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A unified perturbative approach to electrocaloric
effects
Mónica Graf 1 & Jorge Íñiguez 1,2✉

The electrocaloric effect, that is, the temperature change experienced by an insulator upon

application of an electric field, offers promising ecofriendly alternatives to refrigeration.

However, the theoretical treatments of this response are mostly case specific and lack a

unified picture revealing the similarities and differences among the various known effects.

Here, we show that the electrocaloric effect lends itself to a straightforward interpretation

when expressed as a Taylor series in the external field. Our formalism explains in a unified

and simple way the most notable small-field effects reported in the literature, namely the so-

called normal and inverse electrocaloric responses, corresponding to an increase or decrease

of temperature under applied field, as usually found in ferroelectrics or antiferroelectrics,

respectively. This helps us to clarify their physical interpretation. We then discuss in detail

atomistic simulations for the prototype ferroelectric PbTiO3, explicitly evaluating subtle

predictions of the theory, such as the occurrence of competing contributions to the elec-

trocaloric response.
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An electric field can be used to change the temperature of
an insulator, by virtue of the so-called electrocaloric effect.
Electrocaloric effects hold the promise of an ecofriendly

alternative to refrigeration, one of the most energy-consuming
activities today and in the foreseeable future. Electrocaloric effects
are strong in ferroelectric and antiferroelectric materials because
of their anomalously large dielectric responses and the field-
driven phase transitions that can be easily induced near the Curie
point1.

The thermodynamic description of the electrocaloric cooling
cycle is well-established1. The key step is the adiabatic tempera-
ture change, which can be expressed as

ΔTðEαÞ ¼ �
Z Eα

0

T
CE

∂S
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α

� �
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α

¼ �
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where the integral runs from zero to a final electric field Eα,
applied along the α Cartesian direction. S, T, and CE are,
respectively, the entropy, temperature, and constant-field heat
capacity. Pα is the polarization component conjugate to the
applied field Eα, and its T-derivative is the pyroelectric coefficient
πα. Note that we have used the Maxwell relation between the field
derivative of the entropy and the pyroelectric vector, which is
expected to hold for ergodic materials. (Thus, the formalism
introduced here is, in principle, not applicable to relaxor ferro-
electrics.) Note also that the repeated α index does not involve an
implicit sum; we write this α, on both sides of the equation, to
emphasize the fact that the electrocaloric response can be
anisotropic.

Also important is the isothermal entropy change

ΔSðEαÞ ¼
Z Eα

0
παdE

0
α; ð2Þ

which quantifies the amount of heat the electrocaloric material
will exchange with the object to be cooled. The product ΔT(Eα)ΔS
(Eα) is usually taken as the figure of merit for electrocaloric
cooling performance.

These expressions are deceivingly simple, as all the quantities
in the integrands depend on both field and temperature (itself
field-dependent, by virtue of the electrocaloric effect). Further,
they may present complex behaviors (in particular, dis-
continuities) across the field- and temperature-driven phase
transitions.

There are well-known strategies to solve these integrals self-
consistently1; this will not be our focus here. Rather, we want to
examine the ingredient that has the greatest influence on the basic
features (magnitude and sign) of the electrocaloric temperature
and entropy changes, namely, the pyroelectric vector π. Indeed, π
fully determines ΔS(Eα); further, of the quantities contributing to
ΔT(Eα), π is likely to be the most sensitive to an electric field and,
more importantly, it is the only one whose sign is not defined.
(Both T and CE are always positive.)

Interestingly, we can rewrite Eq. (1) in differential form as

dTðEαÞ
dEα

¼ � T
CE

∂S
∂Eα

� �
T

: ð3Þ

This expression is the basis for the physical interpretation of
electrocaloric effects1. For example, it is experimentally observed
that, in ferroelectrics, the application of an electric field usually
results in a positive temperature change, which is attributed to the
fact that electric fields create order (reduce the entropy) in such

systems1. In contrast, negative values of ΔT have been observed in
antiferroelectrics2–5, or when a field is applied perpendicular to
the polarization of a ferroelectric phase6, which is compatible
with the intuitive notion that, in such cases, the electric field will
destabilize the equilibrium state and cause disorder (increase the
entropy). These diverse observations have been reproduced by
atomistic simulations7–13 and explained by the corresponding
Landau phenomenological theories1,2,12,14, suggesting that we
understand electrocaloric effects quite well.

However, we think the situation is not fully satisfactory, for one
main reason: The theoretical treatments in the literature are case-
specific, and we lack a unified and simple picture revealing the
similarities and differences among the various known effects.
Also, we find that, while intuitively appealing, some frequent
assumptions (i.e., that electric fields cause disorder in antiferro-
electrics) are somewhat vague, and we miss a formalism that
allows us to interpret the observed behaviors (and eventually
think about new ones) in a more rigorous manner. Here, we
provide such a formalism, and show how it helps us to rationalize
all the (small-field) electrocaloric effects observed in the literature.
Further, we show the results of atomistic simulations that allow us
to explicitly evaluate intriguing predictions of the theory, such as
the existence of competing contributions to the electrocaloric
response.

Results
Formal considerations. Let us focus on how πα controls ΔT(Eα).
For the sake of simplicity, we work with an approximate version
of the adiabatic temperature change

ΔTðEαÞ � �T ð0Þ

Cð0Þ
E

Z Eα

0
παðT ð0ÞÞ dE0

α; ð4Þ

where the “(0)” superscript marks values evaluated at zero applied
field and at the zero-field temperature T(0). Thus, this approx-
imate expression captures the electrocaloric effect as obtained
when we neglect the field dependence of T and CE, as well as the
variation of πα and CE caused by electrocaloric heating or cooling;
these are common approximations in the electrocaloric literature.
(Unless we work at low temperatures, we can safely assume
∣ΔT(Eα)∣ ≪ T(0), as the largest measured electrocaloric effects are
typically below 20 K15. Also, we can expect relatively small var-
iations in CE except in the close vicinity of phase transitions; more
on this below.)

Let us examine Eq. (4) analytically. We start by writing P as a
Taylor series in E,

Pμ ¼ Pð0Þ
μ þ ϵ0 ∑

β
χð0ÞμβEβ þ ϵ0 ∑

βγ
χð1ÞμβγEβEγ þ :::; ð5Þ

where P(0) is the spontaneous polarization, χ(n) is the nth-order
dielectric susceptibility tensor, and ϵ0 is the vacuum permittivity.
For convenience, we work with a Cartesian coordinate system
with one axis parallel to α, the direction of the applied field.
Hence, we have Eβ= δβαEα, where δβα is the Kronecker delta; we
thus obtain the α component of the polarization as

Pα ¼ Pð0Þ
α þ ϵ0χ

ð0Þ
ααEα þ ϵ0χ

ð1Þ
αααE

2
α þ :::; ð6Þ

where only the α-diagonal tensor elements appear. This
expression for Pα is general and can be used to describe any
phase of an insulating material, be it ferroelectric, antiferro-
electric, paraelectric, or simply dielectric. Also, note that the
dielectric tensors in the above equations describe the properties of
a single crystal with a well-defined orientation with respect to our
Cartesian setting.

By taking the T-derivative of Eq. (6) at constant field, we obtain

πα ¼ πð0Þ
α þ πð1ÞααEα þ πð2Þ

αααE
2
α þ :::; ð7Þ

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00167-6

2 COMMUNICATIONS MATERIALS |            (2021) 2:60 | https://doi.org/10.1038/s43246-021-00167-6 | www.nature.com/commsmat

www.nature.com/commsmat


where the π(0) vector captures the T-dependence of the
spontaneous polarization P(0). For n ≥ 1, the π(n) tensors account
for the field-induced pyroelectric effect, with

πðnÞ ¼ ϵ0
∂χðn�1Þ

∂T

� �
E

; ð8Þ

where the pyroelectric tensor of nth-order in the field series
depends on the susceptibility of (n− 1)th-order. Using Eq. (7),
we resolve Eq. (4) and obtain

ΔTðEαÞ � �T ð0Þ
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3
α þ :::

�

¼ ΔT ð1ÞðEαÞ þ ΔT ð2ÞðEαÞ þ ΔT ð3ÞðEαÞ þ :::;

ð9Þ

where we define ΔT(n)(Eα) as the nth-order contribution to the
adiabatic temperature change. Also, here it is implicitly assumed
that the pyroelectric coefficients are evaluated at T(0). Let us now
see how this expression allows us to understand all the known
electrocaloric effects in ferroelectric and antiferroelectric com-
pounds for small applied electric fields. Our conclusions are
summarized in Table 1.

For the sake of concreteness, here we discuss ferroelectric and
antiferroelectric materials with an isotropic (e.g., cubic) high-
temperature paraelectric phase, as is the case of perovskite oxides
(e.g., PbTiO3 or PbZrO3), noting that our arguments can be
generalized.

Let us begin by discussing the electrocaloric response above the
Curie temperature (TC) for a material that can be either
ferroelectric or antiferroelectric. In this case, we do not have
any spontaneous polarization (P(0)= π(0)= 0); hence, ΔT(Eα) ≈
ΔT(2)(Eα), which is dominated by the lowest-order field-induced
pyroelectric effect, π(1). As we know from Eq. (8), π(1) is just the
T-derivative of the linear dielectric susceptibility χ(0).

As it is well-known, both ferroelectric and antiferroelectric
phase transitions are characterized by a dielectric anomaly at zero
field, i.e., a maximum of χ(0) at TC. To fix ideas, we can imagine
that all the diagonal components of χ(0) follow a Curie–Weiss law
approximately. (Our simulation results for PbTiO3—see Fig. 1—
are a representative case.) This maximum controls the T-
dependence of χ(0) in a wide range around TC, yielding πð1Þαα > 0
for T < TC and πð1Þ

αα < 0 for T > TC. Hence, in particular, the
paraelectric phase of all ferroelectrics and antiferroelectrics is
characterized by πð1Þ

αα < 0; according to Eq. (9), this should result in
ΔT(Eα) > 0 for all α directions, as it is indeed observed.

Interestingly, the situation is rather similar for an antiferroelectric
state: we still have P(0)= π(0)= 0 and ΔTðEαÞ � ΔT ð2ÞðEαÞ / πð1Þαα .
However, now we have T < TC and, as mentioned above, πð1Þ

αα > 0.
Hence, we expect ΔT(Eα) < 0, in agreement with the experimental
observations.

Note that in all the above cases the electrocaloric temperature
change does not depend on the sign of the applied field, a feature
that is expected from the symmetry of paraelectric and
antiferroelectric states, and which we readily obtain from our
formalism.

Suppose now that we are in a ferroelectric phase. Without loss
of generality, we assume that P(0) is parallel to the z Cartesian
direction, with Pð0Þ

z > 0 and Pð0Þ
x ¼ Pð0Þ

y ¼ 0. In this case, the π(0)

vector has one nonzero component (πð0Þz < 0) and two null ones
(πð0Þx ¼ πð0Þ

y ¼ 0). Further, we have πð1Þ
αα > 0 for all α (from the

Curie–Weiss law and the fact that T < TC).
Let us imagine we apply a field Ex along the x Cartesian

direction, thus perpendicular to P(0). This case is exactly
analogous to the antiferroelectric state discussed above: according
to Eq. (9), the response is controlled by πð1Þ

xx > 0. Hence, exactly as
in the antiferroelectric state, we expect an inverse electrocaloric
response with ΔT(Ex) < 0, an experimentally observed behavior
that might seem surprising6,16, but is readily obtained and
explained within our formalism.

Finally, suppose that we apply a field along z, the direction of the
spontaneous polarization. Here, for the first time in this discussion,
we have a nonzero linear contribution to the adiabatic temperature
change, and we can write ΔT(Ez) ≈ΔT(1)(Ez)+ΔT(2)(Ez).

Concerning ΔT(2)(Ez), the situation is identical to the above
cases for T < TC: it is dominated by πð1Þ

zz > 0, which yields ΔT(2)

(Ez) < 0 regardless of the sign of the applied field Ez.
In contrast, the linear contribution does depend on whether Ez

is parallel or antiparallel to spontaneous polarization. Further, ΔT
(1)(Ez) is proportional to πð0Þ

z , which is negative when Pð0Þ
z > 0.

Hence, we have: ΔT(1)(Ez) > 0 for a parallel field (Ez > 0), and ΔT
(1)(Ez) < 0 when the field goes against Pz.

Thus, we have two qualitatively different cases. If the applied
field goes against the polarization, ΔT(1)(Ez) and ΔT(2)(Ez) are
both negative, and we have every reason to expect ΔT(Ez) < 0.
However, for fields parallel to polarization, we have a competition
between the linear and quadratic contributions to ΔT(Ez), and the
net result is in principle undetermined. Interestingly, experi-
mental studies of ferroelectric phases show – without exception,
as far as we know —that the temperature change is positive for
fields parallel to the spontaneous polarization1, and negative for
fields tending to reverse it6,17,18. This is in agreement with the
expectations from our formalism, suggesting that, for the case of
parallel fields, the linear effect (ΔT ð1ÞðEzÞ / πð0Þz Ez > 0) dominates
over the quadratic one (ΔT ð2ÞðEzÞ / πð1Þzz E

2
z < 0).

Hence, as summarized in Table 1, we find that, in all the cases
considered, the leading nonzero contribution to ΔT(Eα) agrees in
sign with the adiabatic temperature change observed experimen-
tally for relatively small applied fields. We should note that the
formalism just introduced bears obvious similarities with
previously proposed theories to discuss electrocaloric effects,
e.g., in the context of antiferroelectrics2,9. The novelty here relies
on the fact that our equations are general and can be applied to
any material and phase (ferroelectric, antiferroelectric, para-
electric, or simply dielectric), revealing the way they are
connected and evidencing the (somewhat trivial) origin of the
so-called inverse effects. Our formalism also emphasizes that
the basic electrocaloric response (i.e., the sign of the T-change)
can be understood from simple universal arguments, not relying
on specific atomistic or phenomenological models.

Numerical results. To gain further insight, and to evaluate the
accuracy of low-order approximations to ΔT(Eα), we now com-
pute explicitly the ΔT(n)(Eα) terms in Eq. (9) for prototype
compound PbTiO3 (PTO).

Table 1 Expected electrocaloric effects.

Case, P(0) E ΔT(1)(Eα) ΔT(2)(Eα) exp.

PE (T > TC) P(0)= 0 any 0 > 0 > 0
AFE (T < TC) P(0)= 0 any 0 < 0 < 0
FE (T < TC) ð0;0; Pð0Þz >0Þ Ex 0 < 0 < 0

Ez > 0 > 0 < 0 > 0
Ez < 0 < 0 < 0 < 0

The Table includes the paraelectric (PE), ferroelectric (FE), and antiferroelectric (AFE) states.
Shown are the expected signs of the linear and quadratic contributions to ΔT(Eα) (ΔT(1)(Eα) and
ΔT(2)(Eα) columns, see text), as well as the sign of the experimentally measured ΔT ("exp.”
column).
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We simulate PTO using the so-called second-principles
methods introduced in refs. 19 and 20, i.e., atomistic model
potentials with all parameters fitted from first principles and
whose accuracy can be systematically improved (see “Methods”).
More precisely, we use the model potential first introduced in
ref. 19, which has proven its accuracy in reproducing the basic
ferroelectric behavior of the material as well as many subtle
structural features, as e.g., related to its domain walls21,22. Let us
stress that, in these simulations, all the degrees of freedom for the
lattice (i.e., all atomic positions, all strains) are treated on equal
footing; hence, our calculations include all contributions to the
electrocaloric response, and there is in fact no easy way to
differentiate them in the manner is often done in phenomen-
ological Landau approaches (where it is natural to distinguish the
"dipole” subsystem from the “phonon” bath1). Finally, let us
mention that the only noteworthy deficiency of our second-
principles model pertains to the predicted TC, which is lower than
the experimental one (510 K vs 760 K), but this is not critical for
the present purposes.

We solve our PTO model as a function of temperature and
applied electric field19 by running Monte Carlo simulations, using
periodically repeated supercells composed of 10 × 10 × 10 or 12 ×
12 × 12 elemental perovskite units. (Larger cells are considered in
the proximity of TC.) At a given T, we run 10,000 Monte Carlo
sweeps for thermalization, followed by 75,000 to 100,000 sweeps
to compute averages. We checked that these calculation
conditions yield sufficiently accurate results.

The key quantities we monitor are the equilibrium polarization
P, the dielectric susceptibility χ, the pyroelectric vector π, and the
specific heat CE, which we compute using standard linear-
response formulas23. (The formulas used here are given in the
Methods section; they closely resemble the ones employed in
other studies of electrocaloric effects by Monte Carlo simulations,
e.g., in refs. 12,14.) We can thus compute the Taylor series for π

(Eq. (7)) and for ΔT(Eα) (Eq. (9)). (In “Methods” and
Supplementary Figs. 1, 2, and 3 we give extra details on the
calculation of the ΔT(n)(Eα) contributions.) Our results are
summarized in Fig. 1.

We obtain a ferroelectric phase transition at TC= 510 K
(Fig. 1a), marked by a near divergence of the susceptibility
(Fig. 1b); this is characteristic of a weakly first-order transforma-
tion and is in qualitative agreement with the experimental
result24. Without loss of generality, we choose Pð0Þ ¼ ð0; 0; Pð0Þ

z Þ,
with Pð0Þ

z > 0 below TC. Of note is the qualitative change of the
phase transition as we apply an electric field: for the small applied
field, the susceptibility peak reaches higher values, reflecting the
fact that the transition becomes more continuous (for a
discussion of this kind of effect, see, e.g., refs. 25 and 26); for
larger fields, the transition becomes diffuse and the related
anomalies in the susceptibility (Fig. 1b) and heat capacity (Fig. 1c)
tend to disappear.

For clarity, Fig. 1b only shows the temperature and field
dependence of one susceptibility component, χzz. However, note
that, by symmetry, the χ tensor only has diagonal components;
further, for T > TC they are all equal (cubic phase), while for T <
TC we have χxx= χyy > χzz (tetragonal phase). (In the ferroelectric
phase, the polar direction is electrically stiffer; this is a well-
known feature of ferroelectric perovskites, related to what is
usually called “easy polarization rotation”27.) As can be seen in
Supplementary Fig. 4, the three components have an approximate
Curie–Weiss behavior, with a maximum at TC and a monotonic
T-dependence on both sides of the transition point.

Figure 1d shows our results for the low-order pyroelectric
coefficients. πð0Þ

z is null above the transition point and negative
below it, as expected. As for π(1), we find the expected behavior as
well: the tensor has nonzero diagonal components at all
temperatures, nearly diverging at TC, and changing signs as the
system goes through the transition. Note that our numerical

Fig. 1 Simulation results for PbTiO3.We show the temperature and field dependence of P (a), χ (b), and specific heat CE (c). d shows the T-dependence of
the πð0Þz , πð1Þxx , and πð1Þzz components of the pyroelectric tensors; they correspond to the case in which we have a positive spontaneous polarization along z, as
discussed in the text. Also shown is ΔT(Ez) obtained for different electric fields (e), as well as the result for Ez= 10MVm−1 decomposed in the different
ΔT(n)(Ez) contributions (f). a–c Different colors and symbols are used to represent different values of the applied electric field (black circles for zero field,
etc.). d Different colors and symbols correspond to different tensor components (black squares for πð0Þz , etc.). e Different colors and symbols correspond to
different electric fields (gray circles for 0.5MVm−1, etc.). f Different colors and symbols correspond to different orders in the applied field (black circles for
the total temperature change, blue squares for the term that depends linearly on the field, etc.). e, f No results are shown for T≳ TC whenever the applied
E induces a transition.
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results for πð0Þ
z and πð1Þzz ratify the competition that occurs when a

field is applied parallel to Pð0Þ
z , as discussed above. Also, our results

for π(1) reveal an essentially isotropic tensor at all temperatures,
even in the tetragonal phase. (The tetragonal symmetry implies
πð1Þ
xx ¼ πð1Þ

yy ≠ π
ð1Þ
zz ; yet, in Fig. 1d, a sizeable difference between the

xx and zz components is found only for T≲ TC.)
Figure 1e shows the computed ΔT(Ez) for various positive fields,

with Ez up to 10MVm−1, as a function of temperature. The results
are obtained by evaluating the Taylor series in Eq. (9) up to 5th
order, which is enough to get a converged T-change except in the
immediate vicinity of the phase transition. More specifically, Fig. 1f
shows that, even for a large field of 10MVm−1, the electrocaloric
effect at T < TC is dominated by the leading contribution ΔT(1)(Ez),
higher-orders becoming significant only very close to TC (see the
result at 490 K). In fact, as shown in Supplementary Fig. 2, we find
that the leading contribution to the electrocaloric response—i.e., ΔT
(1)(Ez) below TC and ΔT(2)(Ez) above TC, respectively—is usually a
very good approximation of the total effect.

Let us stress that in Fig. 1e, f, we restrict ourselves to fields that
are small enough so that no first-order phase transition is
induced. This is why we do not show any data very close to TC,
and why the fields considered for T > TC are relatively tiny. (Close
to TC, the paraelectric phase is easily transformed into the polar
one. See representative results in Supplementary Fig. 3.) This is
consistent with our perturbative approach to compute ΔT(Eα),
which is designed to describe the properties of the continuously
deformed zero-field state. To treat a first-order transition, one
could split the integral for ΔT(Eα) in low- and high-field parts,
using different perturbative P(E) expansions for each of them. In
addition, one should account for the latent heat associated with
the discontinuous transformation28–30. The information to tackle
such situations is in principle available from our Monte Carlo
calculations. (We can compute latent heat from the thermal-
averaged internal energies31). However, we should note that, for
treating first-order transitions, direct non-perturbative computa-
tional approaches based on microcanonical molecular dynamics8

or constrained Monte Carlo simulations32 are better suited.
The values obtained for ΔT(Ez) (e.g., a maximum of 0.25 K

when TC is approached from below for a field of 0.5 MVm−1) are
comparable with electrocaloric effects measured for PTO; for
example, ref. 33 reports a temperature change of 0.1 K for T≲ TC
and a field of 0.15 MVm−1, and a maximum T-change of 1.9 K at
TC. (We also obtain ΔS(Ez) ≈− 2500 J K−1 m−3 for a field of 0.5
MVm−1 at T≲ TC, while the ref. 33 reports a maximum entropy
change of about− 16,500 J K−1 m−3 for a field of 0.15MVm−1

applied exactly at TC.) Our results are also consistent with other
theoretical estimates of the electrocaloric effect for PTO34.
Finally, in Supplementary Fig. 5, we evaluate the approximations
made in Eq. (9)—i.e., the use of the zero-field values for T and CE,
so they can be taken out of the integral—and find that their
impact is negligible (even for large fields) except very close to TC.

Discussion
In view of the above, let us comment on the usual interpretation
of electrocaloric effects in terms of field-induced order or dis-
order. For illustrative purposes, it is convenient to pay attention
to the isothermal entropy change, which, from Eqs. (2) and (7),
can be written as

ΔSðEαÞ ¼ πð0Þ
α Eα þ

1
2
πð1Þ
ααE

2
α þOðE3

αÞ
¼ ΔSð1ÞðEαÞ þ ΔSð2ÞðEαÞ þ :::

¼ πð0Þ
α þ 1

2
πð1Þ
ααEα þ :::

� �
Eα:

ð10Þ

The last line suggests that we can think of ΔS(Ez) as depending
linearly on Ez, the corresponding proportionality constant having
spontaneous (�πð0Þ

α ) and field-induced (�πð1ÞααEα) pyroelectric
contributions.

Let us consider a ferroelectric state with Pð0Þ
z > 0, and imagine

we apply an electric field Ez > 0. For simplicity (and without loss
of generality), let us also assume that the dielectric response is
dominated by the linear effect χð0Þzz , higher-order terms being
negligible to a good approximation. In such a situation, it is
physically sound to assume that the applied field creates order, as
it contributes to further align the local electric dipoles in the
ferroelectric state and results in a larger order parameter Pz. This
field-induced ordering is captured by χð0Þzz > 0, and we know that
the effect gets stronger as we approach T ≲ TC. As a result of this
ordering, we expect the entropy to decrease in an isothermal
process (ΔS(Ez) < 0), and the temperature to rise (ΔT(Ez) > 0) if
the process is adiabatic. These are clear expectations that one
would hardly question.

Let us inspect how these expected variations of S and T come
about in our formalism. Following the simplification mentioned
above (linear dielectric response), we can write ΔS(Ez) ≈ΔS(1)(Ez)+
ΔS(2)(Ez). (The discussion for ΔT(Ez) is analogous.) The first term
(ΔSð1ÞðEzÞ ¼ πð0Þ

z Ez) results in a reduction of the entropy, as we
have πð0Þ

z <0 for the spontaneous pyroelectric effect. This seems
consistent with the ordering argument given above. However, it is
important to stress that this term does not contain any information
about the dielectric response to the applied field, or about the order
the field may create. (There is no generally expected thermodynamic
relationship between ∂Pz/∂Ez and ∂Pz/∂T.) Instead, the entropy
change is fully determined by the T-dependence of the spontaneous
polarization: Pð0Þ

z > 0 decreases as we approach TC, a behavior that is
normal.

The response to an applied field does control the quadratic con-
tribution ΔS(2)(Ez), where the spontaneous pyroelectric effect in ΔS(0)

(Ez) is replaced by the field-induced one (�πð1Þzz Ez). As mentioned
above, it is clear that the applied field strengthens the dipole order of
the ferroelectric state, as quantified by its order parameter: we have
Pð0Þ
z > 0 and a field-induced polarization change ϵ0χ

ð0Þ
zz Ez > 0. How-

ever, the corresponding entropy change is positive, since πð1Þ
zz /

∂χð0Þzz =∂T > 0 for T <TC. Thus, the same physical mechanism (cap-
tured by χð0Þzz ) results in field-induced order and a positive con-
tribution to the entropy. Indeed, in what concerns the isothermal
entropy change, what matters is not the ordering of the dipoles at a
given T. Instead, we have to pay attention to how the field-induced
effect changes with temperature. In a ferroelectric state, the
ordering caused by the field grows as we heat up towards TC, that is,
we have a positive field-induced pyroelectric effect. This somewhat
anomalous behavior (the higher the temperature, the greater
the — induced — order) is opposite to the spontaneous pyroelectric
effect, and is the one causing ΔS(2)(Ez) > 0 (and ΔT(2)(Ez) < 0).

Hence, the quadratic contribution to the electrocaloric effect in
a ferroelectric state, dominated by the linear susceptibility χð0Þzz ,
seems paradoxical: the field creates order (as quantified by the
order parameter) but the entropy increases. The key to the puzzle
is that polarization (order) created at a given T is not what
controls the entropy; its T-derivative is. This point is hardly new,
as it is quite clear from the well-known equations governing
electrocaloric effects (Eqs. (1) and (2)); yet, it becomes particu-
larly apparent in our perturbative approach.

Keeping the above in mind, it is easy to interpret the electro-
caloric effects in paraelectric and antiferroelectric states, which
are dominated by the quadratic contribution. In the paraelectric
case, the field-induced order decreases as T increases: at T > TC
we have πð2Þ

zz < 0, which yields ΔS(Ez) ≈ ΔS(2)(Ez) < 0 and ΔT(Ez) ≈
ΔT(2)(Ez) > 0. It is tempting to interpret this result by focusing on
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the response at a given T (the field creates order, hence the
entropy should get reduced), but that would not be correct.
Instead, the focus should be on the field-induced pyroelectric
effect which, in this case, behaves in the normal way, i.e., we have
a weaker — induced — order at a higher temperature.

Finally, the inverse electrocaloric behavior of antiferroelectric
states is also readily explained within this picture. In that case, we
are at T < TC, and have ΔSðEzÞ � ΔSð2ÞðEzÞ / ðπð2Þzz EzÞEz > 0 (and
ΔT(Ez) ≈ ΔT(2)(Ez) < 0). According to the above discussion, this
inverse behavior stems from the fact that the applied field creates
polarization more efficiently as T grows toward TC. Consequently,
this disproves the frequent interpretation that the inverse elec-
trocaloric response of antiferroelectric states is caused by field-
induced disorder at a given T. As a matter of fact, the above
analysis shows that arguments focusing on the field-induced (dis)
order at a given T — and overlooking the T-derivative — are
incorrect.

To conclude this part, let us comment on a ferroelectric type
absent in our discussion: relaxors. As mentioned above (Eq. (1)),
ergodicity breaks down in these materials, and the use of the
Maxwell relation our formalism relies on is questionable.
Nevertheless, some experimental35 and theoretical14 reports
suggest that, in fact, Eq. (1) approximately captures the electro-
caloric response of these systems at a quantitative level; further, it
seems to yield qualitatively correct results. Hence, we think that,
in the future, it may be worth considering whether our formalism,
and the kind of rules summarized in Table 1, might be useful in
investigations of relaxors.

In summary, we have introduced a perturbative approach to
the electrocaloric effect. This formalism can be applied in quan-
titative simulation studies, in a straightforward way as long as
field-induced (first-order) phase transitions are not present. More
specifically, our simulations for ferroelectric PbTiO3 show that,
except in the vicinity of the phase transition, a low-order
approximation captures the electrocaloric response with great
quantitative accuracy. Most importantly, our formalism unifies
and clarifies the physical interpretation of all the small-field
electrocaloric effects (normal and inverse) observed in ferro-
electric and antiferroelectric materials.

Methods
Second-principles simulations. For the second-principles simulations, we used
the software called SCALE-UP, which implements the effective-potential approach
described in detail in refs. 19,20. The procedure to obtain this package is described
by the developers in 36. The reader may be interested to know that the same
second-principles scheme to simulate lattice-dynamical properties, introduced by
Wojdeł et al. in ref. 19, has also been implemented in the package multibinit37.

As for the visualization and analysis of the simulation data (e.g., for taking
numerical derivatives), we used standard free open-source tools that can be readily
obtained to run under linux; in particular, much of the work was done using the
QtiPlot package38.

Physical properties from the Monte Carlo simulations. Here, we explain how to
compute all the quantities that are relevant in this study—i.e., χ, π, and CE—from
Monte Carlo simulations, at given conditions of temperature and applied electric
field. Let us begin with the electric susceptibility,

χαα0 ¼ ϵ�1
0

∂hPαi
∂Eα0

; ð11Þ

where α and α0 label spatial directions in Cartesian coordinates, and 〈. . . 〉 indicates
the thermal average (equilibrium value) as obtained from our Monte Carlo
simulations. This thermal average can be written as

hPαi ¼
1
Z
∑
i
Pi;αexp

�β Ui�VPi �Eð Þ; ð12Þ

where Z is the partition function given by

Z ¼ ∑
i
exp�β Ui�VPi �Eð Þ: ð13Þ

The sums above run over all the microscopic states of the material, labeled by i; Ui,
and Pi are the energy and polarization of state i, respectively; β ¼ ðkBTÞ�1, where

kB is Boltzmann’s constant and T is the temperature; finally, E is the applied electric
field and V is the volume of the simulated system (as usually done23, we take the
equilibrium volume and assume that volume fluctuations are negligible). Com-
puting analytically the field derivative, we obtain

χαα0 ¼
βV
ϵ0

PαPα0
� �� Pα

� �hPα0 i
� �

ð14Þ

Analogously, we can derive the pyroelectric tensor, π. We have

πα ¼ ∂ Pα

� �
∂T

� �
E

¼ β

T
UPα

� �� Uh i Pα

� �� 	 ð15Þ

where

hUi ¼ 1
Z
∑
i
Uiexp

�β Ui�VPi �Eð Þ ð16Þ

is the equilibrium energy. Finally, for the specific heat CE we have

CE ¼ 1
V

∂ Uh i
∂T

� �
E

þ 15
2
NkB


 �
; ð17Þ

where N is the number of unit cells in the simulation supercell. Here, the first term
is related to the potential energy, while the second accounts for the (trivial) kinetic
contribution (note we have 3 × 5 degress of freedom in the five-atom perovskite
cell). Calculating the derivative, we finally get

CE ¼ 1
V

1

kBT
2 U2

� �� Uh i2� �þ 15
2
NkB


 �
: ð18Þ

Computing the adiabatic temperature change. To compute ΔT(n)(Eα) to arbi-
trary order (Eq. (9)), we proceed as follows.

ΔT(1)(Eα) is simply proportional to the spontaneous pyroelectric efffect
(πð0Þ=Cð0Þ

E , Eq. (9)), which we obtain directly from zero field Monte Carlo
simulations, by evaluating the thermal averages as described above.

The higher-order contributions are controlled by field-induced pyroelectricity
and can be deduced from the field-dependent susceptibility (see Eqs. (8) and (9)).
More precisely, for T < TC, we fit χzz= χzz(Ez) up to third order in the field Ez,
which allows us to compute terms up to ΔT(5)(Ez) in Eq. (9). For T > TC, we fit χzz
= χzz(Ez) up to fourth order in the field Ez, which allows us to compute terms up to
ΔT(6)(Ez). Supplementary Fig. 1 summarizes the outcomes of this fitting exercise.

Let us note that the slightly different fitting choices, above and below TC, were
adopted in view of the obtained results; in both cases, we tried to push the fit to
order as high as possible, while avoiding overfitting. It is also important to keep in
mind that, above TC, the χðnÞz:::z terms with odd n are zero by symmetry (i.e.,
χð1Þzzz ¼ χð3Þzzzzz ¼ ::: ¼ 0); in turn, this implies that the odd-order terms in the ΔT(Ez)
expansion are also null above TC.

Finally, we compute numerically (by finite differences) the temperature
derivatives of the susceptibility coefficients, and thus obtain the pyroelectric
contants πðnÞz:::z corresponding to Eq. (7). The ΔT(n)(Ez) are then trivially
calculated.

Representative results for the adiabatic temperature change are shown in
Supplementary Fig. 2. It should be stressed that, because our theory is a
perturbative one, behaviors associated to discontinuous phase transitions are left
out of the fit. A clear example of this occurs at temperatures immediately above TC,
where small fields are able to produce a transformation, as shown in
Supplementary Fig. 3. Hence, the computed dielectric constants at 510 K are not
fitted at all; and, above that temperature, the fitting range is restricted to small
electric fields (see Supplementary Fig. 1).

Data availability
All the relevant data are available from the authors upon reasonable request.

Code availability
The second-principles calculations are carried out using the package SCALE-UP which is
proprietary software. Some of the visualizations were done using the free package
QtiPlot38.
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