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Accelerating error correction in tomographic
reconstruction
Sajid Ali 1,4✉, Matthew Otten2,5 & Z. W. Di3

Spurred by recent advances in detector technology and X-ray optics, upgrades to scanning-

probe-based tomographic imaging have led to an exponential growth in the amount and

complexity of experimental data and have created a clear opportunity for tomographic

imaging to approach single-atom sensitivity. The improved spatial resolution, however, is

highly susceptible to systematic and random experimental errors, such as center of rotation

drifts, which may lead to imaging artifacts and prevent reliable data extraction. Here, we

present a model-based approach that simultaneously optimizes the reconstructed specimen

and sinogram alignment as a single optimization problem for tomographic reconstruction

with center of rotation error correction. Our algorithm utilizes an adaptive regularizer that is

dynamically adjusted at each alternating iteration step. Furthermore, we describe its imple-

mentation in a software package targeting high-throughput workflows for execution on

distributed-memory clusters. We demonstrate the performance of our solver on large-scale

synthetic problems and show that it is robust to a wide range of noise and experimental drifts

with near-ideal throughput.
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Tomography is an imaging technique based on combining
2D projections from multiple rotation angles to recover a
3D sample. It is a versatile technique that is used in the

context of medical imaging with x-rays where radiation doses are
kept to a minimum1,2, in (cryo) electron microscopy3–6, and in
x-ray microscopy at synchrotrons7,8, among many others.

A big challenge in achieving high-resolution images is sample/
beam position drifts (caused by experimental imperfections), which
corrupt the captured sinograms. One consequence of such sample/
beam drifts is that the center of rotation is no longer at the center of
the rotation (CoR) plane, as is assumed by standard tomographic
reconstruction methods. Moreover, these errors can be different per
projection instead of being a single offset for the entire acquisition
range. While some imaging apparatus incorporates advanced
metrology systems to correct for these errors9–12, their usage is
limited. Briefly speaking, two types of approaches account for the
per-projection center of rotation drifts when performing recon-
structions. The first type treats error correction as a preprocessing
step by aligning the projections first, followed by a standard recon-
struction. Alignment strategies include cross-correlation between
adjacent projections13, an inspection of opposite projections and
tracking the movement of reference (or marker) objects, feature-
tracking-based alignment systems14–16, and marker-free alignment
by utilizing a metric such as the center of mass17,18 or geometric
moments19. The main drawback of such two-step approaches is that
they neglect the correlation between experimental configuration and
reconstruction results and risk the accumulation and propagation of
subsequent drift across the whole experiment process.

Recent development has focused on a second approach: the
simultaneous error correction and reconstruction for more coherent
and robust performance. For example, reprojection methods20 seek
to reproject the sinogram either as part of an iterative reconstruc-
tion process21–23 or jointly alongside the reconstruction24,25. In
some cases, multiscale methods are employed that downsample the
projections and align them at the lower resolution prior to working
with the full-scale data26. Optimization-based methods seek to
minimize some cost function that accounts for the drifts and
reconstruction simultaneously, in which gradient-based methods
are often employed as the underlying solver23,27–30.

Owing to ongoing (and planned) upgrades at synchrotron light
sources to fourth-generation storage rings31,32, alongside advan-
ces in detector technology and x-ray optics, the amount of
available photon fluence is expected to grow by 2–3 orders of
magnitude. Improved resolution will reveal sample structures
with an unprecedented clarity; but the results are highly suscep-
tible to uncertainty, scale, non-stationarity, noise, and hetero-
geneity, which are fundamental impediments to progress at all
phases of the pipeline for creating knowledge from data. The
increases in data rates necessitate the need for high-throughput
software that can process the experimental data, while being
robust to experimental drifts and noise. Specifically, robust
methods and libraries are needed that deliver good error cor-
rection capability and can deal with large-scale datasets through
high-performance computing, either by increasing efficiency on a
single compute node or by harnessing multiple compute nodes. A
large number of distributed-memory parallel solvers for standard
tomographic reconstructions exist33–39; however, they lack the
capabilities of robust error correction.

In this article, we present “parallel iterative reconstruction for
tomography,” hereafter referred to as “PIRT”. While we intend to
have PIRT as a general-purpose tomographic reconstruction library
given its good scalability, we emphasize its algorithmic capability
enabled by the underlying model-based approach, enables simul-
taneous optimization of the sample reconstruction and sinogram
alignment as a single problem while leveraging L1 regularization.
The objective of PIRT is to address the need for robust error

correction while also being suitable for distributed-memory clusters
and high-performance computing, specific to parallel-beam x-ray
tomography. We begin with quantitative examinations of our sol-
ver, followed by examinations of scaling and throughput in “Results
and discussion”. We then detail our mathematical model and
present implementation details in “Methods”.

Results and discussion
Model overview. We formulate the center of rotation drifts based
on the model proposed in ref. 27 (see “Methods”). Briefly, we note
that each center of rotation drift is parameterized by a scalar
parameter (thus, the center of rotation drifts for a complete scan
is represented by a vector of these parameters). The drift at each
projection is modeled by convolving the drift-free sinogram with
a Gaussian function whose parameters are determined by the
magnitude of the drift. One way to find the optimal values for
both the drift parameter and sample parameter, as proposed in
ref. 27, is to combine the drifts and sample into a single unknown
parameter set and optimize for both simultaneously; we refer to
this as “joint”. Alternatively, we propose to perform the optimi-
zation following an alternating fashion between the drifts and the
sample. We use a bound-constrained quasi-Newton solver with
line search as the underlying solver for the corresponding opti-
mization problem, where the only constraint we employ is the
non-negativity on the sample as a natural physics-aware con-
straint. We run the optimization solver for each subproblem
(drifts and sample) for a fixed number of iterations. Our proposed
PIRT approach is outlined in Algorithm 1.

Algorithm 1. Alternating tomography solver

We use XDesign40 to generate phantoms of varying sizes and
illustrate them alongside the results of our computational
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experiments. We simulate sinograms with the center of rotation
drifts following a normal distribution, where the percentage of
drifts generated is with respect to the sample domain. The
projection angles for all cases are uniformly generated between 1
and 2π.

We add varying amounts of Gaussian noise to the generated
sinograms to test the robustness of our solver to the presence of
noise. The Gaussian noise generated is centered on 0 with the
standard deviation proportional to the highest beam intensity in
the generated sinogram. Although photon shot noise present at
detectors is more accurately described by a Poisson distribution,
given the large photon count in hard x-ray sources, it can be well
approximated by a Gaussian distribution. The added negative
noise may cause nonphysical negative values in the sinogram as
measured intensity by the detector; therefore, during the random
drawing process, we keep only the positive intensities.

The projection approximation41 states that diffraction within
the sample can be neglected, thereby allowing the projections
from each 2D slice of a 3D sample to be completely independent
of other slices. We assume its validity for this study. First, we
extensively characterize the solvers using 2D images before
moving on to experiments on throughput for solving 3D samples.

Ill-posedness. In theory, the number of projection angles Nθ

required to fill the Fourier space of projection data is given by the
Crowther criterion42, which sets the required number for a square
sample with N2 pixels as

NCrowther ¼
π

2
N: ð1Þ

In general, however, it is impossible to satisfy the Crowther
criterion, that is, Nθ <NCrowther, which makes that problem an ill-
posed inverse problem; in other words, the given data is not
sufficient for a unique reconstruction of the sample. Conse-
quently, the corresponding optimization problem has nonunique
local minima. In addition, the added drift parameters further
complicate and expand the degree of freedom and result in an
even more ill-posed problem. For example, there exists more than
one set of drifts that give rise to the same sinogram from a given
phantom depending on where the center of the field of view is.
Therefore, an error metric that is invariant to translation is
necessary. We use the normalized translation-invariant root
mean square error (hereafter referred to as nTIE)43, as
implemented in the scikit-image package44, as our error
metric for all results in this article. Since the dimensions of the
reference phantom and the reconstructed object are fixed even
when the number of projection angles change, we always report
the nTIE of the reconstructed object measured against the
reference phantom unless otherwise noted. One could choose to
measure the nTIE of the corrected sinogram against a drift-free
and noise-free reference sinogram, but when the number of
projection angles changes, the dimensions of the reference
sinogram are also affected, thereby preventing the use of a single
reference sinogram.

A critical question for the proposed alternating mode concerns
the number of optimization iterations for each subproblem (drifts
and sample). Let us denote the number of inner iterations for the
drifts and sample solver by nalt-drifts-its and nalt-sample-its,
respectively. Let nalt-outer-its denote the total number of outer
iterations; that is, one outer iteration consists of nalt-drifts-its
iterations of drifts optimization and nalt-sample-its iterations of
sample optimization. We can expect that performing too many
iterations for either the drifts or the sample can cause the
optimization to become stuck in an undesired local minimum. To
investigate the role of the subproblem iteration numbers and
deduce the (approximately) optimal set of parameters for the

alternating mode of reconstruction, we perform a parameter
sweep over all possible combinations of optimization iterations
for the solver and drifts for a given number of total outer
iterations, as shown in Fig. 1a. As a result, we choose the final
parameters for the alternating mode of the reconstruction as
nalt-drifts-its= 2 and nalt-sample-its= 5 throughout the rest of the
tests. Increasing the number of outer iterations for the alternating
method does not necessarily lead to a better solution even as the
cost function decreases. The reason is partially due to the ill-
posed nature of tomography but also due to the well-known
“discrepancy principle” that states that the solution from an
inverse problem is always bounded by the noise present in data45.

We avoid getting stuck in a local minimum by performing
warm start of the optimization procedure where we checkpoint
the corrected sinogram and restart the optimization process with
the checkpointed sinogram instead of the original sinogram. To
be more specific, our warm start is implemented in the way that
after each complete alternating solve procedure, the current
corrected sinogram will be used as the input experimental data
and restart the alternating solve using the default initial guess for
the drifts and sample. As seen in Fig. 2, both the joint and
alternating solvers get to a better solution with an increasing
number of warm starts. To further stabilize the performance and
account for the discrepancy principle, we introduce an adaptive
L1 regularizer for the alternating solver, where the regularizer
parameter is dynamically adjusted along each warm start.

We first test the validity of our algorithm by comparing the
results using a null initialization with the exact drifts (that were
used to generate the sinogram) as initial guesses. For this test, we
use a 10242 softwood sample generated by XDesign40, and we
generate the sinogram while inducing 10% center of rotation
drifts, with no added noise. The results of this experiment are
illustrated in Fig. 3. With a null initialization, we see that both of
the solvers are able to recover the sample; however, the
alternating solver outperforms the joint solver by recovering a
normalized translation-invariant RMS error of 0.190 as compared
with 0.572 from the joint solver. As a confidence check, when the
drifts are initialized by the drifts that were used to generate the
sinogram (hereafter referred to as “exact drifts”), we see that both
solvers are able to incorporate this knowledge and remain within
the neighborhood of this optimal solution with comparable
results.

The next-generation light sources will improve the spatial
resolution to reveal sample structures with an unprecedented
clarity; however, they are also highly susceptible to systematic and
random error. Next, we investigate the performance of the
methods for various levels of ill-posedness, namely, with a
reduced number of projection angles at various noise levels. We
use the same softwood phantom as before but generate sinograms
by varying the number of projection angles at three different
noise levels, while inducing 10% center of rotation drifts. The
results of this experiment are illustrated in Fig. 4. As expected, the
solution quality improves as we increase the number of projection
angles (as indicated by the nTIE metric). Moreover, with an
extremely limited number of projection angles, both the joint and
alternating solvers are able to outperform the standard recon-
struction without error correction, while the alternating solver
consistently performs better than the joint solver.

Our next experiment involves studying the effect of noise on
the reconstruction quality. Given the same 10242 softwood
sample with a fixed 200 projection angles, we add varying
amounts of the center of rotation drifts and added Gaussian noise
to its ideal sinogram. The Gaussian noise is generated as a
distribution centered on 0 and width given as a percentage of the
maximum value in the sinogram; any negative values that arise
after the addition of the noise are clipped to ensure non-
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negativity of the resulting sinogram. The results from this
experiment are shown in Fig. 5. We clearly see that the two error-
correcting modes of reconstruction perform far better than the
non-error-correcting mode, with the alternating mode of
reconstruction being more robust to induced drifts and added
noise than is the joint mode of reconstruction.

Throughput results. Another fundamental impediment to
today’s tomographic reconstruction is its increasing data collec-
tion rate, which puts a tremendous computational burden on data
processing. We first demonstrate the scalability of PIRT when
solving a single large 2D slice. We again use the XDesign40

package to generate phantoms of varying sizes to reconstruct via
PIRT. For the strong-scaling study, we set the sample size to be
28962 and the number of projection angles to be 800. For the
weak-scaling study, we set the sample size and number of angles
per node to be 10242 and 100, respectively. The naive data dis-
tribution over MPI ranks, described in the section “Distributed-
memory parallel implementation”, causes poor scalability. While
we could gain a limited amount of scalability by reducing the load
imbalance (whereby each MPI rank gets approximately the same
amount of work assigned to it for the sparse matrix-vector

multiplication routines that dominate the overall runtime), we do
not explore the space of tomography-specific decomposition
schemes36,46,47, since one of our goals is to have a flexible error-
correcting capability. However, instead of focusing on achieving
good scalability for solving a single 2D slice, we instead focus on
achieving better throughput for solving a set of 2D slices that
make up a 3D sample.

Owing to the poor scalability of the 2D solver, we avoid solving
for a 3D sample as a series of sequential 2D solves, each of which
is executed in parallel (i.e., where all the nodes are used to solve
for one 2D slice at a given time and the set of 2D slices are solved
sequentially). Instead, we propose a two-level hierarchical
parallelism in our solver, whereby we split the MPI commu-
nicator into smaller MPI subcommunicators. We then launch
independent instances of the solver on each “task” subcommu-
nicator and execute all instances concurrently. This approach
limits each solver instance to a regime of high performance (by
not running it in its strong-scaling regime) and gives us high
overall throughput, as measured by the number of slices solved
per unit of time, illustrated in Fig. 6. Compared with the naive
concurrent parallelism afforded by launching independent jobs
(via, say, SLURM’s job array), our approach creates the

Fig. 1 Reconstruction comparison of our proposed method PIRT and the standard existing approaches. a Solution quality (as measured by the
normalized, translation-invariant root mean square error (nTIE)43) of our proposed alternating reconstruction mode as a function of iteration budget
distribution. The color bar alongside the figure indicates the color scale of the nTIE metric (lower is better). b The ground truth phantom generated by
XDesign of size 1024 × 1024. All reconstructed samples use the same color scale. c Illustration of the true and reconstructed center of rotation drifts
returned by PIRT, joint, and TomoPy, respectively. d Reconstruction without error correction. e, i Reconstruction by the reprojection method implemented
in TomoPy24, yielding an nTIE of 0.79 and its corresponding corrected sinogram. h Simulated sinogram with 200 projections (well below the Crowther
criterion), 10% CoR drifts, and 10% added Gaussian noise. All sinograms use the same color scale. f, j Reconstruction by the joint method proposed in
refs. 27,28 yielding an nTIE of 0.81 and its corrected sinogram. g, k Reconstruction by our proposed PIRT yielding an nTIE of 0.77 and its corresponding
corrected sinogram. The fact that seems very different sets of drifts all lead to reasonable reconstructions implies that the solution to the reconstruction
with error correction is not unique. This test was conducted on a dual-socket system with Intel Xeon Silver 4110 CPUs.
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Fig. 2 Performance of warm start and regularization. a The input sinogram, generated by using 200 projection angles and with 10% drifts and 10% added
noise. b The ground truth phantom generated by XDesign of size 1024 × 1024. All reconstructed samples use the same color scale. c–e The result (as
indicated by the nTIE metric) of each variation of the PIRTmethod for varying amounts of added noise, as a function of runtime. f–h The results from each
variation of the PIRT method after a runtime of 1,000 seconds (as indicated by the dotted gray line on the corresponding plot of error metric) for 10%
added noise, where the no-warm-start method yields an nTIE of 0.861, the warm start method yields an nTIE of 0.675, and the regularized warm start
method yields an nTIE of 0.480.

Fig. 3 Sensitivity of PIRT to different initial guesses. Comparing the reconstruction qualities between a null initialization and exact drifts as initialization.
Compared with the joint solver, PIRT is much more robust to different initial guess qualities and is able to produce good reconstruction even with an initial
guess far from the true solution. All the object images use the same color scale.
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tomography projection matrix once per solver instance and reads
the projection angles only once (for the entire job).

Conclusions. We propose an algorithm for error-correcting
tomography, namely, the regularized alternating solver with
warm starts, which outperforms the existing drift correction
methods including the joint solver and the reprojection approach
(as illustrated in Fig. 1). We further improve the scalability of the
proposed algorithm by implementing a distributed-memory

parallel solver PIRT using the PETSc/TAO framework48–51.
PIRT’s capability to execute multiple instances concurrently in
parallel allows for high-throughput, error-correcting reconstruc-
tion of very large datasets as expected from the imminent
upgrades to synchrotron light sources.

Methods
Mathematical model. The Radon transform52,53 allows one to transform an image
from real space to “sinogram” space. Its action upon a function, f : R2 ! R, is

Fig. 4 Sensitivity of different methods to the amount of available data (in terms of the number of projection angles). While for all the methods the
solution quality improves as the number of projection angles increases, the error correction feature provided by the joint solver and by PIRT improves the
reconstruction quality dramatically. Moreover, PIRT outperforms the joint solver even further, especially for the severely ill-posed cases with limited
angles.

Fig. 5 Performance of the three modes of reconstruction evaluated by the nTIE metric as a function of the center of rotation drifts and noise. The
alternating mode of reconstruction had an adaptive regularizer term as described in Eq. (11). The joint mode of reconstruction had a fixed number of warm-
starts (=15). Note that the plots have been generated by smoothing over 25 data points (five values of noise and five values of CoR drifts were used).

Fig. 6 Strong and weak scaling results for reconstructing a single slice and throughput for reconstructing a batch of slices. a Strong-scaling results for
solving a single 2D slice of dimension 28962 and 800 projections over a varying number of nodes using the regularized alternating solver, with warm
starts. a Weak-scaling results for solving a single 2D slice, with sample size and projection angles per node set to 10242 and 100, respectively, using the
regularized alternating solver with warm starts. The naive distribution of data over MPI ranks hinders scalability. b Throughput for the regularized
alternating solver, with warm starts. With two-level hierarchical MPI parallelism, PIRT achieves high throughput. These experiments were conducted on
the Bebop cluster at the Argonne Laboratory Computing Resource Center60, where each node contains a dual-socket Intel Broadwell Xeon, which are
connected together by an Intel OmniPath fabric interconnect.
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given by

Rf ðτ; θÞ ¼
Z 1

�1

Z 1

�1
f ðx; yÞ δðτ � x cosðθÞ � y sinðθÞÞdxdy; ð2Þ

where δ is the Dirac delta function, the (x, y) coordinates represent the real space,
and the (τ, θ) coordinates represent the sinogram space, with τ referring to the
position along the detector and θ referring to the projection angle.

Denote the center of rotation for the projection angle θ as ðx�θ ; y�θ Þ. The
corresponding projection is given by

Rf ðτ; θ; x�θ ; y�θ Þ

¼
Z 1

�1

Z 1

�1
f ðx; yÞδðτ � Pθ � x cosðθÞ � y sinðθÞÞdxdy; ð3Þ

where

Pθ ¼ x�θ 1� cosðθÞð Þ þ y�θ sinðθÞ: ð4Þ
Therefore, we establish the relationship between the true projection (with COR
ðx�θ ; y�θ Þ) and the theoretical projection (with COR (0, 0)) as

Rf ðτ; θ; 0; 0Þ ¼ Rf ðτ � Pθ ; θ; x
�
θ ; y

�
θ Þ: ð5Þ

In practice, because of the nature of the physical experiment, we discretize the
space (containing the compact sample) being imaged into N ×N pixels and
vectorize it into an array V. Let Wv be the value of the sample property we intend
to recover on the pixel v 2 V. Then we have W ¼ fWv : v 2 Vg denoting the
discretized image. Given parameters τ and θ, we calculate a discrete Radon
transform of W via

Rτ;θðWÞ ¼ ∑
v2V

Lτ;θv Wv ; ð6Þ

where Lτ;θv denotes the proportional amount of contribution from pixel v to the
corresponding projection, which is approximated by the length of the intersection
of the beam described by τ and θ with the pixel v.

One can explicitly recover the experimental configuration (e.g., sample and
scanning position) to address the misalignment, which can be embedded in the
forward Radon transform operator. Doing so, however, is computationally
expensive given the iterative construction of individual Lτ;θv with the dependency
on the unknown experiment parameters. Instead, we adapt the numerical approach
proposed in ref. 27, which seeks the optimal drifting parameters to translate the
misaligned projection (i.e., with drift error) to drift-free projection in order to

optimally match the nominal L ¼ ½Lτ;θv � 2 RNθNτ ´N
2

. Let D ¼ ½Dθ � 2 RNθ ´Nτ be
the misaligned (i.e., observed) sinogram, and eD ¼ ½eDθ � 2 RNθ ´Nτ be the drift-free
sinogram. For each angle θ, we approximate eDθ by convolving Dθ with a Pθ-mean
Gaussian function:

eDθ ¼ Dθ �
1

σ
ffiffiffiffiffi
2π

p exp
�ðτ � PθÞ2

2σ2

� �� �
; ð7Þ

where * denotes convolution and σ determines the amount of smoothing
introduced by the Gaussian to Dθ. In practice, we choose σ= 2.0/2.355 ≈ 0.84,
where the full width at half maximum (FWHM) of the Gaussian is 1 unit of the
beam width (2.355 is the FWHM of the standard Gaussian), so that smoothing
artifacts are smaller than the actual beam width. Therefore, we have the final
optimization problem to recover both P ¼ ½Pθ �Nθ

θ¼1 and W:

min
W ≥ 0;P

ϕðW;PÞ ¼ lðW;PÞ þ λRðWÞ; ð8Þ

where lðW;PÞ ¼ 1
2 LW � gðD;PÞ
�� ��2 is the misfit term, RðWÞ is a regularization

term to incorporate prior knowledge on W, and λ is the regularization weight. We
can analytically compute the gradient of l as

∇lðW;PÞ ¼ LT ;∇PgðD;PÞ� 	T ðLW � gðD;PÞÞ; ð9Þ
where

∇Pg ¼ Dθ;: �
1

σ
ffiffiffiffiffi
2π

p exp
� τ � Pθ


 �2
2σ2

 ! !
� τ � Pθ

σ2

" #Nθ

θ¼1

: ð10Þ

L1 regularization is known to promote sparsity in inverse problems54, which we
adapt in this work as RðWÞ. Having a regularizer weight that is too large prevents
the solver from obtaining the optimum solution, and having a regularizer weight
that is too small fails to prevent the instability we observe. Thus, we choose an
adaptive L1 regularizer where the weight of the regularizer decreases as the number
of warm starts increases55. With the regularizer we see that the solution quality is
stabilized and that, except for the noise-free case, the solution quality is superior to
the nonregularized version. Given that the noise-free case is not of practical
importance, henceforth we use the adaptive regularizer for the alternating solver.

We thus have

λ ¼ λ0 � 1� γ
nwarm�start�idx

ntotal�warm�starts

� �
; ð11Þ

where λ is the regularization weight for the current warm start, λ0 is the initial

regularization weight, γ represents the rate of decrease, and nwarm-start-idx/ntotal-warm-starts

refer to the index of the current cycle and total number of warm starts, respectively. In
this study, we choose λ0= 5 × 10−3 and γ= 10−2 for the case of ntotal-warm-starts= 15.

Optimization. Given the analytical derivatives, we employ a gradient-based opti-
mization solver and focus on a quasi-Newton method to efficiently exploit the
curvature information for robust convergence. We observe that the overall
unknown parameters ½P;W� in Eq. (8) present a partial separability property, that
is, the property that the Jacobian exhibits a structured sparsity pattern or,
equivalently, a sparse Hessian. It was shown in ref. 56 that a quasi-Newton method
without a specific treatment of the partially separable structure tends to poorly
approximate the full Hessian and causes slow and inefficient convergence.
Therefore, in contrast to joint minimization developed in ref. 27, we propose to
optimize P and W separately and perform their update in an alternating fashion.

Distributed-memory parallel implementation. We implement PIRT using the
PETSc/TAO framework48–51, which provides the tools for developing large-scale
applications using distributed-memory parallelism (via the use of the Message
Passing Interface (MPI), as well as the use of graphical processing units via a range
of frameworks). The Toolkit for Advanced Optimization (TAO)51 builds on the
PETSc data structures and provides distributed-memory optimization routines. In
addition to PETSc/TAO, we use the HDF5 library57 to enable parallel file I/O (via
its PETSc interface), Boost geometry58 for intersection routines needed to generate
the discretized Radon transform, and FFTW59 for Fourier space convolutions.

We distribute the experimental data such that each MPI rank is assigned a
set of projections from contiguous projection indices. This keeps the Fourier
transforms local; that is, all the inputs for each transform are local to the MPI
rank, thereby simplifying the process of convolving the data with a Gaussian
kernel to account for the center of rotation drifts (as described by Eq. (7)). A
simple formula that tries to keep the number of local projection angles assigned to
different MPI ranks the same is used to determine the distribution of projection
angles over MPI ranks.

To execute multiple reconstructions concurrently, PIRT uses PETSc
subcommunicators, which are based on MPI subcommunicators but include some
utilities to simplify usage. The global MPI communicator is split into task
subcommunicators, and each task subcommunicator works on one tomography
slice at any given time. In order to manage the distribution of slices over task
subcommunicators (in other words to decide which task subcommunicator works
on which slice at any given time), an organizer subcommunicator is also created.
Each task subcommunicator is given a unique identifier: the highest MPI rank in
the global MPI communicator of all the constituent ranks.

The organizer subcommunicator is created by combining all MPI ranks whose
rank in the task subcommunicator is 0 (though its rank on global rank may not be
0), and a PETSc index set is then defined on this subcommunicator. The indices
that are assigned to each rank (on this organizer subcommunicator) are taken to be
the indices (or slice indices) that the associated task subcommunicator
reconstructs.

Data availability
The data that support the findings of this study are available from the corresponding
author on request.
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