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Lithium-ion-conductive sulfide polymer electrolyte
with disulfide bond-linked PS4 tetrahedra for
all-solid-state batteries
Atsutaka Kato 1✉, Mari Yamamoto1, Futoshi Utsuno2, Hiroyuki Higuchi2 & Masanari Takahashi1

Due to their high conductivity and interface formability, sulfide electrolytes are attractive for

use in high energy density all-solid-state batteries. However, electrode volume changes

during charge-discharge cycling typically cause mechanical contact losses at the electrode/

electrolyte interface, which leads to capacity fading. Here, to suppress this contact loss,

isolated PS43- anions are reacted with iodine to prepare a sulfide polymer electrolyte that

forms a sticky gel during dispersion in anisole and drying of the resulting supernatant. This

polymer, featuring flexible (–P–S–S–)n chains and enhanced solubility in anisole, is applied as

a lithium-ion-conductive binder in sheet-type all-solid-state batteries, creating cells with low

resistance and high capacity retention.
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S ince their commercialization in the 1990s, Li-ion batteries
(LIBs) have been widely used in consumer electronics and
have recently found large-scale energy storage applications

in electric vehicles and smart grids1–3. However, the currently
used LIBs contain flammable liquid organic electrolytes and
therefore pose safety risks4. To mitigate these risks, one can
replace organic liquid electrolytes with inorganic solid electro-
lytes, which feature higher thermal stability and are not suscep-
tible to leakage5. This replacement affords high-energy-density
all-solid-state batteries (ASSBs), which have attracted much
attention, as exemplified by attempts to use solid electrolytes in
combination with high-voltage cathodes6,7, high-capacity sulfur
electrodes8,9, and Li metal anodes10–13.

Among the various types of solid (e.g., sulfide-, oxide-, hydride-,
and halide-based) electrolytes developed to date5,14–16, the sulfide-
based ones feature high conductivities and interface formability, and
are therefore particularly well suited for ASSBs. In particular, sulfide
electrolytes with Li10GeP2S12-17,18, argyrodite-19,20, and Li7P3S11-
type21,22 crystal structures have high conductivities (>10−3 S cm−1)
comparable to those of liquid electrolytes. Sulfide electrolytes are
easily deformed by pressing at room temperature23, allowing one to
form favorable electrode/electrolyte interfaces with high contact areas,
and ensure sufficient ion conduction. However, the volume changes
of the electrode active materials during charge/discharge induce local
contact losses at ASSB electrode/electrolyte interfaces24,25. Typical
sulfide electrolytes contain Li+ ions and isolated anions such as
PS43−. Previously, sulfide polymers with (–P–S–S–)n units were
predicted to electrochemically form at cathode/electrolyte interfaces
during charging (delithiation)26,27. In contrast, thermodynamic cal-
culations and structural analyses of the related interfaces indicate that
such polymers undergo disproportionation into P2S74− and ele-
mental sulfur28–30. To date, no agreement has been reached, and the
related discussions are still ongoing.

The improvement of existing processing technologies is vital for
ASSB commercialization, with wet slurry coating recognized as a
practical and scalable way of fabricating sheet-type ASSBs31. In
this process, binders help to adhere the composites (containing the
electrode active materials, solid electrolytes, and carbon-based
conductive additives) to the current collector, make the composite
sheets flexible, and allow roll-to-roll manufacturing. Both con-
ventional LIBs and ASSBs use organic polymers, such as
polyvinylidenefluoride32, styrene-butadiene-styrene copolymers33,
and acrylonitrile-butadiene copolymers34,35 as binders. However,
the insulating nature of these binders hinders ionic and electronic
conduction in ASSBs. To mitigate this problem, one can use
volatile binders that can be thermally removed to afford binder-
less ASSBs36. Another strategy is to use Li+-conductive polymer
binders based on organic polymer electrolytes or hybrids of ionic
liquid and organic polymer electrolytes37–39. Sulfide polymers will
be a promising Li+-conductive binder, and thus reduce hetero
interfacial resistances in ASSBs.

Herein, we polymerized isolated PS43− anions by reacting them
with I2 (Fig. 1). The reaction of two PS43− anions with I2 afforded
a dimer comprising two PS4 tetrahedra bridged with a disulfide
(S–S) bond, whereas higher I2 loadings afforded a potentially
flexible chain polymer with a (–P–S–S–)n structure. We demon-
strated the mechanochemical and liquid-phase syntheses of the
sulfide polymer. This polymer was compared with previously
reported structures like P2S74− to provide useful suggestions for
the design of cathode/electrolyte interfaces in ASSBs and was
used as a binder in sheet-type ASSBs. LiI, a by-product of the
above reaction, is also a Li-ion conductor40 and can enhance the
ionic conductivity of sulfide electrolytes41,42 which suggests that
sulfide polymer-LiI composites hold great promise as solid
electrolytes.

Results
Mechanochemical synthesis of sulfide polymers and their
characterization. Li3PS4 was prepared by ball milling a mixture of
Li2S and P2S5 and was further ball-milled with I2 to afford sulfide
polymers. We synthesized three kinds of sulfide polymers with dif-
ferent molar ratios; Li3PS4-I2 (2:1), Li3PS4-I2 (4:3), and Li3PS4-I2 (1:1).
Powder X-ray diffraction (PXRD) patterns acquired after the reaction
with I2 revealed the presence of LiI (PDF#01-075-5397) (Fig. 2(a)),
and thus indicated the occurrence of Li3PS4 polymerization. The
Raman spectrum of the amorphous polymerization product featured
two main peaks at 477 and 390–420 cm−1 (Fig. 2(b)). The former
peak, ascribed to S–S bond stretching, gained intensity with
increasing I2 loading, which reflected the concomitant increase in the
extent of S–S cross-linking. Although elemental S exhibits a similar
S–S stretching peak at 473 cm−1 43, the peak at 477 cm−1 had a
different origin, as it did not lose intensity after the polymer was
washed with toluene to dissolve elemental S (Supplementary Fig. 1).
The peak at 390–420 cm−1 was assigned to the stretching of P–S
bonds and shifted to lower wavenumbers with increasing I2 loading
(cf. the P–S peak of pristine Li3PS4 at 421 cm−1), which was ascribed
to the progressive polymerization of Li3PS4 through S–S bridging.
Supplementary Table 1 lists the Raman shifts of selected lithium
thiophosphate anions44–47, viz. P2S74− (pyro-thiodiphosphate, two
corner-sharing PS4 tetrahedra), P2S64− (hypo-thiodiphosphate with
P–P bond), P2S62− (meta-thiodiphosphate, two edge-sharing PS4
tetrahedra), and PS3− (meta-thiophosphate, chain of corner-sharing
PS4 tetrahedra). The Raman shift of Li3PS4-I2 (2:1), which featured
two S–S bond-linked PS4 tetrahedra (P2S84−) was similar to that of
P2S74−, and that of Li3PS4-I2 (1:1), which featured a chain structure
(PS4−), was similar to that of PS3−. The structural difference between
Li3PS4-I2 polymers and the known anions of P2S74− or PS3− is that
in the former case, the PS4 tetrahedra are linked through S–S bonds,
whereas in the latter case, they share the corner S atoms. Because this
difference is small, the corresponding Raman shifts were similar.
Similar behavior has been reported for other thiophosphates such as
Li3PS4+n and P4S10+m48,49.

Li3PS4-I2 (1:1) featured a particle size of 1–10 µm (Fig. 3(a))
and had good deformability (as did other sulfide electrolytes),
affording a highly dense compact without clear original particle
shapes after pressing at room temperature (Fig. 3(b)). The
conductivities of Li3PS4-I2 (2:1), (4:3), and (1:1) were 2.9 × 10−4,
1.7 × 10−4, and 3.0 × 10−5 S cm−1, respectively, i.e., these values
decreased with progressive polymerization (Fig. 3(c) and
Supplementary Fig. 2).
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Fig. 1 Schematics of the I2-induced polymerization of Li3PS4. The reaction
of Li3PS4 with I2 afforded a chain polymer with a (–P–S–S–)n structure.

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00216-0

2 COMMUNICATIONS MATERIALS |           (2021) 2:112 | https://doi.org/10.1038/s43246-021-00216-0 | www.nature.com/commsmat

www.nature.com/commsmat


Anisole, an aprotic solvent with a comparatively low donor
number, is used as the binder solvent of sulfide electrolyte-based
sheet-type ASSBs, as it does not attack these electrolytes36.
Figure 4(a) shows that the solubility of Li3PS4-I2 polymers in
anisole increased with increasing I2 loading and was highest for
Li3PS4-I2 (1:1). On the other hand, Li2S-P2S5 solid electrolytes
(ortho-, pyro-, and meta-thiophosphates) exhibited low solubility
in anisole (Supplementary Fig. 3). Upon drying, the supernatant
of the Li3PS4-I2 (1:1) solution in anisole afforded a sticky gel, in
line with the formation of long chains (Fig. 4(b)). The Raman
spectrum of ball milling-prepared Li3PS4-I2 (1:1) was compared
with that of the dried supernatant of the corresponding anisole
solution (Fig. 4(c)). Both the spectra featured similar S–S and P–S
peaks around 477 and 390 cm−1, respectively, indicating that
these components were similar. However, the P–S peak of the ball
milling-prepared Li3PS4-I2 (1:1) was broader than that of the
polymer recovered from the anisole solution, indicating that a

greater variety of structures was formed in the former case.
Figure 4(d) presents the 31P NMR spectra of the two kinds of
Li3PS4-I2 (1:1) polymers, revealing the presence of three main
peaks at 86–89, 100, and 120 ppm. The main peak at 86–89 ppm
was tentatively assigned to the chain of disulfide-bond-linked PS4
tetrahedra, whereas the other peaks could not be assigned.
Supplementary Table 1 lists the 31P NMR data for the known
anions of lithium thiophosphates, revealing that a subpeak at
~120 ppm has been observed in the spectrum of PS3− 45. The
above unknown peaks may reflect the presence of branched
structures or variable-size rings in addition to the regular chains
of PS4 tetrahedra, although further structural analysis is needed to
reveal the details.

Liquid-phase synthesis of sulfide polymers. Li3PS4-I2 polymers
were also prepared by liquid-phase synthesis (LS), i.e., by stirring

Fig. 2 Structural data for Li3PS4-I2 polymers prepared by ball milling. a PXRD patterns and (b) Raman spectra. The diffraction peaks of cubic LiI are
indicated with black circles.
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Fig. 3 Morphologies and ion-conduction behaviors of Li3PS4-I2 polymers. SEM images of (a) the Li3PS4-I2 (1:1) powder prepared by ball milling and (b)
the fracture cross-section of the pellet prepared by cold-pressing the powders at 333MPa. c Room temperature conductivities of Li3PS4-I2 polymers. The
error bar show standard deviation of Li3PS4-I2 (2:1) for n= 3, Li3PS4-I2 (4:3) for n= 3, and Li3PS4-I2 (1:1) for n= 5, respectively.
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Li3PS4 and I2 in anisole at 60 °C for one day. In the case of Li3PS4-
I2 (1:1), the product was a clear brown solution at room tem-
perature, while for Li3PS4-I2 (2:1) and (4:3) (Fig. 5(a)), we
observed precipitates that were identified as unreacted Li3PS4
based on their Raman spectra (Fig. 5(b)). Since I2 is soluble in
anisole, the polymerization of Li3PS4 progressed from the surface
of the insoluble Li3PS4. As in the case of ball milling-prepared

Li3PS4-I2 (1:1), evaporation of the Li3PS4-I2 (1:1) solution
obtained after LS afforded a sticky gel, which contained hexagonal
LiI (PDF#01-075-5395) (Supplementary Fig. 4). Notably, hex-
agonal LiI was also observed in the dried supernatant of the
anisole solution of ball milling-prepared Li3PS4-I2 (1:1). This
hexagonal phase was reported to be metastable and undergo a
slow structural change to the cubic phase even at room
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Fig. 4 Solubilities of ball milling-prepared Li3PS4-I2 polymers in anisole. a Photographs of solutions of 10 wt% Li3PS4-I2 (2:1), 20 wt% Li3PS4-I2 (4:3), and
30 wt% Li3PS4-I2 (1:1) in anisole after centrifugation at 2599 × g. b Photograph of the supernatant of the Li3PS4-I2 (1:1) polymer solution during drying at
60 °C. c Raman and (d) 31P NMR spectra of the Li3PS4-I2 (1:1) polymer prepared by ball milling and the dried supernatant of its anisole solution.
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Fig. 5 Liquid-phase synthesis of Li3PS4-I2 polymers. a Schematics of the synthetic process. Photographs of Li3PS4-I2 polymer solutions obtained after
stirring Li3PS4 and I2 at 60 °C for one day. The Li3PS4-I2 (1:1) polymer solution afforded a sticky gel upon drying. b Raman and (c) 31P NMR spectra of
Li3PS4-I2 polymers prepared by liquid-phase synthesis.
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temperature50. However, the fact that hexagonal LiI mainly pre-
cipitated upon the drying (at 60 °C) of Li3PS4-I2 (1:1) polymers
isolated from anisole solutions (the solution produced during LS
and the supernatant obtained by dispersing ball milling–produced
polymer) suggested that the sulfide polymer matrix prohibited the
hexagonal-to-cubic transformation. The NMR spectrum of
Li3PS4-I2 (1:1) prepared by LS was similar to that of the dried
supernatant of the anisole solution of the ball milling-prepared
polymer, i.e., the Li3PS4-I2 polymer with a (–P–S–S–)n chain
structure could be also synthesized by LS. The conductivity of
Li3PS4-I2 (1:1) prepared by LS was 2.3 × 10−6 S cm−1 after drying
at 200 °C (Supplementary Fig. 5), which was lower than the
conductivity of ball milling-produced polymer.

Binder applications of sulfide polymers. The Li3PS4-I2 polymer
was used as a binder for ASSBs. Sheets containing Li3PS4 as a
solid electrolyte were prepared by coating a slurry comprising this
thiophosphate and ball milling-prepared Li3PS4-I2 (1:1)
(Fig. 6(a–c) and Supplementary Movie 1) in anisole. The obtained
sheets with a thickness of ~80 µm could be bent around a 16-mm-
diameter cylinder, although Li3PS4 powder was detached from the
sheet in the absence of the binder. The conductivity of the Li3PS4
sheet with the sulfide polymer binder (2.3 × 10−4 S cm−1, Sup-
plementary Fig. 6) was close to that of the sheet without the
binder (3.2 × 10−4 S cm−1).

We also prepared composite electrode sheets (thickness:
~40 µm) comprising LiNi1/3Mn1/3Co1/3O2 (NMC), an
argyrodite-type solid electrolyte (Li6PS5Cl with a conductivity of
2.2 × 10−3 S cm−1), and Li3PS4-I2 (1:1) as a binder (Supplemen-
tary Fig. 7) and evaluated the performance of the corresponding
all-solid-state cell. We adopted the argyrodite-type solid electro-
lyte in the composite electrode due to its high ionic conductivity
in the 10−3 S cm−1 range, ease of synthesis, and low costs of raw
materials, which are advantageous for mass production51,52. As a
result, typical charge-discharge curves of the NMC active material
without obvious side reactions at 2.6–4.3 V (vs. Li/Li+) were
observed (Fig. 7(a)). The small cell resistance after the first charge

indicated that the Li+-conductive binder did not act as a resistive
component (Fig. 7(b)). In addition, the above cell featured high
cycling performance (Fig. 7(c)), retaining 93.8% of its capacity
between cycles 5 and 200. These results suggest that the prepared
Li3PS4-I2 polymer can be used as an ion-conductive binder for
sheet-type ASSBs.

Discussion
Herein, solid electrolytes prepared by I2-induced polymerization
of Li3PS4 were shown to contain S–S bridges, as indicated by the
Raman peak at 477 cm−1. This peak was retained after the
polymer was washed with toluene to remove elemental sulfur and
thus truly originated from the S–S linkages in the polymer. The
solubility of the sulfide polymer in anisole increased with
increasing I2 loading, which was in contrast with the low solu-
bilities of ortho-, pyro-, and meta-thiophosphate Li2S-P2S5 elec-
trolytes. The formation of a sticky gel upon the drying of the
Li3PS4-I2 (1:1) solution was in line with the formation of chain
structures. Notably, the sulfide polymer did not undergo dis-
proportionation into the known thiophosphates and elemental S
and was assumed to contain PS4 tetrahedra cross-linked with S–S
bonds. On the other hand, the sulfide polymer was similar to the
known thiophosphates with corner-sharing PS4 tetrahedra in
terms of the Raman shifts of P–S bonds and 31P NMR shifts,
which indicated the similarity between the chemical environ-
ments of P atoms. The same behavior has been observed in
reports on the structural analysis of cathode/electrolyte
interfaces29,53. Further structural analyses of the sulfide polymer
are expected to provide critical insights into the related cathode/
electrolyte interfaces to facilitate their design in ASSBs.

Liquid-phase synthesis is well suited for mass production54.
The sulfide polymer could be prepared by both liquid-phase and
mechanochemical syntheses, although the sulfide polymers pre-
pared by liquid-phase possessed lower conductivities. The poly-
mer structure and the composite state with LiI would influence
the conductivities of sulfide polymers. LiI is a poor ionic
conductor40, however, doping it can improve the conductivity of

w/owith Li3PS4-I2 (1 : 1) 

(a)

)c()b(

Fig. 6 Sheets of Li3PS4 solid electrolytes prepared by wet slurry coating. a Appearance of the sheet prepared using the Li3PS4-I2 (1:1) polymer as a
binder. The results of bending around a 16-mm-diameter cylinder are displayed for sheets prepared (b) with and (c) without the binder.
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sulfide electrolytes41,42. Although LiI crystal was observed in the
XRD patterns, some amount of LiI were considered to be doped
in the amorphous sulfide polymers and enhance the con-
ductivities. The ball milling process was assumed to increase
doped-LiI in the sulfide polymer, and made the higher con-
ductivity. Removing redundant LiI crystal with poor ionic con-
ductivity and increasing doped-LiI will improve the conductivities
of sulfide polymers. The sulfide polymer was used as a binder to
prepare sheets comprising Li3PS4 and NMC composites as solid
electrolytes. These sheets were bendable, and all-solid-state cells
containing NMC composite sheets exhibited low resistance and
high capacity retention. The NMC loading (~2 mg) was low
compared to the practical value, and it was difficult to prepare
thick electrode sheets with >100 µm thickness without cracking.
Further works such as designing a molecular weight and a
structure of the sulfide polymer will improve the adhesiveness of
the binder. Thus, the flexible and ionically conductive sulfide
polymer prepared herein is expected to facilitate the development
of more robust electrode/electrolyte interfaces in ASSBs.

Methods
Material synthesis. Solid electrolytes were prepared by ball milling appropriate
amounts of Li2S (Furuuchi Chemical Corp.) and P2S5 (Sigma-Aldrich) at 500 rpm
for 20 h using ZrO2 pots (volume: 45 mL) and balls (diameter: 5 mm). The thus
obtained Li3PS4 was polymerized by ball milling with I2 (Kojundo Chemical Lab.
Co.) at 500 rpm for 20 h. Dehydrated heptane (Fujifilm Wako Pure Chemical
Corp.) was added in the pots with the starting materials as a medium for ball
milling. The heptane medium was removed after ball milling by drying the samples
at room temperature. The extent of S–S bridging was determined by I2 loading. The
I2-induced polymerization of Li3PS4 and I2 was also carried out by one-day stirring
in anisole at 60 °C and a total solid content of 25 wt%. The resulting Li3PS4-I2
polymer solution was dried in a vacuum at 60 °C. All the samples were synthesized
in a dry Ar atmosphere.

Material characterization. PXRD patterns (SmartLab, Rigaku; Cu Kα radiation,
2θ= 10−60°, step = 0.02°) were recorded in sealed vessels under dry Ar. Raman
spectra (LabRAM HR Evolution, HORIBA) were recorded in the wavenumber
range 100–800 cm−1 using an exposure of 1 s 30 times and an excitation laser with
a wavelength of 532 nm. For Raman measurements, the samples were sealed in
glass tubes filled with dry Ar. Solid-state magic-angle-spinning 31P NMR
(ECZ400R, JEOL) measurements were performed at a spinning speed of 12 kHz.
The powdered samples were sealed in spinners in a dry Ar-filled glove box. A 90°
3.8 μs pulse with a recycle delay of 300 s was used, and the observed frequency was
161.944MHz. Powder morphologies and pellet fracture cross-sections were

examined by scanning electron microscopy (SEM; JSM-7800F, JEOL). Sample
pellets were prepared by pressing the powders at 333MPa and room temperature.
All SEM samples were prepared in a dry Ar-filled glove box and transferred in
sealed vessels.

Preparation of solid electrolyte and electrode composite sheets. The Li3PS4-I2
(1:1) polymer synthesized by ball milling was used as a binder. Solid electrolyte
sheets were prepared by mixing Li3PS4 powders with the Li3PS4-I2 (1:1) polymer in
anisole in a weight ratio of 95:5 followed by coating on Al current collector sheets.
Electrode composite sheets were also prepared by coating slurries of LiNbO3-
coated LiNi1/3Co1/3Mn1/3O2 (NMC; active material)55, argyrodite-type Li6PS5Cl
(solid electrolyte)56,57, acetylene black, and the Li3PS4-I2 (1:1) polymer in anisole
(70:30:5:5, w/w/w/w) on Al current collector sheets. The sheets were dried at 60 °C
in a dry Ar atmosphere overnight and further dried in a vacuum at 160 °C for 3 h.

Conductivity measurements. Powders or sheets were put into a polyimide tube
with a diameter of 10 mm and sandwiched between two stainless steel rods as an
ion-blocking electrode. The cells were pressed at 333MPa, and conductivities were
measured at least three times at room temperature using an AC impedance ana-
lyzer (cell test system 1470E, Solartron Analytical; lead wires connected to stainless
steel rods) in the frequency range from 10 Hz to 1MHz. All procedures were
conducted under dry Ar.

All-solid-state cell assembly and electrochemical measurements. NMC com-
posite sheets (NMC loading= ~2mg) punched into circles with a diameter of
9.5mm and a Li3PS4 separator layer (80 mg) were put into a polyimide tube (10mm
in diameter) and pressed together at 296MPa. A Li-In alloy foil (Li foil: thickness
0.2mm, diameter 4 mm, and In foil: thickness 0.1mm, diameter 8 mm) was placed
on the surface of the separator side of the bilayer pellet as a counter electrode. The
three-layered pellet was sandwiched between two stainless steel rods as a current
collector, and a pressure of 111MPa was applied to assemble the cell. All processes
were performed in a dry Ar-filled glove box (DBO-2NKP, Miwa Manufacturing Co.,
Ltd.). Charge-discharge tests were carried out at 0.071mA cm−2 in the first five
cycles and at 0.14mA cm−2 in the subsequent cycles at 30 °C under dry Ar using an
electrochemical measurement device (BTS-2004, Nagano Co.). Cell resistance was
measured after the first charge using an AC impedance analyzer (cell test system
1470E, Solartron Analytical). The cells were uniaxially pressed under 75MPa during
the electrochemical measurements.

Data availability
The datasets that support the findings of this study are available from the corresponding
authors upon reasonable request.
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