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Origin and control of ionic hydration patterns in
nanopores
Miraslau L. Barabash 1✉, William A. T. Gibby 1, Carlo Guardiani 1,3, Alex Smolyanitsky 2,
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In order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused

by the redistribution of surrounding water molecules. The redistribution is inhomogeneous,

anisotropic and strongly position-dependent, resulting in complex patterns that are routinely

observed in molecular dynamics simulations. Here, we study the physical origin of these

patterns and of how they can be predicted and controlled. We introduce an analytic model

able to predict the patterns in a graphene nanopore in terms of experimentally accessible

radial distribution functions, giving results that agree well with molecular dynamics simula-

tions. The patterns are attributable to a complex interplay of ionic hydration shells with water

layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim

atoms, and we discuss ways of controlling them. Our findings pave the way to designing

required transport properties into nanoionic devices by optimising the structure of the

hydration patterns.
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Ionic permeation through narrow water-filled channels and
pores is of profound importance in both biophysics and
technology1,2, finding applications in fuel cells3, biological ion

channels4, water desalination5–8, gas9 and isotope10 separation,
DNA sequencing11,12, and "blue energy” harvesting12–14. Ang-
ström-sized pores in artificially fabricated membranes are pro-
mising candidates for reproducible on-demand engineering and
control of selective ionic and molecular transport.

It is well-known that the structure of ionic hydration shells is one
of the key factors controlling ionic permeation in nanopores8,15–17.
In confined geometries, some of the water molecules are lost from
the hydration shells, and the resultant dehydration barrier is the
subject of extensive research8,17–28. One outcome is an appreciation
of the extraordinary complexity of the hydration patterns around an
ion in the pore18,22,29, as has been confirmed by numerous mole-
cular dynamics (MD) simulations5,8,22,30,31. The latter reveals that
the patterns are highly inhomogeneous, anisotropic and spatially
clustered near membranes32, inside nanotubes33, and in
nanoslits16,34. This clustering determines the distribution of charge
around the ion, the local dielectric permittivity35,36, and the
strength of the ions’ electrostatic interactions with their
surroundings37. However, to understand, characterise, and predict
the hydration patterns theoretically is a challenging problem2 that
hitherto has remained unresolved.

We now develop an analytic model that can predict the
hydration patterns of ions in nano-confinement through the use of
radial distribution functions (RDFs), evaluated in the bulk elec-
trolyte. We show that the patterns result from interference
between the ionic hydration shells, water layering near the
membranes, and the hydration cloud around the nanopore. We
compare the analytically predicted patterns with the results of MD
simulations for different ionic locations near graphene nanopores
with a diversity of shapes, geometries and strains. The results are
applicable to narrow biological channels24,38,39, functionalised
sub-nanopores24,25,40,41, nanotubes42 and nanoslits16,34. Thus, this
work takes an important step towards controlling the function of
nanoscale devices by tailoring the hydration patterns.

Results
Model. We consider graphene lattice43 with nanopore and an ion
(e.g. K+) in a water box (see Fig. 1). The pore is created by
removing one hexagon of carbon atoms from near the geome-
trical centre of the lattice.

For simplicity, we consider the carbons and the ion as being
clamped. The spatial distribution of water oxygens is given by

ρ rw1 j rcm
� �

; ri
� �

¼ 1
Z

Z
¼

Z
e�βH rw1 ;¼ ;rwNw ;pw1 ;¼ ;pwNw jfrcmg;rið Þ

´ drw2 ¼ drwNw dpw1 ¼ dpwNw

ð1Þ

where H(⋅) is the all-atom Hamiltonian, comprising the
water–ion Uiw, water–lattice Uic and water–water Uww interac-
tions; Z is the partition function, β= 1/kBT, kB is Boltzmann’s
constant and T is the absolute temperature. Integration over
momenta pwn leads to a factor that subsequently cancels out due to
normalisation. Here frwn g, frcmg, ri represent the 3D coordinates of
the water molecules, atoms of the lattice, and the ion, respectively.
Water molecules can be chosen arbitrarily, and so we omit the
sub-index in r1 for clarity, so that r is used hereafter.
Supplementary Discussions 1 and 2 in Supplementary Methods
provide a more detailed derivation of the quantities in this
section.

Direct application of the analytic formula (1) is not feasible due
to a large number of degrees of freedom in the solution. However,
statistical averaging over all water molecules generates rigorously
the potential of the mean force (PMF)44–46 which can be
approximated as47,p. 77

Wðrj rcm
� �

; riÞ ¼ W iwðr� riÞ þ∑
Nc

m
Wcwðr� rcmÞ: ð2Þ

Note that the interactions of the ion or carbon atoms with other
water molecules are already incorporated implicitly within the
PMF. Note also that a similar strategy—construction of a multi-
ion PMF from spherically symmetrical pairwise components
measured in separate MD simulations— has been used success-
fully in an atomic-resolution Brownian dynamics study of the
ionic selectivity of α-Hemolysin48 and to describe DNA
translocation through nanopores49.

Importantly, the water PMF is related rigorously to the
correlation function W (CF) via44–46

W ðrÞ ¼ �β�1ln gðrÞ; ð3Þ
assuming that W ! 0 and g(r)→ 1 as r→∞. We evaluate the
RDFs in bulk through separate MD simulations (see Discussions 1
and 2 of Supplementary Methods for details). Note that this needs
to be done only once for a given density ρ0 and temperature T50.

The relations (2) and (3) allow one to rewrite the water spatial
density ρ(r) in the form

ρðrj rcm
� �

; riÞ
ρ0

¼ g iw jr� rij� � �
YNc

m

gcw jr� rcmj
� �

: ð4Þ

where ρ0 is the bulk water density (see Supplementary Discussion 1
for details). Note that the modulus sign reduces the 3D ion–water
and carbon–water interactions to ion–oxygen and carbon–oxygen
interactions, respectively. Thus, one is relying on the radial density
functions (RDFs) g(r) which are one-dimensional functions of
distance, in contrast to three-dimensional CFs.

In the derivation, we take no explicit account of water–water
interactions, in particular between their oxygen atoms. This
simplification leads to the water being represented as an ideal gas,
and it overestimates the water density near the graphene walls.

Fig. 1 Model setup. A hexagonal pore in pristine graphene (grey balls and
sticks) and a K+ ion (purple sphere) centred at Z=−0.4 nm. The colour
plane represents the density pattern of water oxygen atoms in the plane at
Z=−0.28 nm. (There will be comparable colour planes at other Z values.)
The colours indicate density values relative to the bulk, brown being the
highest (4) and dark blue being the lowest (0) value. The density has been
evaluated by MD simulation, and it is compared with theory, Eq. (4), in
Supplementary Fig. 1.
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This can clearly be seen near the graphene lattice in the lower
panels of Fig. 2.

Equation (4) allows one to compute the density of the water
wetting a given set of atoms as a product of component RDFs, and to
evaluate the water PMF via the Boltzmann inversion (3). Equation
(4) also shows that the water pattern results from interference
between the ionic hydration shells (giw term) and the water layers
surrounding the graphene membrane (∏gcw term). Supplementary
Discussion 3 illustrates the emergence of the hydration pattern when
groups of carbon atoms are added sequentially to compose a
nanopore. Equation (4) represents the well-known Kirkwood
superposition approximation50–52,p.186. It has also been generalised
to describe the ice–water interface50 and solvated DNA53. Here, we
apply this relation for the first time to describe the water density
patterns around an ion near an artificial nanopore.

The usefulness of an approach based on Eq. (4) is twofold.
First, the use of the bulk RDF values to describe water density
near the pore provides for a 102−104 speed-up in comparison
with all-atom MD simulations50. In turn, the single-component

bulk RDFs g(r) can be obtained in a number of ways. The most
straightforward is to use experimental values derived from the
structure factor measured by X-ray54 or neutron55 diffraction.
Thus one can avoid uncertainties related to the properties of the
force field (parametrisation, polarisability) and thus connect the
experimentally measurable structural properties of the bulk
electrolyte solution with those near a nanopore. Other approaches
rely on MD, Monte-Carlo or DFT simulations, or on the integral
theory of liquids46,56–59. In the present work, MD-derived RDFs
have been chosen in order to simplify the comparison between
the MD simulations and analytics.

Secondly, the method can be readily extended to any material
or pore geometry. The latter paves the way towards changing the
pore parameters—size, shape, number of layers, strain tensor, rim
charge, functional groups and choice of lattice type (e.g. MoS2,
hBN, WS2, etc. as well as graphene)—with the purpose of
changing the dehydration pattern. The pattern defines the
dehydration energy profile and thus determines the pore’s
permeability and selectivity, which are vital for inverse-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 2 Comparison of analytic theory with MD simulations. The graphene sheet is shown in section by the vertical line of carbon atoms, in which the pore
appears as a centrally placed gap with the horizontal axis of symmetry. The O− density in the vicinity of an ion (purple sphere) near the pore, derived from
the MD simulations (a)–(c) is compared with the predictions of Eq. (4) (d)–(f). Panels a and d show the oxygen density around an empty pore; c and f
show the density for a K+ ion in the centre of the pore; b and e show the density when the ion is centred 0.4 nm from the entrance to the pore. The fine
structure of the oxygen density pattern around a K+ ion at the pore centre, obtained from MD simulations (g), (i) and from theory Eq. (4) (h), (j). The
concentric black circles represent the first two maxima of the K+−O− RDF, and are given as guides to the eye. The graphene lattice is indicated in a grey
ball-and-stick representation.
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designing the function of Angström-scale ionic devices. In
Supplementary Discussion 4, we consider a tentative analytical
way of connecting the hydration patterns and the single-ion PMF.
Below we compare the ionic hydration patterns, obtained from
MD simulations, with those from theory (Eq. (4)).

MD simulation results. Figure 2 compares the MD results (top
row) with the corresponding theoretical predictions, Eq. (4)
(middle row). They agree well in that the qualitative features of
the water distributions are well reproduced: as described by the
∏giw term in Eq. (4), superposition of the contributions from all
the carbon atoms results in a decaying plane density wave in the
z-direction, matching the troughs and peaks of the C–OH RDFs
(see Supplementary Fig. 2). The presence of the pore in an
otherwise intact lattice distorts the water layers near the mem-
brane and allows water molecules to exist in the pore as revealed
by the strength of their distribution.

An ion in the pore (Fig. 2c), suggests spherically symmetric
spatial density waves, as implied by the term giw in Eq. (4). The
resultant superposition of the plane wave from the graphene with
the spherically symmetrical hydration shells from the ion leads to
a reshaping of the density such that the first hydration shell, while
partially remaining, becomes significantly altered. In particular, it
acquires maxima where the O–C and O–K+ RDF maxima
coincide minima when both RDFs reach minima and mid-values
where the maximum of one RDF overlaps with the minimum of
another. Circular waves in Fig. 2b, c, e, f around the ion
corresponding to the first two maxima of the intact bulk O–K+

RDF, indicated by the concentric circles at their respective radii.
The density around the centrally located ion preserves the first

hydration shell, but with a modulation due to the graphene
atoms; the structure of the second shell is significantly affected by
interactions with carbon atoms. Thus, the observed water
patterns arise from interference between the ionic hydration
shell and the hydration cloud around the nanopore. Analysis of
the hydration patterns around Na+ and Cl− ions, shown in
Supplementary Note 1, reveals similar features.

The central parts of Fig. 2b, e are shown at higher resolution in
panels (g) and (h). One can see the fine structure in the water
density pattern resulting from the superposition of the
ion–oxygen and carbon–oxygen interactions. The density cres-
cent at Z ≈ 0.6 nm in Fig. 2g, h is induced by the first maximum of
the RDF, as indicated by the concentric circles, while the two
peaks appear due to the oxygen interaction with the carbon
atoms. The low-density area around [0.45, ± 0.25] nm emerges
due to the minimum of the K+–O− RDF located at around
0.35 nm. The “island” around [0.175, 0] nm indicates the position
of the trapped water molecule, and highlights the predictive
power of the proposed analytical method (see Supplementary
Note 2 for more details). The cross-sections of the crescents in
Fig. 2g, h, made at 0.25 nm, are shown in panels (i) and (j). These
arise from an interplay between the oxygen–ion and oxygen–pore
interactions: the minimum at the origin arises due to the convex
shape of the first hydration shell near the ion, while the hexagonal
structure is inherited from the hexagonal geometry of the
graphene pore (grey balls and sticks). Similar water density
patterns in the plane of the nanopores have been observed in
numerous MD simulation works8,17,18,22,30 recently.

Figure 3 combines the previous results by illustrating the 3D
isosurfaces of the hydration shells around the ion and the pore,

Fig. 3 Three-dimensional ionic hydration patterns. Water distribution around a K+ ion (purple sphere) at Z= 0.4 nm near the pore in a graphene lattice
(black ball-and-stick representation), obtained from aMD simulations and b theory (Eq. (4)). An isovalue of 1.15 was chosen to reveal the layered structure
of the hydration around the ion and the graphene lattice. Both panels have been smoothed with a 5-point window.
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taken at a level of 1.15. Panels a and b show that the results from
MD and theoretical prediction Eq. (4), respectively, agree well.
These figures reproduce the layering of water near the graphene
sheet, with the first three layers visible (see Supplementary Note 3
for details), as well as the spherical hydration shells around the
K+ ion. Parts of the preserved 1st and 2nd hydration shells are
clearly evident. The figure emphasises the inhomogeneity and
anisotropy of the water patterns emerging from the combined
effects of the ion and the graphene lattice. The origin of multiple
water layers is illustrated in Supplementary Fig. 12.

We have also studied how the hydration structure evolves as
the ion’s position changes. The results are summarised in
Supplementary Note 4 and the two Supplementary frame series
(Supplementary Movies 1 and 2). These sets clearly illustrate that
the water structure is significantly modified, even when the ion is
located more than 1 nm away from the nanopore. In other words,
when the lattice-induced (hydration layers) and ion-induced
(hydration shells) inhomogeneities begin to overlap, the ion–pore
interaction starts to change. This result supports the notion that

solvent-mediated interactions extend the range of the interactions
with the pore by a large factor compared with the bare ion
radius60.

Finally, in Fig. 4 we illustrate the predicted effects of the set of
tools that we propose for controlling the dehydration pattern.
They can be categorised into two groups. The first set is extrinsic
and includes (a) stretching, (b) skewing or asymmetrical
stretching, (c) bending, and (d) twisting of the lattice (see
Supplementary Notes 8–11). Secondly, we propose adjustments of
some intrinsic features: (e) the nanopore geometry, (f) rim
charge, (g) atom type and (i) layer number (see Supplementary
Notes 12–17). Our theory yields good agreement with the
published crown-like water density patterns (panel (h)) from
ref. 61. More examples of these tools in action are given in Section
3 of the Supplementary Information.

It is evident that Eq. (4) can reproduce well the qualitative
features of the water distribution near the pore given in Fig. 2. We
point out, however, that there is a numerical discrepancy—a
factor of ~3—between the peak values of the maps, clearly seen

(h) (i)
Mul�ple graphene layers

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4 Tools to control the hydration pattern. These include the extrinsic processes of: a stretching, b skewing or asymmetric stretching, c bending,
d twisting, and the intrinsic features of—e choice of pore isomer, f charging of the rim atoms (red balls), g functionalising the rim with oxygen atoms (black
balls), h use of a multi-layer pore, as exemplified in a molecular dynamics simulation (h adapted from ref. 61, copyright 2019, with permission from
Elsevier), and i theoretical prediction, Eq. (4). Density slices have been taken at Z=−0.23 nm (a)–(d) and Z=−0.28 nm (e)–(g). The graphene lattice is
indicated in a grey ball-and-stick representation.
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between the MD-generated and theoretical density of the “ridges”
near the graphene lattice. We attribute this discrepancy to our
omission of the water–water interactions in Eq. (4), which would
imply an absence of short-range repulsion between oxygen or
hydrogen atoms of separate water molecules, so that arbitrarily
small separations can be realised. The consequence is denser
water distribution, localised near the carbon atoms. Also, the
reduction from a full 3D model to the radial CF picture overlooks
the water–water relative orientations and thus limits the
applicability of the method in carbon nanotubes. We are
currently working on eliminating these shortcomings of the
technique by using higher-dimensional CFs50 and applying
machine learning (see Supplementary Discussion 5 for a toy
example).

Discussion
Our approach can readily be extended to account for the density
of hydrogen atoms, and thus to evaluate the average charge
density in the domain. Doing so promises deep insight into
water-mediated interactions, including the pore rim’s hydration62

and reorientation of the water dipoles in confinement which
reduces63,64 the dielectric permittivity. The latter is needed for
quantifying the ion and polymer interactions with the pore and
with the external electric field and for understanding the ionic
diffusivity65 in biological channels, as well as the properties of the
electric double layer66,67. The method can also be used to define
the demarcation interface between the pore and the protein in
continuous theories of ion transport such as the
Poisson–Nernst–Planck (PNP) theory68. The method can thus
provide fundamental insights into the electrostatics and dynamics

of ions in sub-nanopores, where the dielectric properties on the
nanoscale remain a challenging unsolved problem that is subject
to intensive research35,36,69,70.

Our results demonstrate the applicability of the method to
describing water density patterns under quite general conditions,
e.g. for arbitrary ionic positions, pore geometry (size, shape,
number of layers, offset eclipse71), stretching, skewing, bending,
and twisting of the lattice, the type of atom around the rim of the
pore, and the nature of the 2D material72. This opens the way to
multi-parameter optimisation73 of the energy landscape by
adjustment of the corresponding hydration patterns. For exam-
ple, by iteratively choosing the most appropriate combination of
pore geometric parameters, and subsequently manipulating the
pore shape externally (e.g. by stretching), the nanopore’s per-
meability and selectivity can be optimised and regulated, pro-
viding for permeation along specified pathways74–76. This
approach could prove useful in addressing two highly topical
technological challenges: first, water desalination, to maximise the
quality and energy efficiency while minimising the environmental
impact of the process7); and secondly, energy harvesting, to
maximise energy conversion by minimising Joule heating, thereby
raising the output power density above the level of 5W/m2

needed to make harvesting economically viable12,14.
The same design and optimisation strategy should serve to

slow down the translocation and guide the orientation of DNA
(see Fig. 5a for a possible example), which constitutes one of the
current challenges to fast genome sequencing11,77. Likewise, it is
believed that the accuracy of nucleobase detection using the
Coulter principle can benefit from an optimisation of the features
of the nanopore, Fig. 5b (see also Supplementary Movies 3, 4, and
Note 5). Our approach would allow one to catalogue solvated 2D

(a) (c) (d)

(b)

Ion

Ion

Ion

Fig. 5 Possible applications of our proposed method to DNA sequencing and the cataloguing of the solvated nanopore isomers. a Hydration pattern
wetting the single-stranded DNA in a nanopore. Densities are obtained from Eq. (4) and are shown as grey isosurfaces (isovalue= 1.2) and coloured cross-
sections. The DNA is represented by connected coloured spheres (oxygen (red), nitrogen (green), carbon (black), phosphorus (yellow)). Graphene lattice
is shown in grey balls and sticks. b Three consecutive snapshots of the K+ ionic trajectory along the groove of the DNA, depicted by the red line.
c, d Represent the nontrivial structure of the solvation patterns around one of the pore isomers, taken from ref. 78 (isomer for the case of N= 19, the
frequency of observation of the isomer—4%—total number of possible isomers—48878). The isosurfaces are calculated at the isovalue of 1.2. Graphene
lattice is shown in black balls and sticks.
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and 3D pore isomers78, as illustrated in Fig. 5c, d, thus benefiting
the Materials Genome Initiative79,80. Finally, by applying a tra-
velling transverse (corrugated) wave one might be able to create a
nanoscale ionic pump driving ions against the electrochemical
gradient81 (see Fig. 6, Supplementary Movie 5 and Note 6). Thus,
the proposed method paves the way to the optimisation and
design of novel nanoionic devices in many contexts and
applications82.

Conclusions
We have proposed and validated an analytic method for revealing
and quantifying the hydration patterns around an ion near a sub-
nanopore, using a product of the RDFs measured in the bulk
electrolyte. The complexity and fragmentation of these patterns
result from interference between ionic hydration shells and the
hydration cloud around the nanopore. The method can be
extended to account for the distribution of hydrogen atoms, and
hence to obtain insight into local electrostatic interactions on the
nanoscale. It is fast, and it allows one to take explicit account of
the nanopore’s detailed geometry (size, length, shape, number of
layers, offset eclipse), pore constituents (charge and atom type),
and of the ion’s position, as well as implicitly to take account of
the ion type, solvent, temperature, and pressure. Multi-parameter
optimisation of the pore parameters and surroundings is expected
to create a way of engineering and regulating the energy barrier in
nanopores via control of the hydration pattern. This strategy
opens a new avenue to designing, optimising, and controlling the
permeability and selectivity properties of nanoionic devices, as
well as regulating the translocation of DNA through solid-state
nanopore sequencers.

Methods
MD simulation details. We used VMD83 to build the systems in question, and
NAMD284 with the CHARMM27 force field for MD simulations at T= 300 K with
a time step of 1 fs and the velocity Verlet algorithm. The Lorentz–Berthelot
combining rule was applied. The TIP3P85 water model was used. A cutoff of 1.2 nm
for non-bonded interactions (Lennard–Jones and Coulomb) with a switching
distance of 10.0Å (1 nm) was used, and the full electrostatic calculation was per-
formed using the particle mesh Ewald (PME) scheme86. Periodic boundary con-
ditions were imposed in all directions.

All lattice atoms were fixed by setting the beta parameter to 1. The system first
underwent equilibration during the initial 1000 steps in the Nosé–Hoover

thermostat at pressure p= 1 atm (101.325 kPa), with the remaining simulation
running under NVT conditions. The frames were captured every 100 steps. No
external electric field was applied. Unless otherwise stated, typical production runs
took 10 ns and were sampled every 100 steps to yield statistically significant figures.

RDFs were measured for a free atom (C, K+, Na+) in the water surroundings.
When an ion’s RDF was measured, the corresponding number of free counterions
(Cl− for K+, and K+ for Cl−) was added to neutralise the system. Finally, RDFs
were measured using the VMD plugin gofr. Molecular structures were visualised
and rendered using VMD83.

Data analysis. MD trajectories were read by a readdcd.m and readpdb.m
scripts MDToolbox87 for MATLAB88. A homemade script to build and analyse
the histrogram distributions included built-in MATLAB functions and some
external functions: histcn.m89, smooth2a.m90. All densities were normalised
by the bulk values. A 3 × 3-point smoothing window was applied to suppress the
pixelation of the MD histograms, unless otherwise stated.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.

Code availability
MATLAB codes for computing the ionic hydration patterns according to Eq. (4) and
creating a movie analogous to Supplementary Movie 2, and transforming the crystal
lattice are available as ZIP archives in Supplementary Data 1 and 2 (see Supplementary
Note 7 for details). Other codes that support the results reported in this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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