stable
oxidation state, bond length, and Mendeleev number for both
A-site and B-site elements, we could obtain the feature values of
the average rA, rB, OA, OB, dAO, dBO, MA, and MB for each
FDPOs. After that, we could calculate the values for the features
of t, τ, rB/rO(µ), rA/rO, and (OA + OB)/6 from the above
calculated average values. By comparing the ionic radii for the
A-site cations and B-site cations in each composition, we could
get rAmax, rBmax, rAmin, and rBmin. Therefore, we could quickly get
rAmax/rO, rBmax/rO, rAmin/rO, rBmin/rO, rAmax/rAmin, rBmax/rBmin.
Following the definition equations for σ2(A),σ2(B), we could
calculate their values easily from the ionic radii of multiple A-site
and B-site cations. All the values of the 21 features for the 632
perovskite and non-perovskite data used for our model training
are summarized in the Supplementary Data 1.

We evaluated the performances of the six models using the
data (632 compositions with 21 features). Table 1 provides the
average accuracy, F1 score, and their corresponding standard
deviations for the trained six different models. We can see that
the gradient boosting classifier exhibits the best accuracy and the
best F1 score among all models, which indicates the gradient
boosting classifier is the most suitable model for this classification
problem. Consequently, we chose the gradient boosting classifier
to study prediction of FDPOs further.

We have found out that the gradient boosting classifier with 21
features has demonstrated higher accuracy and F1 score during

Table 1 A summary of average accuracy, average F1 score,
and their corresponding standard deviations of six models.

Classifier Average
accuracy (±std)

Average F1 score (±std)

SVM 0.924 ± 0.017 0.855 ± 0.035
Random Forest 0.954 ± 0.025 0.916 ± 0.050
AdaBoost 0.933 ± 0.022 0.886 ± 0.039
XGBoost 0.953 ± 0.017 0.913 ± 0.035
Gradient Boosting 0.954 ± 0.018 0.921 ± 0.037
MLP 0.930 ± 0.022 0.865 ± 0.047
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the training process. However, a large number of features usually
increases the model complexity46. It is desirable to identify and
employ the most relevant features to develop a relatively simple
model to predict the FDPOs efficiently and accurately. We
employed the Pearson correlation coefficient (R), feature
importance, and univariate feature selection to select necessary
features. Figure 3 provides the Pearson correlation matrix
showing the correlation for each pair of the 21 features used in
this study. The features of rA, rA/rO, rAmin/rO, and dAO strongly
correlate. The features of rB, rB/rO, rBmin/rO, and dBO strongly
correlate. The strong linear correlations for the two groups of the
A-site cation and B-site cation-related features make it possible to
shrink the necessary features. We may only use two features to
represent the eight features for our model development.

The feature importance given by the model was adopted to
guarantee the rationality and correctness of the feature selection
overall. Table 2 indicates that the top 10 features for each fivefold
cross-validation experiment are not entirely the same. However,
the features of dAO, dBO, MA, (OA + OB)/6, τ and σ2(B) showed
up in all five experiments, indicating that these six features are the
most important ones for achieving good performance. The rAmax/
rAmin feature showed up in four experiments, while MB and rBmin/
rO features showed up in three experiments. Compared with
other features, these 9 features have a more significant influence
on the prediction results.

Furthermore, we performed univariate feature selection with
F-test to select the top-n most significant features on the whole

data set. First, we computed the ANOVA (Analysis of Variance)
F-value between features and labels to see any statistically
significant relationship between them. Then we selected features
according to the n highest F-values. Here we set n from 9 to 4
(top 9 features to top 4 features). Aiming at further down-
selecting features, we explored the performance of the gradient
boosting classifier by employing different feature combinations
among nine features, respectively.

Supplementary Table 4 showed the specific different feature
combinations among top nine features of the gradient boosting
classifier. Table 3 summarizes the performance of different
feature combination choices by evaluating their average accuracy,
average F1 score, and corresponding standard deviations. From
Table 3, we can see that the model with 5 features (dAO, dBO, MA,
(OA + OB)/6 and σ2(B)) has the highest average accuracy and
average F1 score. Based on the Pearson correlation map in Fig. 3,
the absolute Pearson correlation coefficient of any pairwise
features of these 5 features is much smaller than 0.85, indicating
no highly linear correlation among these 5 features. And the
importance of these 5 features is consistent with the previous
theoretical and experimental researches30,45,47,48. Thus, using the
gradient boosting classifier with these 5 features is reasonable and
trustworthy to predict the unknown compounds’ formability in
the target chemical space. It is noteworthy that adopting as many
features as possible would not guarantee higher validation
accuracy here49 because the presence of uncorrelated or
nonsignificant features is likely to make the prediction

Fig. 3 Pearson correlation map for 21 features based on the dataset. The number represents the linear correlation between two variables.
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performance of models degraded. It indicates that selecting high-
quality features is crucial to utilize machine learning for
predicting new material discovery.

Verification of the established machine learning method. Using
the machine learning method established from the gradient
boosting classifier, the five features, and 632 perovskite and non-
perovskite data, we predicted the perovskite structure formation
for 47 compositions. Among them, 36 were reported in the lit-
erature, and 11 were newly synthesized in this work (Supple-
mentary Table 5). Among the 36 compositions with known
crystal structures from the literature, we obtained 34 accurate
predictions. Although the verification data came from the FDPOs
for extensive applications (i.e., STCH, SOFC electrolyte, SOFC
electrode, and dual-phase perovskite materials), the established
method achieved a prediction accuracy as high as 94.4%.
Therefore, our method can predict potential FDPOs extensively
without considering the chemical space too strictly. Among the
11 new compositions, 9 were predicted to be perovskite, while
two were non-perovskite. We synthesized the powder samples
using the conventional solid-state reaction method and char-
acterized their crystal structure using XRD for all 11 composi-
tions. Supplementary Figures 1-4 provide the XRD patterns for all
11 samples of Sr-La-Ti-Fe-O, Sr-La-Cr-Mn-O, Ca-La-Cr-Mn-O,
and Ba-Ce-Co-Fe-O groups. For Sr-La-Ti-Fe-O group in Sup-
plementary Figure 1, the Miller indices of the main reflection
planes were be identified according to the diffraction files of
International Centre for Diffraction Data (ICDD) (04-021-6619).
And the presence of impurities was observed in Sr0.4La0.6Ti0.8-
Fe0.2O3 and Sr0.6La0.4Ti0.8Fe0.2O3 samples. For Sr-La-Cr-Mn-O
group in Supplementary Figure 2, Sr0.1La0.9Cr0.5Mn0.5O3 were
well assigned to ICDD standard data card (04-013-5401). It was
seen that the rest diffraction peaks of the Sr0.7La0.3Cr0.5Mn0.5O3

and Sr0.9La0.1Cr0.5Mn0.5O3 samples of the impurities exist. All
three compositions of Ca-La-Cr-Mn-O group in Supplementary
Figure 3 were assigned to ICDD standard data card (04-007-
6214). As for BaCe0.5Co0.5O3 and BaCe0.3Y0.2Fe0.3Co0.2O3,

secondary phases clearly existed except the perovskite structure in
XRD patterns of Supplementary Figure 4.

The XRD patterns indicate that 4 samples (Sr0.7La0.3Cr0.5Mn0.5O3,
Sr0.9La0.1Cr0.5Mn0.5O3, Sr0.4La0.6Ti0.8Fe0.2O3, and Sr0.6La0.4Ti0.8-
Fe0.2O3) synthesized via the solid-state methods did not form pure
perovskite. However, our model predicted that they should be able
to form a perovskite structure. Interestingly, the 2 samples of
Sr0.7La0.3Cr0.5Mn0.5O3 and Sr0.9La0.1Cr0.5Mn0.5O3 contain many Mn
and Cr, which could easily vaporize and make the solid-state
reaction synthesis difficult. The Mn and Cr loss at the high-
temperature calcination might cause the wrong structure results.

We suspected that Sr0.7La0.3Cr0.5Mn0.5O3 and Sr0.9La0.1Cr0.5
Mn0.5O3 synthesized by solid-state reaction might encounter the
Cr or Mn problem, causing non-perovskite structure and
inconsistency with the predicted result (perovskite structure). After
XRD characterization, XRD patterns in Figs. 4a and 5a exhibited
the presence of SrCrO4 phase, one common impurity for similar
compositions50, in two compositions synthesized by the solid-state
method. Besides, the XRF test results of the two samples synthesized
by the solid-state reaction method in Supplementary Table 6 and
Supplementary Table 7 showed apparent Cr loss and Mn loss (For
Sr0.7La0.3Cr0.5Mn0.5O3, the Mn loss is apparent, and for
Sr0.9La0.1Cr0.5Mn0.5O3, the Mn loss is negligible). The fitted Cr
spectra in Supplementary Figure 5 show that Cr6+ ions resulting
from SrCrO4 impurity exist in Sr0.7La0.3Cr0.5Mn0.5O3 and

Table 2 Top 10 crucial features given by the gradient boosting classifier with 5-fold cross-validation.

Feature importance Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Top 1 MA dAO dAO dAO dAO
Top 2 dBO dBO MA MA dBO
Top 3 dAO rAmax/rA_min rAmax/rA_min rAmax/rA_min σ2(A)
Top 4 τ MA dBO dBO τ
Top 5 (OA + OB)/6 τ t σ2(B) rAmax/rA_min

Top 6 MB rA τ τ rBmin/rO
Top 7 t MB σ2(B) (OA + OB)/6 (OA + OB)/6
Top 8 σ2(B) rBmin/rO (OA + OB)/6 OA MA

Top 9 rAmax/rO σ2(B) rBmin/rO MB σ2(B)
Top 10 σ2(A) (OA + OB)/6 rA/rO rBmax/rBmin rBmax/rBmin

Table 3 A summary of average accuracy, average F1 score,
and corresponding standard deviations of the gradient
boosting classifier with different feature combinations.

Feature
numbers

Average accuracy (±std) Average F1 score (±std)

9 0.953 ± 0.016 0.917 ± 0.028
8 0.956 ± 0.012 0.923 ± 0.021
7 0.957 ± 0.023 0.924 ± 0.044
6 0.952 ± 0.019 0.916 ± 0.037
5 0.959 ± 0.023 0.926 ± 0.045
4 0.943 ± 0.016 0.899 ± 0.034

Fig. 4 XRD patterns of Sr0.7La0.3Cr0.5Mn0.5O3 in different experimental
conditions. a calcination at 1350 °C for 12 hours via the solid-state method,
b calcination at 1100 °C for 16 hours via the modified Pechini method,
c calcination at 1350 °C for 12 hours via the modified Pechini method, and
d calcination at 1500 °C for 2 hours via the modified Pechini method.
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Sr0.9La0.1Cr0.5Mn0.5O3, which matched with XRD results well. XPS
peak fitting for Cr 2p peaks was determined based on published
literature51,52. Therefore, we further synthesized the compositions
of Sr0.7La0.3Cr0.5Mn0.5O3 and Sr0.9La0.1Cr0.5Mn0.5O3 using the
modified Pechini method and did XRD characterization again for
the as-synthesize powders. We also optimized the calcination
conditions to ensure the synthesis quality. Finally, as shown in
Figs. 4d and 5d, both Sr0.7La0.3Cr0.5Mn0.5O3 and
Sr0.9La0.1Cr0.5Mn0.5O3 formed phase-pure perovskite structures.
We can conclude that the prediction can even help correct the
wrong synthesis process to achieve the correct crystal structure.

As for Sr0.4La0.6Ti0.8Fe0.2O3 and Sr0.6La0.4Ti0.8Fe0.2O3, it is not
easy to synthesize Ti-containing oxides using wet chemistry
because of the strong hydrolysis effect of Ti4+ in an aqueous
solution. We have done multiple-time grinding and calcination to
improve the synthesis quality based on solid-state reaction
synthesis. However, we still did not get a phase-pure compound
as the model predicted. Therefore, we counted these compositions
as wrong predictions. We are developing new wet chemistry to
synthesize the Ti-containing FDPOs and hope to clarify the
composition in a future publication.

In summary, the machine learning prediction guided us to
improve the experimental synthesis results for some synthesis-
history-sensitive compounds. The model obtained 9 correct
predictions out of 11 new compounds. The prediction accuracy
for new compounds is 81.8%. Figure 6 shows the visualization
result of the confusion matrix for the best prediction on a total of
47 experimental data. The confusion matrix is a common way to
evaluate and visualize the performance of binary classification
problems. The confusion matrix is a table with two rows and two
columns, where rows report the true classification and columns
report the predicted classification. There are four areas in the
confusion matrix. All correct predictions where prediction labels
are the same with true labels are in the diagonal of the table (a red
area and a grey area). The accuracy of this model is 0.915 (43 true
predictions of the total 47 data points), which means excellent
reliability in predicting the formability of FDPOs.

Comparison with traditional approaches. For comparison, we
performed predictions for the 47 compositions using conven-
tional tolerance factor (t), octahedral factor (µ), and new toler-
ance factor (τ). Figure 7 provides the prediction accuracy results
for the five prediction methods. The model has a much better
prediction accuracy (91.5%) than the prediction accuracies
(76.6%, 48.9%, 48.9%, and 76.6%) of tolerance factor (t), octa-
hedral factor (µ), the feature pair (t and µ), and new tolerance
factor (τ). Furthermore, both tolerance factor and new tolerance
factor predicted that all the 47 compositions could form per-
ovskites. Therefore, the most popular conventional method could
not identify the compositions with complicated elemental com-
positions. The simple octahedral factor shows the worst predic-
tion accuracy (48.9%), consistent with a simple consideration of
only one feature. Compared with the prediction results using the
single octahedral factor or the tolerance factor, using the feature
pair does not guarantee the better prediction accuracy of the
formability of FDPOs. All the values of these features for the 47
compositions used for our model training are summarized in the
Supplementary Data 2.

Fig. 5 XRD patterns of Sr0.9La0.1Cr0.5Mn0.5O3 in different experimental
conditions. a calcination at 1350 °C for 12 hours via the solid-state method,
b calcination at 1350 °C for 12 hours via the modified Pechini method,
c calcination at 1500 °C for 2 hours via the modified Pechini method, and
d calcination at 1500 °C for 12 hours via the modified Pechini method.

Fig. 6 Confusion matrix of the gradient boosting classifier with 5 features
on 47 experimental data. The rows represent true labels, and the columns
represent the predicted labels.

Fig. 7 The comparison in accuracy between traditional methods and
machine learning prediction with five features. The feature pair refers to
using both octahedral factor and tolerance factor for the prediction.
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Conclusions
A function-confined facile machine learning method was dis-
covered to predict new fractional and multicomponent perovskite
oxides from the basic properties of metal elements and their
corresponding simple oxides using typical classification models
and a small number of experimental data. As a case study for
discovering new perovskite oxides for solar thermochemical
hydrogen production by water splitting, we obtained 632
experimental training data (516 are perovskites and 116 are non-
perovskites), selected 12 available features, and created 9 new
features. Based on high prediction accuracy (0.954), high F1 score
(0.921), and the corresponding low standard errors (0.018 and
0.037), we selected the gradient boosting classifier to predict
perovskite formation. The further verification of the derived
machine learning algorithm using 47 data not included in the
training data set (36 are from the literature, and 11 newly syn-
thesized data) showed that the prediction accuracy reached
91.5%, much higher than the prediction performance of the
conventional tolerance factor (76.6%), octahedral factor (48.9%),
and new tolerance factor (76.6%). Furthermore, the machine
learning prediction helped correct two wrong solid-state reaction
syntheses. For future research, our model also can be expanded to
discover other functional perovskite oxides.

Methods
Machine Learning
Model training. We applied models to classify input compositions into perovskites
or non-perovskites using the above-selected 21 features and 632 perovskite and
non-perovskite data. A feature vector (21 features) described each sample and
labeled it with y (1 or 0, 1: perovskites, 0: non-perovskites). We employed six
different known models in our classification work. Three models among them were
often used for prediction in the material field: SVM (support vector machine)30,53,
random forest30,53, and gradient boosting classifier30,45. The XGBoost54,
AdaBoost55, and MLP (multilayer perceptron) classifier56 were widely used models
in classification tasks and showed excellent performance. Based on the nonlinear
algorithm, SVM constructed a hyperplane with the maximum-margin having the
largest separation between the nearest training data set of two classes in high
dimensional space, guaranteeing accurate prediction results on unseen data53. The
random forest, gradient boosting, XGBoost, and AdaBoost were ensemble learning
methods used with the decision-tree algorithm. The different paths from the root
to leaf represented classification rules57. The random forest classifier got the final
prediction based on the majority voting of classification results from the decision-
tree algorithm by learning several classification rules from the data set. Gradient
boosting classifier trained the decision tree models sequentially, and new models
corrected the previous ones’ errors and improved the performance by training.
AdaBoost could learn from the weak classifiers sequentially and give feedback to
build a predictive classifier. XGBoost was an open-source library, providing an
implementation of the regularizing gradient boosting algorithm. MLP was an
artificial neural network and could model nonlinear relationships between targets
and features because of the multiple layers and nonlinear activation.

We split the entire data set into a training set and a testing set. Models only
trained by the training data are easily overfitting and overoptimistic. The testing set
helped us check how models performed on unseen examples. We used 5-fold cross-
validation to objectively estimate different models’ performance. We divided the
total data set into 5 subsets of the same size and chose one subset as the testing set,
making the remaining subsets the training set. We performed 5 iterations for every
algorithm. Over 5 iterations, the models were trained on 4 subsets and used to
predict the held-out subset.

Model evaluation. Our data classification using models resulted in four possible
cases, including true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). The commonly used metric to evaluate classification involves the
accuracy ( TPþTN

TPþTNþFPþFN) parameter. The accuracy parameter equals the number of
correctly predicted data points divided by the total number of all data points in the
data set, which is one essential criterion to evaluate the performance of classifi-
cation prediction. The model with higher accuracy has more accurate predictions
on unseen data. Since our data set includes more positive data points than negative
data points, our task is an imbalanced classification problem. Therefore, the typical
F1 score ( 2TP

2TPþFPþFN) was used to assess the imbalanced classification problem for
further evaluating our models’ performance. Since we performed the 5-fold cross-
validation over five times and got five sets of accuracy and F1 score values, we
adapted the average values to demonstrate the models’ performance.

Features selection. We employed the Pearson correlation coefficient (R), feature
importance, and univariate feature selection to select necessary features. The R with
a value ranging from −1 to +1 measures the linear correlation between two
variables. The R with a value of zero indicates that the studied two variables have
no linear correlation. The positive and negative values represent positive linear
correlation and negative linear correlation, respectively. The high absolute value of
R indicates a strong correlation between the two variables. The closer to 1 the
absolute value of R is the stronger correlation the variables have. Usually, we can
regard the two features are highly correlated when |R | > 0.8546.

The feature importance given by the model was adopted to guarantee the
rationality and correctness of the feature selection overall. The value of each feature
importance is between 0 and 1. The total sum of all feature importance equals 1.0.
The bigger the value of the feature importance is, the more essential the feature is
for the prediction.

Model validation and prediction of FDPOs. After finding the best model from the
mentioned six models and selecting the most important features out of the 21
features, we validated the performance using 47 unseen experimental data (Sup-
plementary Table 5) from recently reported literature and newly synthesized in this
work (not included in our training data set). The validation data consisted of
FDPOs used for STCH production, solid oxide fuel cell electrolytes, mixed ionic
and electronic conducting electrode materials, dual-perovskite composites, and
some non-perovskites. The selection of FDPOs with extensive applications rather
than STCH materials only is to find out the effectiveness of the established method
for extensive study of the FDPO formation. Supplementary Table 5 indicated that
the verification data includes seven materials groups (Sr-La-Mn-Al-O, Sr-La-Ti-Fe-
O, Sr-La-Cr-Mn-O, Ca-La-Cr-Mn-O, Ba-Ce-Fe-O, Ba-Ce-Co-Fe-O, and Ba-Ce-Zr-
Y-O). 36 compositions are the materials reported in the literature, and the rest 11
compositions were the newly designed and synthesized ones for discovering new
potential STCH or SOFC materials. We also compared our prediction performance
with those obtained using commonly used descriptors, the tolerance factor, the new
tolerance factor, and the octahedral factor.

Experimental section
Synthesis of the predicted FDPOs. We first synthesized all the 11 proposed com-
positions using the conventional solid-state reaction method. The stoichiometric
amounts of raw materials of carbonates and oxides calculated from the proposed
FDPO formula were weighed and mixed by ball-milling in isopropanol with 3 mm
YSZ ball grinding media for 48 h. The ball-milled slurry was dried at 90 °C for 24 h
in the oven to remove the solvent. After calcining the well-mixed powders at
1100–1500 °C for 12–48 h in stagnant air in a box furnace, we got the final powders
for structure characterization.

For the compositions synthesized by the solid-state reaction method, which
have shown opposite results to the prediction, we adapted a more powerful wet-
chemistry synthesis method of the modified Pechini method to synthesize them
again to ensure the synthesis accuracy. Using the synthesis of
Sr0.7La0.3Cr0.5Mn0.5O3 as an example, we can briefly describe the modified Pechini
synthesis process. The stoichiometric amounts of water-soluble materials such as
nitrates calculated from the proposed FDPO formula were weighed and dissolved
into distilled water. The chelating organic compounds of
ethylenediaminetetraacetic acid (Alfa Aesar 99.4%) and citric acid monohydrate
(ACROS Organics 99.5%) with a mole ratio of 1.5: 1.5: 1 for EDTA: citric acid: total
metal ions were added to the metal salt aqueous solution. Then the pH of the
obtained solution was adjusted to be ~9 by adding ammonium hydroxide or nitric
acid. After slow water vaporization at ~80–90 °C, the solution turned into a
homogeneous viscous gel. Any solid precipitation during the evaporation process
should be avoided by controlling the vaporization temperature, initial pH, and
relative amount of chelates and metal ions. The bouffant charcoal-like powders
obtained after heating the viscous gel in the oven at 150 °C for 48 h were further
calcined at 600 °C for 5 hours in stagnant air to burn out organic substances. The
final calcination at 900–1500°C for 2–16 h allows us to obtain the final powders.

Characterization. The crystal structure of as-synthesized powders was character-
ized by powder X-ray diffraction using Cu Kα radiation. The XRD patterns were
collected by Rigaku Ultima IV diffractometer at the voltage of 40 kV and current of
15 mA. The XRD patterns were recorded in the 2θ range of 15–85° with a step size
of 0.02°. XRD pattern analysis was conducted using HighScore software.

The elemental compositions for some samples were characterized by an X-ray
fluorescence (XRF) spectrometer (Thermo ARL Perform’x wavelength-dispersive
spectrometer). The powder materials are grinded in a puck mill, and they are all
mixed with cellulose binder, then pressed into a disk for analysis. The cellulose was
added in a ratio of 1.5 g of Cellulose to 12 g of sample (0.125: 1). The OXSAS
software by ThermoFisher commands the instrument to go to the correct detector
angle and counts the intensity for each element. Then the UniQuant software was
adopted to convert each intensity into a mass percent.

X-ray photoelectron spectroscopy (XPS) spectra were recorded by a PHI VersaProbe
III spectrometer using monochromatic Al Kα x-ray source (hν = 1486.7 eV) at an
accelerating voltage of 15 kV and output power of 25W. The high-resolution spectra for
Cr 2p were collected at 90 degrees with a pass energy of 69 eV, 0.125 eV step size, and a
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dwell time of 50ms. To calibrate the binding energy scale, the C 1 s level was assumed to
be 284.8 eV. Ar ion etching at 3 kV was used to characterize chemical information of
deeper position. Etch steps were 5min with the etching speed of 136.5623Åmin−1.
Peaks were fitted using Shirley baseline with the peak fitting parameters of GL(60) and a
FWHM of 1.4 eV for peaks within CasaXPS.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and its Supplementary Information files. The main data is also available
at this link (https://github.com/TheLuoFengLab/perovskite-classification). All other
relevant data are available from the corresponding authors upon reasonable request.

Code availability
All source code for the machine learning methods is available at this link (https://github.
com/TheLuoFengLab/perovskite-classification).
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