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Algorithmic design of origami mechanisms and
tessellations
Andreas Walker1 & Tino Stankovic 1✉

Origami, the ancient art of paper folding, embodies techniques for transforming a flat sheet of

paper into shapes of arbitrary complexity. Although this makes origami a conceptually

attractive source of inspiration when designing foldable structures and reconfigurable

metamaterials for multiple functionalities, their designs are still based on a set of well-studied

patterns leaving the full potential of origami inaccessible for design practitioners and

researchers. Here, we present a generalized approach for the algorithmic design of rigidly-

foldable origami structures exhibiting a single kinematic degree of freedom. We build on

generalized conditions for rigid foldability of degree-n vertices to design origami patterns of

arbitrary size and complexity. The versatility of the approach is demonstrated by its capability

to not only generate, analyze and optimize regular origami patterns, but also generate and

analyze kirigami, generic three-dimensional panel-hinge assemblages and their tessellations.

Due to its versatility, the approach provides an inexhaustible source of foldable patterns to

inspire the design of metamaterials for a wide range of applications.
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The properties of mechanical metamaterials strongly depend
on the spatial arrangement of their constituent base
materials. These properties can be controlled by changing

the topology and geometry of the unit cell resulting in the pur-
poseful design of cellular structures with advanced macroscopic
mechanical and physical properties1–3. An emerging direction to
design mechanical metamaterials for new functionalities and
complex behavior is in the application of origami. The special
property of origami to fold into almost any shape renders their
application in the design of metamaterials a conceptually pro-
mising direction in which advanced mechanical and physical
properties can be configured based on the specific geometries a
structure exhibits during the folding motion. Possible applications
range across many scientific and engineering domains, involving
metamaterials with negative Poisson’s ratios4,5, metamaterials
with bistable and self-locking properties5–8, stacked9–11 and
multistable metamaterial sheets8,12, reconfigurable prismatic
metamaterials13,14 and origami-inspired tube assemblages15,16.
While origami provided essential principles to realize these
applications, the complex relations between crease pattern geo-
metry and folding kinematics make the intuitive design of crease
patterns difficult and confined to a set of well-studied patterns17.
In response, literature reports on a series of efforts to develop
computational approaches to ease the design of crease patterns.
Despite their successes, these approaches either solely address
shape matching without guaranteeing rigid foldability18 or target
artistic origami19, are limited to a set of well-studied patterns and
vertex degrees20–22, or incur considerable computational costs23.
Recent publications attempt to make the computational design
process more efficient and intuitive by subsequentially extending
a crease pattern with primitives, but are limited to quadrilateral
patterns24 and discrete sector angles25 leaving most origami
patterns inaccessible for possible applications in the design of
metamaterials.

Here, to enable design practitioners and researchers alike to
explore the potential of origami for the design of metamaterials
without restrictions to facet or vertex types, we present a com-
putational approach for the design of origami mechanisms and
tessellations of arbitrary size and complexity. We construct ori-
gami mechanisms incrementally and present a generalized
approach to algorithmically design rigidly foldable origami
structures with a single kinematic degree of freedom. Compared
with existing methods20–25, the approach offers significantly
greater versatility in constructing origami structures, thus pro-
viding a universal tool for the discovery and analysis of rigidly
foldable structures. To achieve this, we build on the Principle of
Three Units26 (PTU), which defines generalized conditions for
rigid foldability of degree-n vertices. Since the PTU also provides
a simple rule how to generate rigidly foldable crease patterns, it
was successfully applied to generate novel origami patterns using
a graph-based representation and rule-based graph rewriting
system27. Here, we expand that approach to quadrilateral facets,
generic three-dimensional panel-hinge assemblages, and their
tessellations, while significantly improving the algorithmic cap-
abilities. To allow the algorithmic design of origami structures we
introduce four algorithmic operations, involving expansion,
quadrilateral-closing, translating, mirroring, and gluing. The
operations are intercompatible and are used here to define the
more complicated layer adding, extruding, and tessellation pro-
cedures, which are then applied to expediently generate various
origami structures of considerable complexity.

Results and discussion
Principle of Three Units. To introduce the PTU26, we consider
an origami vertex of degree 4, as shown in Fig. 1a, where all sector

angles α and the dihedral angle ρ1 are known and the remaining
dihedral angles ρ2–4 are to be calculated. We start by combining
the sectors between creases with unknown dihedral angles,
resulting in three “units” (marked in blue in Fig. 1a) whose unit
angles U1–3 are directly calculated following the procedure in
Supplementary Note 1. Then, by applying the spherical law of
cosines in the spherical triangle spanned by U1–3 we obtain the
angles θ1–3 based on which the remaining dihedral angles are
calculated. The procedure of dividing a vertex into three units to
determine unknown dihedral angles can be applied to any vertex
of degree n ≥ 4 where n− 3 dihedral angles are known. Fur-
thermore, the resulting dihedral angles can be used to calculate
further dihedral angles at other vertices. Based on these
observations26, the kinematics of a crease pattern are obtained by
starting from a single crease with known dihedral angle and then
iterating, applying the PTU wherever possible, until the kine-
matics of the whole pattern is determined and all vertices are
evaluated. We illustrate the procedure on an example (Fig. 1b) in
which each edge in a directed acyclic graph represents a crease
line and proscribes the kinematic dependencies between vertices.
By starting at the source vertex with known output dihedral angle,
the direct successor of the source vertex can be evaluated since all
of its sector angles and all but three dihedral angles are known.
The evaluation process proceeds for the remaining vertices under
the requirement that the kinematic dependencies are acyclic such
that the kinematics of a vertex are calculated directly, once all of
its direct predecessor vertices have been evaluated. The process
ends when all dihedral angles are known and the boundary ver-
tices (the three vertices without outputs in Fig. 1b) are evaluated.
The representation of crease patterns as directed acyclic graphs
that we refer to as crease pattern graphs is fundamental to our
work and is discussed in Supplementary Notes 1 and 2 in more
detail. Based on the graph in Fig. 1b, we construct the crease
pattern faces (Fig. 1c), as well as calculate all vertex positions in
the folded configuration (Fig. 1d). Obtaining the folding kine-
matics using the evaluation procedure is computationally inex-
pensive as the cost is only linear in the number of vertices.
Moreover, the computational cost is independent of the folding
state and compared with methods that involve solving linearized
systems28 the dependence on solver convergence is eliminated as
the exact solution is found directly.

We note that it is not required to provide a valid mountain-
valley assignment to the creases beforehand. Instead, for each
internal vertex, the PTU gives two admissible combinations of
dihedral angles of its output edges, which can be chosen from26.
Therefore, each internal vertex doubles the number of available
kinematic paths or possibilities to fold the unfolded origami.
Once folding is initiated along a kinematic path, the structure has
exactly one kinematic degree of freedom. This is illustrated in
Fig. 1e and Supplementary Movie 1 (which also contains the
folding of all patterns presented in this work) where the pattern
from the example in Fig. 1b with three internal vertices is folded
along the remaining 23− 1= 7 kinematic paths. In general, the
number of kinematic paths of a pattern with n interior vertices
has an upper bound of 2n, and can be calculated as explained in
Supplementary Note 2.5.

A generic procedure corresponding to all aspects of our approach
is shown in Fig. 1f. The design of origami starts with an initial graph,
which is a single undirected edge representing a simple fold, and all
necessary design-related information. Next, any of the four
algorithmic operations or procedures that are discussed in the
remainder of this work are applied to incrementally generate origami
structures. Afterwards, the faces are constructed and the resulting
kinematics based is obtained using the PTU. The design is evaluated
according to the design requirements or an objective function and to
provide guidance for the next iteration step. The evaluation
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according to the design requirements, as well the guidance for the
next iteration step, can be performed manually or as a part of an
automated optimization-based loop, both of which are exemplified
in this work.

A more complex pattern containing 392 internal vertices in
which vertices of degrees 4, 5, and 6 are involved is shown in
Fig. 1g. The pattern is designed manually starting from a single
directed edge. Then, whenever a vertex has no outputs, it is
expanded with three outputs. These can connect either to an
existing or to a new vertex. We refer to such a step as expansion
operation. As locations of vertices affect sector angles and edge
lengths, they are used to adjust the folding kinematics until the
desired behavior of the pattern is obtained. The design is finalized
by defining faces between the edges (for further details see
Supplementary Note 2.6).

Optimization and automated generation of crease patterns.
However, the relations between the locations of vertices and the
resulting folding kinematics of the origami are nontrivial, making
the manual process used to design the pattern in Fig. 1g tedious.
This renders optimization23 an attractive approach to find the
required vertex locations and the information-rich graph-based
representation can be used to make the optimization efficient if
only limited regions of a pattern are considered (see Supple-
mentary Note 3). We show this in Fig. 2a where the vertex
marked in blue (“mobile vertex”) is to be moved such that the
vertex marked with a circle (“target vertex”) reaches a predefined
point in the folded configuration. When the mobile vertex is
moved, the sector angle configurations of its neighbors are
changed. Accordingly, only its immediate predecessors and all of
their successors are affected by that movement, Conversely, only

Fig. 1 Using the Principle of Three Units (PTU) for analyzing and creating origami crease patterns. a Notational convention for angles. Dihedral angles ρ
are positive for valley folds and negative for mountain folds. b Sample crease pattern graph with three interior vertices, c Corresponding crease pattern,
d Unfolded and folded configuration of the crease pattern. e Folded configurations of the same crease pattern as in Fig. 1b–d folded along different
kinematic paths. f Generic design procedure based on the proposed algorithmic approach. g Sample crease pattern graph with 392 interior vertices and
folded configuration of the corresponding crease pattern. The graph also contains auxiliary vertices which connect boundary vertices to form boundary
faces (leading to boundary vertices having two outputs). Auxiliary vertices only control the shape of the boundary faces and have no impact on the folding
kinematics (for further details see Supplementary Note 1).
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the predecessors of a vertex can influence its position. Thus, only
the vertices marked in green need to be reevaluated to obtain the
new position of the target vertex after the mobile vertex is moved.
Figure 2b shows an example of crease pattern optimization in
which the target vertex needs to be located in the desired position
after folding. Figure 2c shows another example of crease pattern
optimization in which the 317 unit cells are optimized subse-
quently to match the “elephant curve”29 (see Supplementary
Note 3.4). By extending the optimization approach, we also
automatically generate patterns that fulfill predefined tasks (see
Supplementary Note 4). Adding three outgoing creases to a
boundary vertex or moving it along its incoming crease (if there is
exactly one) does not affect other vertices (Fig. 2d). Such opera-
tions are repeatedly applied to automatically design the pattern
shown in Fig. 2e to approximate the curve of a seam on a tennis
ball. The pattern is based on 38 points sampled from a curve
representing such a shape (see Supplementary Note 4.7).

Quadrilateral patterns. The set of reachable patterns can be
further extended by considering quadrilateral facets. Considering,
for example, the general case shown in Fig. 3a, the two collinear
edges marked with ρ1 and ρ2 do not necessarily have an identical
dihedral angle for arbitrary dihedral angles ρin. However, if
Kawasaki’s condition holds at all vertices, the sector angle α can
be calculated such that the dihedral angles ρ1 and ρ2 are identical
for any ρin30. In that case, the face to the right of the edge marked
with ρ1 always coincides with the face to the left of the edge
marked with ρ2 allowing to close the quadrilateral and arbitrarily
choose the closing edge such that it is an input to vertex A. We
refer to such an operation (Fig. 3b) as quadrilateral-closing
operation (see Supplementary Note 5). To be able to apply the

operation, Kawasaki’s condition must be fulfilled at all vertices
and accordingly, no sector angles may be changed after the
application.

To build more complex patterns using the quadrilateral-closing
operation we define a layer-adding procedure, an application of
which is illustrated in Fig. 3c. The procedure initiates by first
defining a seed layer, which is a strip-like crease pattern graph in
which each interior vertex has one successor on either side of the
strip and one successor that is an interior vertex. Next, we expand
the first boundary vertex on either side (marked in black) and
apply the quadrilateral-closing rule repeatedly to add another
layer. By repeatedly using the layer-adding procedure, we obtain
crease pattern graphs representing a quadrilateral pattern. By
choosing a suitable seed layer and expansion parameters for the
first top vertex (black in Fig. 3c), we build patterns such as those
shown in Fig. 3d–f and as 3D printed prototypes in Supplemen-
tary Figs. 1–3, respectively. Although the layer-adding procedure
is similar to existing methods24,25,30, it is not restricted to discrete
sector angles and guarantees flat foldability. Furthermore, the
procedure is not restricted by an underlying grid but is versatile as
vertices can be added or removed between adding the layers. The
layers can also vary in length.

Based on the quadrilateral-closing operation, we formulate the
extruding procedure to approximate simple surfaces. As discussed in
Supplementary Note 5, origami strips whose folded shape approaches
a two-dimensional piecewise linear curve can be directly obtained
from the geometry of that curve. By using such a strip as seed layer
and repeatedly applying the layer-adding procedure, a quadrilateral
mesh with parallel layers as shown in Fig. 3h is obtained. If the layer
heights are identical, the folded configuration of such a pattern
approximates an extrusion surface of the original piecewise linear

Fig. 2 Optimization and automated generation of crease patterns. a Optimization domain definition in terms of vertices and their dependencies. b Crease
pattern graph and folded configuration of a simple origami before and after optimization. The goal of the optimization problem is to place the mobile
vertices such that the target vertex reaches the target point in the folded configuration. c Pattern that was optimized sequentially to match the shape of an
elephant in its folded configuration. Crease pattern graph defined in terms of unit cells before (grey) and after (black) optimization. d Sample crease
pattern graph with folded configuration before and after expansion. The goal of the expansion is to reach the point marked in red. e Crease pattern graph
and folded configuration of corresponding crease pattern that was subsequently extended to approach the shape of the seam on a tennis ball in the folded
configuration. The crease pattern graph is shown using the vertex locations in the deformed configuration (the graph is shown as seen from the top view).
Auxiliary vertices are shown in this graph.
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curve. If, however, the layer heights vary, the cross-sectional shape
can be controlled with a continuous variable throughout the
extrusion, as shown in Fig. 3i and Supplementary Note 5.6.

Tessellations and combinations of patterns. Next, we present
operations that enable the generation and analysis of kirigami
patterns and three-dimensional structures. We define the mir-
roring operation (Fig. 4a) that mirrors a part of or a complete
origami about a plane defined by three vertices. The operation
results in an origami structure where the original and the mir-
rored origamis are connected at three or more vertices and the
property of having a single kinematic degree of freedom is
maintained. Similarly, we define the translating operation
(Fig. 4b) in which an origami is copied by a translation vector
between two vertices and connected to the original origami. This
operation is only allowed if the two origamis are connected at
three or more vertices. An example of a structure reachable with
this operation is shown in Fig. 4e. To preserve the rigid foldability

of the resulting origami, interior vertices can only be mirrored or
translated if either all or no direct successors are involved as well.
The two operations enable us to generate and analyze a multitude
of origami-based structures. For example, kirigami patterns can
be obtained by choosing mirroring vertices that form a line in the
unfolded configuration, as shown in Fig. 4d. Any other choice of
mirror vertices results in a stacked unfolded configuration. Fur-
thermore, interesting tessellations can be obtained by choosing
two sets of three mirror vertices and alternatingly mirroring one
set about the other, as illustrated in Fig. 4e. This procedure we
refer to as the tessellating procedure. Repetition of the procedure
results in structures like those shown in Fig. 4f–i, Supplementary
Fig. 4 and Supplementary Movie 2 (see Supplementary Note 6 for
further details). Figure 4f uses two sets of mirror vertices that do
not correspond to parallel mirror planes, resulting in a rotational
symmetry. Figure 4g–i are obtained by first building a planar base
layer using quadrilateral-closing, mirroring, and translating
operations. The base layer is then stacked using the scheme
shown in Fig. 4e.

Fig. 3 Generating quadrilateral patterns. a Sample crease pattern graph. Selected relevant dihedral and sector angles are marked. b Application of the
quadrilateral-closing operation. c Adding layers to a pattern (the shown example procedure generates the Miura-Ori pattern) by expanding vertices and
applying the quadrilateral-closing operation. d–g Crease pattern graphs and folded configurations various patterns: d Yoshimura’s pattern, e Huffman’s grid
(auxiliary vertices are shown), f Square twist pattern, and g Waterbomb pattern. h Crease pattern graph of the extruded strip with constant and varying
layer heights. i Crease pattern graph and folded configuration of a sample pattern obtained by irregular extrusion of strip.
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Fig. 4 Mirroring, translating, and gluing of crease patterns. a Mirroring operation. Crease pattern graph (auxiliary vertices shown) with marked mirror
vertices and folded configuration of corresponding crease pattern before and after the application of the mirror operation. b Translating operation. Crease
pattern graph (with auxiliary vertices) with marked translation vector (defined by the two connected vertices) and folded configuration after application of
the translation operation. c Example structure obtained by translating operation. d Example (kirigami) structure obtained by mirroring operation where the
mirror vertices form a line. e Scheme to tessellate patterns using the mirroring operation. f Example structure obtained with scheme in Fig. 4e with non-
parallel mirror planes. g Example structure obtained by applying the scheme in Fig. 4e in two directions. h Structure obtained by applying the scheme in
Fig. 4e on the square twist pattern. i Tessellation obtained by repeated application of the mirroring and translating operation. The structure belongs to a
well-documented family4. j Gluing operation. Unfolded configuration of two crease patterns before application of the operation, unfolded and folded
configuration after application of the gluing operation. k Example structure obtained by repeated application of the gluing operation. l Example structure
obtained by the application of quadrilateral-closing, mirroring and gluing operation.
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Finally, we define the gluing operation that allows for uniting
two origami patterns that were designed independently based on
the operations presented so far. We select any two creases in such
an origami that meet at the same vertex and do not border a
common face as a gluing interface. We now glue another origami
to this one by connecting the two boundary edges adjacent to its
source vertex to these two edges, as illustrated in Fig. 4j. As shown
in Supplementary Note 7, once the position of the connecting
vertex and the directions of the connecting creases are known, the
dihedral angle at the source vertex of the attached origami can be
calculated directly. Based on this, the folded configuration of the
attached origami can be calculated by repeatedly using the PTU.
An example for a structure obtained by repeatedly applying the
gluing operation is shown in Fig. 4k.

The gluing operation can also be applied repeatedly to the
results of previous gluing operations to create complex stacked
structures, or to glue several origamis to the same two creases of
one origami. Following the example in Fig. 4j, the initial
configurations of the two united origamis is not necessarily flat.
Therefore, the gluing operation empowers to also design and
analyze generic panel-hinge assemblages, such as the one shown
in Fig. 4l.

Conclusions
In summary, the presented approach provides researchers and
design practitioners with powerful tools to algorithmically design
single degree of freedom origami mechanisms and tessellations as
an inspiration for the design of metamaterials for novel appli-
cations. The approach is computationally inexpensive, general-
ized for degree-n vertices and rigid foldability, and has
demonstrated its capability to generate origami structures and
tessellations of considerable complexity. All operations presented
in this work, involving expansion, quadrilateral-closing, trans-
lating, mirroring, and gluing operations, are intercompatible and
can be considered as algorithmic primitives to design more
complex procedures. We use this to define the layer-adding,
extruding, and tessellating procedures to generate complex ori-
gami structures as those illustrated in Figs. 3d–g, 4f–i, and l. The
application of the operations and procedures in combination with
optimization allows not only to define the architecture of a
structure, but also adjust its kinematic properties to achieve a
desired behavior. Due to the single degree of freedom activation,
the resulting structures have great practical utility and can serve
as a starting point in the design of origami-based metamaterials.
Future developments could aim at eliminating the remaining
restrictions by introducing a quadrilateral-closing operation that
does not require that Kawasaki’s rule is satisfied. Also, analogous
operations for faces with more than four edges could be intro-
duced. The approach currently can only generate structures with
a single kinematic degree of freedom, but could be extended to
allow for several kinematic degrees of freedom. Future applica-
tions could further benefit from a systematic database from which
patterns can be selected, modified, and combined using the
operations defined here, as well as the capability to detect self-
intersection or the combination with a framework for the analysis
of nonrigid origami31,32 to enable the design of multistable
structures8.

Methods
Prototyping and fabrication. The prototype in Supplementary Fig. 1 is manu-
factured from paper and adhesive film. First, two copies of each face were cut from
the paper. Then, the faces were glued on both sides of the adhesive film in the
arrangement of the crease pattern. The prototypes shown in Supplementary
Figs. 2–4 and Supplementary Movie 2 are fabricated using a Stratasys Objet500
Connex3 inkjet-based, multi-material 3Dprinter. The printing materials for faces
and crease lines are VeroWhite Plus and Agilus30Black, respectively.

Implementation. All computations were implemented and carried out using
MATLAB, involving the generation and editing of crease pattern graphs, automated
creation of faces, editing of faces and the calculation of the folded configuration, as well
as PTU which generalizes the conditions for rigid foldability of degree-n vertices. The
folded configuration is obtained by repeatedly iterating through the crease pattern
graph and, whenever possible, the PTU is used to calculate further dihedral angles,
vertex locations and face normal. When such a calculation is possible and how it is
executed is described in detail in Supplementary Notes 1 and 2. In all examples, the
deformed configuration was validated by comparing all edge lengths and sector angles
in the folded configuration with those in the unfolded configuration.

Crease pattern optimization. The optimizations were carried out using
MATLAB’s implementation of the interior-point method. During each objective
function evaluation, the mobile vertices are moved, affected sector angles and edge
lengths are recalculated, and all vertices that are affected by the movement of the
mobile vertices that affect the target vertex are re-evaluated. The optimization is
terminated if either the objective function reaches a value below 10−4 or after 200
objective function evaluations. The process and the presented examples are
explained in detail in Supplementary Information Sec. 3.

Crease pattern generation. The examples presented in Fig. 2d–e were obtained
with a two-step process. First, a number of possibilities for the expansion of the
pattern are analyzed using purely geometric calculations, and afterwards the
interior-point optimization in MATLAB is applied to find the values for the
geometric parameters relevant for the expansion. Based on this analysis, the best
option is identified and applied to the origami. This process is explained in detail in
Supplementary Note 4.

To apply the quadrilateral-closing operation, the calculation presented by Feng
et al.30 is used to calculate the sector angles around the closing vertex as well as its
mode. Since the conventions on the vertex modes differ, a short computation is
required to convert between the convention used here and the one used by Feng
et al.30 The algorithm is described in detail in Supplementary Note 5.

The patterns shown in Fig. 3d–g are based on known patterns. Some of them do
not resemble patterns that consist exclusively of quadrilateral faces. These were
obtained with the quadrilateral-closing operation by making one side of a
quadrilateral face very short. The result are two degree-4 vertices with a very small
distance between them such that they appear as degree-6 vertices in Fig. 3. The
modelling of these patterns is discussed in detail in Supplementary Note 5.

The generation of the patterns shown in Fig. 4, as well as all the corresponding
operations are documented in detail in Supplementary Notes 6 and 7.

Data availability
All relevant data are available from the corresponding author upon reasonable request.

Code availability
The code used for the computations is published open-source and available via our
university library code repository system (ETHZ Library) under the following permanent
link: https://doi.org/10.5905/ethz-1007-465.
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