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Tracking the time evolution of soft matter systems
via topological structural heterogeneity
Ingrid Membrillo Solis 1✉, Tetiana Orlova 2, Karolina Bednarska3, Piotr Lesiak 3, Tomasz R. Woliński 3,

Giampaolo D’Alessandro1,4, Jacek Brodzki1,4 & Malgosia Kaczmarek2,4

Persistent homology is an effective topological data analysis tool to quantify the structural

and morphological features of soft materials, but so far it has not been used to characterise

the dynamical behaviour of complex soft matter systems. Here, we introduce structural

heterogeneity, a topological characteristic for semi-ordered materials that captures their

degree of organisation at a mesoscopic level and tracks their time-evolution, ultimately

detecting the order-disorder transition at the microscopic scale. We show that structural

heterogeneity tracks structural changes in a liquid crystal nanocomposite, reveals the effect

of confined geometry on the nematic-isotropic and isotropic-nematic phase transitions, and

uncovers physical differences between these two processes. The system used in this work is

representative of a class of composite nanomaterials, partially ordered and with complex

structural and physical behaviour, where their precise characterisation poses significant

challenges. Our developed analytic framework can provide both a qualitative and quantitative

characterisation of the dynamical behaviour of a wide range of semi-ordered soft matter

systems.
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Soft matter is characterised by two features1, namely, the
complexity of its components, which may be polymers,
liquid crystals, colloidal grains, etc., and its flexibility: a

room temperature transformation, e.g. a chemical reaction or
mechanical stress, can induce a drastic change in the physical
properties of the material. Even within the more restricted field of
colloidal suspensions, a wide range of configurations is possible
because colloidal particles can be viewed as large atoms with
tailored size, shape and interactions2. For example, charged pla-
telet suspensions, e.g. clays, have complex phase behaviours,
including isotropic to nematic transitions, that are mediated by
electrical interactions3. Numerical models of colloidal dispersions
of two types of anisotropic particles, cubes and tetrahedron, in a
polymer matrix, show that their phase space is controlled by the
interactions between nanoparticles and polymers and by the
volume fraction4. Often, parameter changes in colloidal systems
may lead to robust phase separation which may be relevant for
biological systems5 and to the formation of liquid crystal phases6.
Some of this behaviour has been interpreted in terms of energy
landscapes7 and, in particular, the possibility that they may be
fractal8,9.

A common feature to all these systems is that they require
powerful analytic methods for their accurate and quantitative
characterisation. Persistent homology is a relatively new data
analysis tool that makes use of the underlying shape of the data to
obtain meaningful information about the physical system or
phenomenon analysed10–12. In the context of soft condensed
materials, persistent homology has proved to be an effective and
quantitative method to reveal structural and morphological fea-
tures in a variety of systems.

The topological analysis of certain geometric constructions
associated to granular materials using persistent homology has led
to a classification of granular packing13, and to the identification
of tetrahedral and octahedral cavities14 during a crystallisation
process. Similarly, for silica glasses and glassy polymers, persistent
homology has been used to reveal the presence of hierarchical
structures15,16. The findings obtained via persistent homology
allowed to explain, among other things, the diffraction patterns
observed in these types of materials. Despite in all these examples
the starting point for the topological analysis is the location of the
2 and 3-dimensional positions of the centers of the granular
particles, persistent homology can also be used in the analysis of
more complex data, such as RGB images.

Several fields in medicine requiring analysis of cellular tissue
have been much benefited by the introduction of persistent
homology as a complementary tool for image analysis. In cancer
research, persistent homology has been used in the quantitative
evaluation of architectural features in prostate tumour17, hepatic
tumour classification18, melanoma detection19 and tumour
segmentation20. Furthermore, there have been developed new
persistent homology-based methods to provide insight on the
morphological changes in distinct cellular tissues as a con-
sequence of biological processes, such as hepatocellular balloon-
ing, angiogenesis and stenosis, which might lead to an early
detection of life threatening conditions21–24.

Other applications of persistent homology in the analysis of
soft matter systems concern the analysis of the morphology of
materials13,14, the atomic configurations of complex organic
molecules and ion aggregation systems25–29. Even though most of
the topological characterisation of soft materials using persistent
homology has been done through the analysis of time-
independent data, for most applications of soft matter materials
it is important to evaluate their time-evolution under the action
of external stimuli. In this regard, there are a few works reporting
the use of persistent homology to analyse the topological changes
experienced by spin lattices during the course of a phase

transition30–32. In none of these studies, however, persistent
homology was used to analyse the dynamical behaviour of
materials at the supramolecular level.

In this paper we introduce structural heterogeneity, a persistent
homology-based characteristic for semi-organised soft matter
systems. Structural heterogeneity allows one to measure the
deviation of a soft matter system from being in a homogeneous or
uniform state at a mesoscopic scale. In particular, we use struc-
tural heterogeneity to analyse the time-evolution of the structural
organisation of a nematic liquid crystal doped with gold
nanoparticles33 in the course of a phase transition process. We
use persistent homology to reveal the structural organisation at
the mesoscopic scale, when the analysed system consists of a
number of micron-size molecular ensembles with different order
parameter. Furthermore, along with the structural heterogeneity,
we construct a vector representation of the topological descriptors
of the system to visualise them as points in a Euclidean space.
This representation allows us to characterise algorithmically the
dynamical behaviour of the system. A major outcome of this
analysis is the development of a persistent homology-based fra-
mework to quantify the structural changes experienced by a soft
matter system during a thermodynamical process. In the context
of liquid crystals, the results obtained from our framework can
potentially lead to more elaborate free energy landscapes for
nanoparticle-loaded materials and to provide a different per-
spective on the Landau-de Gennes theory of phase transitions
between nematic and isotropic phases. The importance of our
pipeline is, however, far more general: it shows that persistent
homology can be used as a powerful quantitative method to
characterise the complex phase dynamics of non-homogeneous
soft materials.

Results and discussion
Structural heterogeneity. The goal of this section is to define
structural heterogeneity as a topological characteristic for soft
matter systems. Structural heterogeneity is based on persistent
homology, a topological tool used to extract meaningful infor-
mation from the shape of the data. To help with the discussion,
we start by describing the physical properties and the topological
features of a soft matter system model, Fig. 1a. This figure shows a
cross section of a confined liquid crystal system placed between
two cross-polarisers; a grey-scale picture of the whole system is
showed in Fig. 1b, where each pixel (square) represents a 2D
projection of Fig. 1a. In this set-up light passes through the
polariser at the top, interacts with an ensemble of liquid crystal
molecules, to finally cross the polariser at the bottom. The higher
the order of the molecular ensemble, the higher the intensity
value of the pixel. A magenta arrow and a bar represent the
polarisation and the intensity of the light, respectively. In the
picture, there are pixels of high intensity values surrounded by
loops of pixels of lower intensity, which are generated by highly
ordered molecular ensembles surrounded by loops of highly
disordered molecules. This picture might indicate that the system
is in a state where two distinct mesophases coexist. From this
analysis, one can see that the quantification of the topological
features present in the images of a semi-organised system may be
used to characterise it.

We now introduce persistent homology for image analysis. An
expository introduction to persistent homology is found in
Supplementary Note 1.1. Starting with a grey-scale picture X as in
Fig. 1b, and a number i, with 0 ≤ i ≤ 255, we define a partial
picture X ðiÞ as the union of pixels in X with light intensity not
greater than i; changing the value of i creates a set of partial
pictures parametrised by light intensity. The topological features
of X , are analysed by keeping track of the appearance and
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disappearance of the topological features in the partial pictures
X ðiÞ as i increases, Fig. 1c. There are two types of topological
features to analyse: connected pieces, or 0-cycles, and loops of
pixels, or 1-cycles. Each topological feature α observed in the
partial pictures is represented by a point (bα, dα) in the Euclidean
plane, where bα is the value of i when α appears for the first time,
and dα when it disappears. The values bα and dα are called the
birth and the death of α, respectively. The collection of all the
points in the plane with coordinates (bα, dα) representing
topological features observed in fX ðiÞg is called the persistence
diagram of X , PDðX Þ, (see Fig. 1d). The most relevant physical
information is contained in the 1-cycles. The value dα− bα is

called the persistence of the topological feature α. The persistence
of a 1-cycle measures the difference in order between the inside
and the rim of the loop of pixels.

If X is a picture representing a physical state of a system, and
DðX Þ is its corresponding persistence diagram, we define the
structural heterogeneity of X , SHðX Þ, as the sum of the
persistence values over all 1-cycles α in DðX Þ,

SHðDðX ÞÞ ¼ ∑
1-cycles

jdα � bαj: ð1Þ

Structural heterogeneity measures the deviation of a soft matter
system from being in a homogeneous state. We used structural

Fig. 1 Construction of topological descriptors. a Semi-ordered rod-shaped molecules inside a capillary placed between a pair of 90∘-crossed polarisers at
45∘ to their axes. The bottom solid magenta arrow represents the final polarisation and amplitude of incident light having passed through the polarisers and
the liquid crystal; the top solid magenta arrow represents the input polarisation and the intermediate stage is marked in the dashed magenta arrow. b A
grey-scale picture X (top) representing a state where two mesophases coexist and the colour map bar (bottom) given by light intensity of the pixel; the
orientation of the magenta bars is determined by the axis of the lower polariser, and the bar lengths correspond to the average intensity of transmitted
light. c Some partial pictures X ðiÞ of X ; the 1-loops of the filtration are marked (purple, blue, green). d The persistence diagram of X , showing three 1-cycles
with the colour corresponding to their loops of pixels associated to them (purple, blue and green). e–g Experimental grey-scale picture of the liquid crystal
filled capillary at different stages in the evolution of the system (bottom) with their corresponding persistence diagrams (top); zoomed in-sets of the
capillary within the yellow rectangles; 0-cycles are marked red in the persistence diagram, whereas 1-cycles are marked blue.
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heterogeneity to quantify the deviation of a soft matter system
from being in either a totally nematic or a totally isotropic phase
during a phase transition: the bigger the number of ordered
molecular clusters surrounded by disordered molecular loops, the
higher the value of structural heterogeneity.

The analysed systems consisted of capillaries of various inner
diameters, filled with a nematic liquid crystal containing
uniformly dispersed gold nanospheres33 (see Supplementary
Note 2 for further details on the experimental set-up). The
capillaries were rapidly heated, letting the composite material
reach the isotropic state, and then cooled back to the nematic
phase. During the heating process, isotropic domains formed and
grew in size, expelling nanoparticles into the adjacent nematic
zones. This led to the self-assembly of nanospheres into a one-
dimensional periodic structure along the capillary. Then the
isotropic domains merged, forming an isotropic state with non-
homogeneous particle density. During the isotropic-nematic
process, nematic domains first nucleated in regions with high
nanoparticle concentration, and then expanded to the rest of the
capillary. All phase transitions were video-captured under
imaging conditions where the nematic and isotropic domains
appear bright and dark, respectively. Each video frame was
digitised using integer grey-scale levels that implicitly represent
the liquid crystal order, from 0 (black, isotropic phase) to 255
(white, nematic phase). We obtained a persistence diagram for
each video frame of the analysed systems (see Supplementary
Movies 1–3). For illustration, we present in Fig. 1e–g the
persistence diagrams of the nematic-isotropic phase transition
(top) at t= 5.0, t= 23.9 and t= 38.6 s, along with their
corresponding video frames (bottom). 0-cycles are showed in
red and 1-cycles are showed in blue.

We start the discussion of the structural heterogeneity of the
liquid crystal nanocomposites by analysing the structural
heterogeneity plot of the nematic-isotropic phase transition in a
capillary of 6 μm, Fig. 2a. In the first seconds of the recording,
that is, before the phase transition starts, the molecular
organisation in the liquid crystal is uniform; during this period
the structural heterogeneity looks roughly constant. The forma-
tion of isotropic regions, and, hence, the transition of the system
from nematic to a nematic-isotropic phase (N - Iso), corresponds
to an increase in structural heterogeneity up to a maximum; a
short period of stabilisation in structural heterogeneity follows,
where no new isotropic domains appear and the existing ones
increase in size. The width of the N - Iso region (and of the
structural heterogeneity plateau) increases with the diameter of
the capillary, Fig. 2a, c. As the phase transition approaches its
end, the nematic domains start collapsing until they vanish. The
system then becomes homogeneous, reaching an isotropic state.
We note that the structural heterogeneity values of the nematic
states and those of the isotropic states are different, even though
in both cases, the system looks homogeneous, Fig. 2c. The
statistical analysis of the persistence of the 1-cycles of two
persistence diagrams, one corresponding to the nematic phase
and one corresponding to the isotropic phase (see Supplementary
Note 3), shows that the difference observed in the structural
heterogeneity values between these two frames is due to a larger
number of 1-cycles having small persistence in the frames
associated to the nematic phase. This is because in the nematic
phase the molecules have orientational ordering, unlike the
isotropic phase. In consequence the light transmittance of the
capillary is more sensitive to slight fluctuation in the orientation
of the molecules in the nematic than in the isotropic phase. This
causes a variation in pixel intensities across the capillary and,
therefore, a larger number of 1-cycles with short persistence
compared to the observed in the isotropic state.

The observed dependence of the phase transition time on the
capillary diameter (see Fig. 2d–f) can be explained by a
phenomenon related to phase separation: the growing area of
the isotropic phase is the source of nanoparticle movement at the
interface between the nematic and the isotropic phases, locally
increasing their concentration in the nematic phase. This
movement slows down the rate of the phase transition
considerably. Therefore, in Fig. 2c we can see a clear flat area
between the beginning and the end of the phase transition. For
smaller diameters, this process is shorter because the nanopar-
ticles are moved over shorter distances (the period of the periodic
structure depends on the diameter of the capillary33).

The differences between the nematic-isotropic and isotropic-
nematic processes are evidenced by the comparison between
Fig. 2a, b. In the nematic-isotropic transition we can observe one
local maximum, whereas in the isotropic-nematic process we can
observe two well-defined local maxima at t= 2.9 s and t= 14.3 s.
We analysed in more detail the persistence diagrams in a small
neighbourhood near the observed maxima in the cooling process.
Figure 3a, b show the distribution of the deaths and births of the
1-cycles. The distributions of the births and deaths of the most
persistent 1-cycles in the persistence diagrams near the first
maximum show a Gaussian-like behaviour, as opposed to the
sharp distribution of deaths observed at the second maximum.
This difference suggests that the nanocomposite inside the
capillary is less structured at the first maximum than at
the second one, consistent with a random nucleation process of
the nematic phase. To confirm whether this is the case we have
also studied the life expectancy, i.e. the persistence, of the
1-cycles. Figure 3c, d show the distribution of the persistences of
1-cycles, using linear-log plots, for the isotropic-nematic phase
transition, along with the corresponding distributions of pixel
intensities. The time intervals considered are 3 ± 0.5 s and
14 ± 0.5 s. The distribution of pixel intensities shows that in the
interval 3 ± 0.5 s, intensity values are in general lower than the
ones observed in the interval 14 ± 0.5 s, once again compatibly
with the presence of random nucleation regions at the first
maximum and a wide area phase transition at the second. The
distributions in Fig. 3c, d are dominated by the many noise-
induced short-lived cycles. However, the dominant contribution
to the dynamics and the structural heterogeneity is from longer
lived cycles. The distributions of death and births and pixel
intensity observed at the first maximum might suggest that the
increment of light intensity across the capillary is more similar to
a random process. A sharp distribution, by the contrary, might
indicate that the phase transition occurring in the second
maximum the phase transition occurs uniformly across the
capillary. Figure 3e, f show an estimated contribution of all
1-cycles of given persistence to the structural heterogeneity
during the isotropic-nematic phase transition. These plots were
obtained from the plots in Fig. 3c, d by multiplying each bin
height by typical persistence of 1-cycles in that bin. Figure 3f
shows that the structural heterogeneity value in the second
maximum has a strong contribution coming from 1-cycles with
persistence of 5, approximately. In contrast, Fig. 3e shows that in
the first maximum there are many fewer 1-cycles with persistence
≥5, and the persistence of 1-cycles is more sparse than in the
second maximum. These results are a further indication that the
first maximum corresponds to the appearance and disappearance
of relatively short-lived 1 cycles induced by random nucleation of
the nematic phase. In summary, our analysis of the persistence
diagrams suggests that structural heterogeneity detects a hyster-
esis behaviour, in agreement with experimental observations
reported in33. In order to continue our investigation on the
physical interpretation of the observed maxima in the structural
heterogeneity plots, and on the differences between the nematic-
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isotropic and isotropic-nematic processes, we introduce the
concept of topological pathway.

Topological pathways of dynamical processes. To start, we use
the bottleneck distance to quantify the differences between per-
sistence diagrams. This is defined as follows. For persistence
diagrams D1 and D2, which are subsets of the plane R2, we
consider a bijective matching ϕ of points of D1 to points of D2.
We also allow matching any of the points of D1 or D2 to its
nearest point on the x= y line; a matching like that always exists,
even if D1 and D2 have different numbers of points. The cost of a
matching ϕ of diagrams D1 and D2, denoted Cost(ϕ), is the largest
distance by which a point in D1 has to be moved to be matched
with a point in D2. Then the bottleneck distance is

dðD1;D2Þ¼Smallest CostðϕÞ taken over the set of all possible matchings ϕ .

If two persistence diagrams are close in this distance, then so are
the topological features of the corresponding video frames34.
Since the topological features of a video frame depend on the
physical state of the system, the smaller the bottleneck distance
between two persistence diagrams is, the more similar the states
of the system associated to them are.

For each pair of persistence diagrams we computed their
bottleneck distance. Figure 4a, b show the distance matrices
obtained, where blue corresponds to pairs of persistence diagrams
that are practically identical, and red the most different. The
distance matrix of the nematic-isotropic transition (see Fig. 4a)

shows that in the first 15 s of the recording, approximately, the
states of the system are almost identical. Distances between
persistence diagrams of video frames at t > 15 s and at t < 15 s are
large. The yellow-cyan area in the center of Fig. 4a corresponds to
a period in which the distances between persistence diagrams start
decreasing. From the analysis of the video frames and the
structural heterogeneity values, we conclude that, in this short
time period, nematic and isotropic phases coexist, and the number
of isotropic remains the same. Moreover, the observed period
increases with the capillary diameter (see Supplementary Note 4).
The distance matrices of the nematic-isotropic and the isotropic-
nematic phase transitions look substantially different, confirming
the differences highlighted by structural heterogeneity.

The bottleneck distance allows us to regard the set of persistence
diagrams as a non-Euclidean metric space. In particular, the set
of persistence diagrams of a dynamical process can be regarded
as a metric space in its own right equipped with this metric. The
metric space defined by the persistence diagrams corresponding
to phase transitions frame will be called the non-Euclidean
topological pathway. We used the classical multidimensional scaling
to embed the non-Euclidean topological pathway into an Euclidean
space (see Supplementary Note 5), that is, classical multidimen-
sional scaling allowed us to associate Euclidean coordinates to each
persistence diagram35. This is a useful method to analyse geometric
and dynamical features that might not be easily detectable from
distance matrices such as those matrices showed in Fig. 4a, b. The
validity of classical multidimensional scaling for the analysis of the
distance matrices obtained from the video frames was confirmed

Fig. 2 Time dynamics of the structural heterogeneity. In all plots the horizontal axis is the time of the video frames of the capillary and the vertical axis is
the corresponding structural heterogeneity. a, b The structural heterogeneity of the heating and cooling process respectively in a 6 μm capillary. c The
entire nematic-isotropic transition in a 60 μm capillary that shows the difference of the structural heterogeneity in the nematic (left) and isotropic (right)
state; the nematic, nematic-isotropic and isotropic states of the liquid crystal are highlighted in blue, green and red, respectively. d–f Increase of the time
range of coexistence of nematic and isotropic domains in capillary of 6 μm, 20 μm and 60 μm, respectively.
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by noting that Euclidean distances between persistence diagrams
assigned by the classical multidimensional scaling are minimally
distorted with respect to the corresponding bottleneck distances
(see Supplementary Note 5.1). We call the persistence diagram
orbit under the classical multidimensional scaling the Euclidean
topological pathway. In Fig. 4c we show 3D projections of the

nematic-isotropic (red) and isotropic-nematic (blue) non-Euclidean
topological pathways and topological pathways. Here, the topolo-
gical pathways were projected onto the three-principal coordinates,
which correspond to those coordinates of the classical multi-
dimensional scaling with the largest positive eigenvalues. The first
thing to notice in these graphs is that the red topological pathway is

Fig. 3 Statistical analysis of persistence diagrams of the isotropic-nematic phase transition. The distribution of birth (blue) and death (orange) values
for 1-cyles of 10 persistence diagrams at (a) t= 3 ± 0.5 s and (b) t= 14 ± 0.5 s. c, d Distribution of persistence of 1-cycles (blue) together with pixel
intensities (purple) and (e, f) distribution of weighted persistence of 1-cycles at (c, e) t= 3 ± 0.5 and (d, f) t= 14 ± 0.5 s. The error bars represent standard
deviation.
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bigger than the blue topological pathway. This is explained as
follows: the nanoparticles travel longer distances when the systems
is heated than when it is cooled33. Since the dynamics of the whole
system depends on the dynamics of the nanoparticles, the longer
the distances travelled by these, the bigger the observed distances
between persistence diagrams.

The topological pathway of the nematic-isotropic process
shows one loop-like trajectory (see Fig. 4d), whereas the isotropic-
nematic process shows two (see Fig. 4e). A loop-like shape
indicates that at the beginning of the phase transition, the
topology of the system starts changing, and moves away from its
starting point. Once the structural heterogeneity reaches its
maximum, the system moves back close to its starting point.
Moreover we notice that the number of loops in the topological
pathways account for the number of thick curves coming out
from the diagonal in Fig. 4a, b and the number of local maxima in
Fig. 2a, b. Thus the number of curves account for the number of
loops in the topological pathways.

All these results lead to the conclusion that the isotropic-
nematic phase transition should be considered as a two-stage
process. On cooling the sample, the phase transition to the nematic
phase occurs first in the nanoparticle-rich regions (see Fig. 5b),
which generates light scattering across the capillary. The phase
transition in these regions ends at the beginning of the phase
transition in the small nanoparticle-poor regions (see Fig. 5c). The
second stage of the transition process is smoother (see Fig. 5d, e). It
may be influenced by dispersed nanoparticles, which initiate the
phase transition process (see Fig. 5c).

Finally, it is worth mentioning that the bottleneck distance is
just one distance function of a family called the (p, q)-Wasserstein
distance functions. One can equip the set of persistence diagrams
with any of these distance functions to regard this set as a metric
space. We computed the (1,1)-Wasserstein distance matrix for the
heating process in the capillary of 6 μm, and carried out a classical

multidimensional scaling analysis of the resulting distance matrix.
The shape of the topological pathway obtained from the (1, 1)-
Wasserstein distance is similar to that obtained from the
bottleneck distance, namely, one loop-like curve (see Supple-
mentary Note 6). One advantage of bottleneck distance is that,

Fig. 4 Bottleneck distance matrices and 3D representation of the topological pathways of the 6 μm capillary. The bottleneck distance matrices
associated to (a) the nematic-isotropic and (b) the isotropic-nematic phase transitions; the frame rate is 10 fps. c 3D-projections of the heating (red) and
cooling (blue) Euclidean topological pathways. The three-principal axes correspond to the three coordinates of the Euclidean embedding with the largest
positive eigenvalues. d Nematic-isotropic and (e) isotropic-nematic Euclidean topological pathways. In d and e colour codes time from beginning (blue) to
the end (red).

Fig. 5 Schematic representation of the isotropic-nematic phase transition
and video frames of the 6 μm capillary during its cooling, with the
temperature decreasing from top to bottom. a Isotropic state of the liquid
crystal nanocomposite; the bars represent the colour coded local
orientation of the liquid crystal molecules and the yellow circles the gold
nanospheres. b–d Formation and growth of nematic domains in the
nanoparticle-poor and nanoparticle-rich regions (green areas), with a time
delay. e Homogeneous nematic state of the liquid crystal nanocomposite.
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computationally, it is less expensive than other (p, q)-Wasserstein
distances.

In the next section we present an algorithmic quantitative
analysis that is particularly powerful when visual inspection is not
practical. For that purpose we measure the velocity and curvature
of the topological pathways.

Algorithmic analysis of the system dynamics. The pathway
velocity vt measures the rate of change of the system topology:

vt ¼
1
2

xðtþ1Þs � xðt�1Þs
� �

;

where xt s is the first coordinate of the topological pathway at time
t s.

The pathway curvature kt measures how much the topological
pathway is bending at a given time t s. It is defined as the inverse of
the radius of the circle interpolating x(t−2)s, xt s and x(t+2)s, where
xt s are the Euclidean coordinates of the topological pathway at
time t s. We express this radius as a function of the pairwise
distances between x(t−2)s, xt s and x(t+2)s; therefore, we may more
generally compute pathway curvature given any distance matrix
(see Supplementary Note 7).

We use these two numerical descriptors to identify algor-
ithmically the physical states that are relevant in the dynamical
behaviour of the soft nanocomposite.

The curvature of the nematic-isotropic and isotropic-nematic
topological pathways and non-Euclidean topological pathways are
shown in Fig. 6a, d. The velocity of the nematic-isotropic and
isotropic-nematic topological pathways are shown in Fig. 6b, e.
These figures should be compared with the structural heterogeneity
and distance matrix plots in Fig. 2a, b and Fig. 4a, b, respectively.
We first consider the heating process. The formation of isotropic
bubbles leads to a rapid increase of vt, Fig. 6b. As new isotropic
bubbles form, the velocity increases, reaching a maximum; during

the N-Iso phase, when only the size but not the number of the
domains changes, vt decreases to zero. Towards the end of the
phase transition, the number of domains decreases and vt grows in
absolute value. The curvature plots of the topological pathway and
the non-Euclidean topological pathway (see Fig. 6a) supports this
observation, having their maximum value in the state with the
highest structural heterogeneity.

The isotropic-nematic process shows a different behaviour,
Fig. 6d–f. There are two time periods when vt becomes negative in
agreement with the two loop-like trajectories in Fig. 4e.
Furthermore, vt is zero at three different isolated points that are
also critical points of the structural heterogeneity plot. The local
maxima in the curvature plots, Fig. 6d, correspond to nematic
domain formation around the nanospheres in the first stage of the
phase transition, Fig. 6f(1), a transition state with a minimum in
the structural heterogeneity, Fig. 6f(2), and a state in the second
stage of the phase transition with maximum structural hetero-
geneity, Fig. 6f(3). It is important to highlight the good agreement
between the maxima observed in the curvature plots obtained
from the bottleneck distance matrices and from classical multi-
dimensional scaling. This shows that, under the validity
conditions of the classical multidimensional scaling, the topolo-
gical pathway can provide a good approximation of the
dynamical change of the system topology.

To conclude this analysis, we point out that topological pathways
might probe the energy landscape on which the dynamics of the
phase transitions under nonequilibrium conditions takes place:
zero velocity points and associated topological configurations can
be considered as metastable states of the topological pathways,
reachable through connecting saddle states with activation barriers.
Although the nematic-isotropic phase transition is considered in a
number of theories36, to the best of our knowledge, the theories of
mesoscopic nonequilibrium thermodynamics37 have not yet been
applied to its study. However, an evolution model based on the

Fig. 6 The top and bottom rows represent the nematic-isotropic and isotropic-nematic transitions, respectively, for the 6 μm capillary. a, d The
curvature of the topological pathways, while (b, e) are their velocities plots. The Euclidean topological pathways and non-Euclidean topological pathways
are represented by the red circles and the black crosses respectively. c, f Zoomed-in images of the capillaries with colormap representing the light intensity,
increasing from blue (total darkness) to red (maximum brightness). The maximum of curvature in (a), indicated by (1), corresponds to the transition point
when the structural heterogeneity reaches its maximum and (c) the nematic domains begin to collapse. The three curvature maxima in (d) correspond to
the same-numbered pictures in (f): (1) is the early start of nematic domain formation; (2) is their further development; (3) is the early start of the ordered
nematic phase. These three stages of the dynamics are also illustrated schematically in Fig. 5b–d.

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00223-1

8 COMMUNICATIONS MATERIALS |             (2022) 3:1 | https://doi.org/10.1038/s43246-021-00223-1 | www.nature.com/commsmat

www.nature.com/commsmat


consideration of the multi-dimensional potential energy landscape
has been recently demonstrated to interpret complex phenomen-
ology in disordered glasses38, while the sublevelset persistent
homology has been used to understand the topology of the
potential energy landscapes of n-alkanes39. The analysis presented
in this paper can potentially be used to provide the necessary
experimental details for the development of a mesoscopic model
of nonequilibrium phase transitions in nematic liquid crystal-based
systems, which could be based on the Landau-de Gennes theory40

combined with multiscale nonequilibrium thermodynamics41,42.

Conclusions
Structural heterogeneity is a robust topological characteristic that
can qualitatively and quantitatively detect subtle variations in the
physical state of a soft matter system as it undergoes a dynamical
process. In the particular case of the system analysed in this work,
structural heterogeneity detects a hysteresis behaviour in its phase
transitions and reveals a two-stage process for the isotropic-
nematic phase transition. Additional tools, such as the topological
pathway, opens up the possibility of an algorithmic study of the
system dynamics: the critical points of the pathway, which can be
easily detected numerically either in terms of velocity or curva-
ture, correspond to moments of significant topological and,
hence, physical upheaval for the system.

An important outcome of this study is a framework for the
quantitative analysis of complex soft matter systems. As shown in
Fig. 7, the framework starts from experimental images of the time-
evolving system, followed by the acquisition of their persistence
diagrams. With this new data one can compute the structural
heterogeneity and the topological pathway, from which we can
analyse physical features of the system. This procedure can be
automated and applied to large datasets for which visual analysis
may not be practical, as well as to systems where the experimental
information is not limited to images and may also include biolo-
gical, chemical and structural information29,43,44. It is straightfor-
ward to implement our developed analytical framework in the
study of other 1D and 2D soft matter systems. Our methods can
also be extended to 3D systems, however, this would require

complex data acquisition methods and significant computational
resources.

Methods
Image analysis and data processing. We analysed video data of nematic-
isotropic and isotropic-nematic phase transitions for capillaries of different dia-
meters filled with liquid crystal nanocomposites reported earlier in33 (see Sup-
plementary Note 2 for experimental details). The video frames were transformed to
grey scale in Matlab45 using the function rgb2gray. We used the open source
GUDHI46 to compute the normalised persistent diagrams (see Supplementary
Note 1.2 for details in the normalisation method) of the video frames, and all
pairwise bottleneck distances in dimension 1 (for details on the computations
see47,48).

The input data in the computations of the bottleneck distance matrix was the
corresponding to the capillaries of 6 and 20 μm for both the nematic-isotropic and
the isotropic-nematic phase transitions. All persistence diagrams were normalised
in the same way for each video according to a scaling factor (see Supplementary
Note 1.2 for details on the normalisation procedure). In order to optimise the
computation time of distance matrices, a multithreaded algorithm was
programmed in Python. The code was run over 8 cores on a 2.4 GHz Intel Core i9
processor. Six distance matrices were obtained. The first one (DB6) was associated
to the data corresponding to both processes heating and cooling in the capillary
of 6 μm. The second distance matrix corresponded to the data associated to the
heating process in the capillary of 20 μm (DB20h). From the matrix D6, we
obtained two additional matrices by restricting to blocks within the matrix. Each
block contained only the data associated to either the heating (DB6h) or the
cooling (DB6c) processes. We also obtained the Wasserstein distance matrices
of the heating (DW6h) and cooling (DW6h) processes in the capillary of 6 μm.

The topological pathways corresponding to the bottleneck distance matrices
were obtained via the Matlab function cmdscale. The sizes of the distance matrices
and their corresponding embedding dimensions are reported in Supplementary
Table 1. For visualisation we plotted the first three-principal components of the
Euclidean embedding, that is, the coordinates of the topological pathways with the
largest positive eigenvalues. The curvature values of both the the topological
pathways and non-Euclidean topological pathways were computed using a code
implemented in Matlab (see Supplementary Note 7 for details on the curvature
method). The computation time to obtain the structural heterogeneity values and
the bottleneck distance matrix from a video containing 400 frames was ~3.5 h. In
particular, the computation time of the bottleneck distance matrix from the
persistent homology data was ~2 h; the computation time to obtain the Wasserstein
distance matrix for the same video was ~7.5 h.

Data availability
The datasets generated and analysed during the current study are available from the
corresponding author on reasonable request.

Fig. 7 Framework for the topological characterisation of soft matter systems. The evolution of the physical system is captured using time-dependent
persistent homology, which is summarised through structural heterogeneity and the topological pathway.
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Code availability
The code used during the current study is available from the corresponding author on
reasonable request.
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