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Signatures of complex optical response in Casimir
interactions of type | and Il Weyl semimetals

Pablo Rodriguez-Lopez"23, Adrian Popescu?, Ignat Fialkovsky®, Nail Khusnutdinov®® & Lilia M. Woods

The Casimir interaction, induced by electromagnetic fluctuations between objects, is strongly
dependent upon the electronic and optical properties of the materials making up the objects.
Here we investigate this ubiquitous interaction between semi-infinite spaces of topologically
nontrivial Weyl semimetals. A comprehensive examination of all components of the bulk
conductivity tensor and the surface conductivity due to the Fermi arc states in real and
imaginary frequency domains is presented using the Kubo formalism for materials with
different degree of tilting of their linear energy cones. The Casimir energy is calculated using
a generalized Lifshitz approach, for which electromagnetic boundary conditions for aniso-
tropic materials were derived and used. We find that the interaction between Weyl semi-
metals is metallic-like and its magnitude and characteristic distance dependence can be
modified by the degree of tilting and chemical potential. The nontrivial topology plays a
secondary role in the interaction and thermal fluctuations are expected to have similar effects
as in metallic systems.
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damental and applied research. The exchange of zero-point

energy modes of fluctuating electromagnetic fields between
objects with finite boundaries gives rise to the ubiquitous Casimir
interaction!. This type of force is strongly dependent on the
geometry of the objects as well as their electronic and optical
response?. The Casimir force is especially pronounced at micro
and submicrometer separations and it can limit the operation of
nano and micro electronic devices due to unwanted sticktion and
adhesion>. Recent developments have shown that it is beneficial
to explore the materials aspect of Casimir interactions in order to
probe novel physics?. This in turn can be of great importance to
find ways to control the magnitude and sign of this ubiquitous
force, which may be used to improve the performance of tiny
devices.

Materials with Dirac spectrum have been a fruitful platform
for Casimir force discoveries. Perhaps the most studied system
in this regard has been graphene whose reduced dimensionality
and linear energy band structure led to many unusual func-
tionalities in this interaction, including much enhanced thermal
effects®~12. Additionally, Casimir force phase transitions driven
by external fields have been predicted in related 2D materials,
such as silicene, germanene, and stanene!3. Moreover, repulsive
and force quantization effects have been described in other
materials, such as 3D topological insulators and Chern insula-
tors!4-17, Weyl semimetals (WSMs) are 3D materials and they
have analogous to graphene linear energy dispersion band
structure near the Fermi level. WSMs are also characterized by
linear energy cones, whose nodes can be viewed as magnetic
monopoles in reciprocal space, associated with Berry curva-
ture!8-20, Tilting of the Weyl cones is also possible as one dis-
tinguishes between type I and type II WSMs depending on the
degree of tilting?!-23. Exotic surface states, which are associated
with the nontrivial topology in these materials have also been
demonstrated!®20,

All of these unique electronic structure properties have a direct
consequence in the optical response of Weyl semimetals. The
interplay between the 3D linear energy dispersion, separations of
the Weyl cones, and their tilting results in an anisotropic optical
conductivity tensor with distinct features in the longitudinal and
Hall components, as well as the existence of surface conductivity
due to the special surface Fermi arc states. In this work, using an
effective model for the linear band structure and the Kubo
formalism a comprehensive examination of the different optical
conductivity components is presented for type I and II WSMs.
The Casimir interaction is calculated using a generalized Lifshitz
approach for which the boundary conditions for anisotropic
media are resolved via the Fresnel reflection matrix. We focus on
the purely quantum mechanical and purely thermal regimes,
which helps understand how different features in the optical
conductivity affect the interaction. Although the optical response
is complex, the Casimir interaction is found to be dominated by
the bulk diagonal conductivity components, while the surface
states and Hall conductivity play a secondary role. Unlike 2D
Dirac materials for which several unusual functionalities were
found due to their non-trivial topology, the Casimir interaction in
WSMs is similar to the one for metallic systems. We find that the
magnitude of the interaction is strongly affected by the cutoff
energy for the linear band dispersion, the chemical potential, and
the cone tilting.

I ight-matter interactions are at the forefront of current fun-

Results and discussion

Electronic properties of Weyl semimetals. The essential elec-
tronic properties of Weyl materials with linearly dispersing bands
crossing at the Fermi level can be captured by the following

Hamiltonian per Weyl node!®24
H, = (nhby + v, - k)1 + hvio - (nk + b), (1)
with eigenenergies
E! = (nhby + v, - k) £ hvg|nk + b). (2)

This is a minimal model with a pair of Weyl nodes specified by
their chirality # = +1. Here vi is the Fermi velocity, o = (o, 0y, 0,)
are the Pauli matrices, k is the 3D wave vector, and 1 is the 2 x 2
identity matrix. The nontrivial topology corresponding to the
above Hamiltonian is determined by the separation between the
two crossing points in the band structure. For systems with
broken Inversion symmetry this separation, denoted as by, marks
the distance between the Weyl points in energy space, while for
systems with broken time reversal symmetry b gives this
separation in momentum space. These two cases are generalized
in Eq. (1) by using the four-vector b, = (b, b).

In addition to their separation, the Weyl cones can also be
tilted, which is determined by the tilt velocity v, One
distinguishes between v,/vg <1 and v,/vg>1 cases corresponding
to type I and type II Weyl semimetals, respectively. The v, =
0 situation corresponds to the simplest type I material with cones
in an upright position (no tilting). In type II WSM the tilt is large
enough so the cones are tipped over transforming the point-like
Fermi surface, typical for type I WSM, to a different shape. Due to
the v/ve > 1 condition, there is also a finite density of states at the
Fermi level characterized by electron and hole pockets. Let us
note that the nontrivial topology is irrelevant of the cone tilting
and it is present in both types of semimetals. Nevertheless, many
properties are expected to be affected by v, and its relative value
with respect to vg, giving rise to distinct features in the optical
response, anisotropic chiral anomaly, and anomalous Hall effects
among others?4-28,

In this work we consider the separation between the cones as

described by b, = (b,, bk,) and we choose the cone tilting with

respect to the z-axis in momentum space with v, = vticz. As a
result, the above Hamiltonian and its eigenergies and eigenspi-
nors can be simplified to

H, = (hb, +¥YK!)1+ 0 - K", 3)
EL* = (hby + Whvgk,) £ K], “

M| (KI+iKS)

1
N\ K"
le> = 1 5 (5)
\/ Z‘K”HM’” hVFKZ

where K" = hvg(nk + bk,), K'! = ,/KI? + K2, and |M'| =

|K"| + K. Also, ¥ =v/vg denotes the tilting ratio. In Fig. la,
we show representative band structures for type I WSM whose
cones are separated in momentum space, which corresponds to
materials with broken Time Reversal symmetry. Fig. 1b shows
type II WSM with cones separated along the energy direction,
which reflects systems with broken Inversion symmetry. Due to
the tilted cones in type I WSM free carriers at the Fermi level are
also available as schematically shown in Fig. 1c.

Optical response of Weyl semimetal. Using the eigenstates and
energies from Egs. (4, 5) the conductivity tensor for both types of
WSMs is obtained using the Kubo formalism and it is found of
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Fig. 1 Graphical representation of the electronic structure of Weyl semimetals. a Separated cones in momentum space by b with tilting ¥<1. The
projected bulk Weyl nodes on the surface of the crystal lead to Fermi arc surface states; b Separated cones in energy space by b with tilting ¥>1; ¢ The
severe tilting of the cones results in electron and hole states residing on the Fermi surface.

the following form

n n
O'xxﬁb O'XYA,b 0
no__ _ N 1
o = o'xy,b O'xxﬁb 0
n
0 0 Oub

Each bulk component is decomposed into interband and intra-

ib = i;lltfr MT+o i;lga”’. To obtain the total
conductivity corresponding to the Hamiltonian in Eq. (3) sum-
mation of the contributions from the Weyl cones must be done,
such that o= 0{t) 4+ o{-). Detailed calculations and explicit
expressions for zero temperature, T=0, and no spatial disper-
sion, q = 0, for the Real and Imaginary parts of the interband and
intraband conductivity components are given in the Supplemen-
tary Note 1.

Our results indicate that both types of materials have
anisotropic optical properties with distinct diagonal components.
Egs. (3-5) correspond to the 3D bulk band structure, which is
responsible for o,,}, # 0xp = 0yyp. In addition, the nontrivial
topology of the separated Weyl cones results in a surface
conductivity (discussed later), which gives rise to an anisotropic
surface conductivity tensor. The bulk components have an
explicit dependence upon the cone tilting and the cutoff energy
€. as found by several other authors?*-33. The cutoff energy
serves as a limit beyond, which the Dirac bands are not of linear
dispersion anymore343>. This is different than the situation in
graphene materials, where the optical response is found to be
independent of such a cutoff3¢. The unique role of e, is thus
related to the interplay between the linear band dispersion and
dimensionality of the material.

The general expressions for the different conductivity compo-
nents are quite complicated (see Supplementary Note 1). Thus in
Fig. 2 we show the nonzero components for a single cone for both
types of WSMs and their dependence on frequency. For
w — 0, Re[o], , and Refo],,, of type I WSM tend to zero
when y =0 (Fig. 2a), while these components exhibit Drude-like
behavior for type II WSM due to the finite carrier concentration
originating from the severe tilting (Fig. 2c). The Drude-like
behavior is also seen in Fig. 2e, g in which intraband
contributions from the non-zero chemical potential are included.
We find that Re[o], , and Reo],,, exhibit a linear dependence
with frequency until 2¢,, however there is some nonlinearity in
the (Q = 53, Qu = iy
of the Hall conductivity shows a discontinuous behavior as 7w
approaches e.. The imaginary parts of the different components
are also given as a function of frequency. The Im[o]_, and

band terms, such that ¢

) region in Fig. 2e, g30. The real part

[mo],, , are discontinuous as w approaches e (Fig. 2b, d, f, h).
At small frequency the imaginary parts are mainly determined by
the Drude-like behavior?%:31:32,

In addition to the graphical representation of the WSMs optical
response in Fig. 2, analytical expressions in different limits for the
plasma frequencies and Hall response can be found. Specifically,
in both cases the intraband conductivities are of Drude type with
plasma frequencies wi;n explicitly dependent on the WSM type, as
shown in Supplementary Note 1. In addition, the plasma
frequencies for WSM type II are found to diverge as a function
of the cutoff, consistent with other works2?-32, For example, in the
limit of large €. the xx-component is obtained as

Kqﬂxy 1)63 = 25—2310g (ec)}, ©

where i = |y — hiby|. Similar second power law and logarithimic
divergencies upon €. are present for the zz-component of the bulk
intraband conductivity.

It is also interesting to examine the behavior of the plasma
frequencies as a function of chemical potential. For type I WSM
lim Pﬂow{),xx(zz) = 0, which shows vanishing intraband conduc-

no
Pxx ~

8m2hvy

tivity as the chemical potential passes through the Fermi level. For
type II WSM, one finds that

. ac P2-1
lim wp, = R (€ + (hveb)?). (7)
F

a0 Pxx

Thus even if i = 0, there is a nonzero intraband conductivity.
This correlates with the severe tilting in the WSM from ¥>1
which results in a band crossing at the Fermi level, meaning that
there are always free carriers available in the system (Fig. 1c).

We further study the Hall conductivity for each type of WSM.
The zero frequency limit, which is a measure of the anomalous
Hall effect, is obtained as

o(w = 0) = 2£ {hb + ”_ﬂw] : (8)

X 4m? hvg b4
= NE ]
o, Hu o eYvVY: —1
0w =0) = s hb+h T og P .9

The first term in the above expressions is common to both types
of WSMs. It is proportional to the distance b between the cones in
momentum space and it reflects the nontrivial topology of the
materials. The second term in each axg, I comes from the tilting

of the cones and the chemical potential scaled by the separation
in energy space i = |y — hby| and it does not have topological
origin. The Hall conductivity of type II WSM also shows a
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Fig. 2 Conductivity tensor components for type | and Il Weyl semimetals at zero temperature and real frequencies. Real and Imaginary parts of different

conductivity tensor components for a single Weyl cone scaled by o = 75
F

as a function of frequency scaled by E, = Aveb for:a, b ¥ =05, 4=0;¢c, d ¥ =

15, u=0;e f¥=05 u/E,=1,g h¥=15, u/E, =1. The legend given above the panels denotes the total 6,4, (full black) and 6, (full red), interband
contributions 0;‘;%’ (dashed black) and ¢i"" (dashed red), the bulk Hall conductivity oy, (full green) and the topological Hall conductivity ot (dashed gray).

xx,b

The following payrameters were used in the calculations: e.=10eV, E, =1eV, ¢/ve =300, I/E, =103,

logarithmic divergence with the energy cutoff, while 0;’)’,7 is finite
at the large €. limit. Our results are consistent with calculations
reported by other authors31:33. Let us note, however that the total
Hall conductivity for both types of Weyl semimetals is affyn)(a) =

0) = "ff—;‘zb as the second terms in Egs. (8, 9) cancel out upon

addition due to the opposite in sign cone chiralities.

Surface conductivity due to Fermi arcs. One of the hallmarks of
WSMs is their Fermi arc surface states. Other materials support
Fermi surface states that have circular or deformed circular
shapes37-38, In a Weyl semimetal occupying semi-infinite space
with an abrupt boundary, however, only half of this usual shape
resides on the surface giving rise to a Fermi arc, which essentially
starts and ends at the surface projections of the bulk Weyl points,
as schematically shown in Fig. la. The Fermi arcs are also a
signature of the nontrivial bulk topology of WSMs regardless of
tilting and their existence is determined by the bulk-surface
correspondence3®~43, In the case of Weyl cones separated in
momentum space the Fermi arc can be represented as a single
Dirac fermion (similar to graphene), whose conductivity in the
low frequency is of Drude-like type and it is determined by the

distance between the cones*?. Specifically, for the case of b, =

(0, bk,) at the x = 0 surface one finds there is only one nonzero
conductivity component

o —iocvpb (10)
e 2m(w+ D)

At the y =0 boundary, the nonzero surface conductivity is oy
with the same value as the above equation. There is no surface
conductivity at the z=0 boundary since the projection of the
vector b, = (0,bk,) is zero in this case’®. Thus this optical
response is associated with the WSM boundary due to the dis-
tance between the cones b and it is highly anisotropic.

Optical response at imaginary frequency. For the Casimir
interaction the conductivity components in imaginary frequency
domain w =i¢ are needed. Thus it is convenient to use the

Kramers-Kronig relations for which,
2 (™ ¢
Relo. (8| =2 | do—> " Relo.
efoy(i6)] == /0 s e[oy(@)] .

_ %/:Odw%wﬂm [o(0)].

Realizing that Im[o;(if)] = 0, the analytical continuation of
Re[o;(i€)] to all positive imaginary frequencies in the upper half
of the complex plane gives the final expressions for the
conductivity components. By taking & — & 4 A/ finite dissipation
can be included in the optical response (I' = A/7).

In Fig. 3 results for some functional dependences of the
conductivity components (shown explicitly in Supplementary
Note 2), commensurate with the ones in Fig. 2, for a single cone

at imaginary frequency w = i€ are given. In all cases 0'™$" and

aizgfﬁr increase linearly in the small & region (Fig. 3a-d). The Hall

conductivity has a very weak dependence upon ¢ and in both
WSMs the £ =0 limit is governed by the analytical expressions in
Egs. (6, 7). There is a discontinuous jump at ¥ = 1, which marks
the transition between type I and type II WSMs as shown in
Fig. 3e. As ¥ increases for type II WSM the conductivity is
determined primarily by the intraband contributions due to
increasing the number of free carriers from the severe tilting even
if u = 0. Also, gy, as a function of y is depicted for type | WSM in
Fig. 3e at £=0. This behavior is consistent with our analytical
considerations and it shows that the response is mainly
determined by the intraband contributions as the chemical
potential grows.

Many of the topologically nontrivial features in Weyl
semimetals are related to the separation of their energy cones
in momentum space. In order to better understand this issue in
the context of the Casimir interaction, we consider some limiting

cases with respect to b, = (0, bkz). The so obtained results are

then compared with the numerical calculations, in which the full
optical response of the materials is taken into account.

Casimir interaction for coinciding Weyl cones. At this point, we
consider non-tilted Weyl cones with b= 0. Such a situation with
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Fig. 3 Conductivity tensor components for type | and Il Weyl semimetals at zero temperature and imaginary frequencies. Different contributions to the

ahc
T6rhvy

bulk conductivity components g; scaled by oy =

as a function of imaginary frequency & scaled by £, = Aveb forra ¥=0.5 4y =0, b ¥=0.5, w/E, =1;

c¥=15u=0;d¥=15, u/E, =1. Different contributions to the bulk conductivity components g;;;, scaled by oy at £ =0 as a function of: e ¥ for y =0
and f u/E, for ¥=0.5. The following parameters were used in the calculations: e.=10eV, E, =1 eV, ¢/vf =300, I/E, =10-3.

coinciding cones corresponds to a 3D Dirac semimetal?!. In this
case, one finds that the interband conductivity components in the
imaginary frequency domain are of the following form

N ac WE + 4¢?
o) = 25 ) ( i c)(sij.
T*Vg h°& +4.”2

This isotropic response simplifies the reflection matrices entering
in Eq. (20) and some asymptotic behavior of the Casimir energy
can be found analytically. For example, the quantum mechanical
(T=0) Casimir energy in the limit of large cutoff frequency is

. Ey _ _ h
obtained as the energy for perfect metals, such that Jt = — 2.

Since € is finite, the limiting cases of large and small separations
with respect to the characteristic distance d, = 2 can be found

(12)

2¢,

45 d
R 8 L
,}EEOE 7T4dOEMX [12/32+1+ﬁ+€ (B+2)BEi( ,B)], (13)
45X% —3X +2
ImE=———— 14
iody o X(1+x)7? W (19
where = SZEF, X=,/1+ élog (1 + %9, and Ei(x) is the expo-

nential integral evaluated at x. Thus the small d limit results in a
d=2 scaling law for the energy. Due to the weak logarithmic
dependence on d in X, however, the large d limit is essentially
similar to the one for perfect metals with a d=3 scaling law in the
energy.

In Fig. 4a we show the numerical calculations for the quantum
mechanical interacting energy of materials with optical response
from Eq. (12). These results indicate that the energy cutoff
practically determines the characteristic behavior of the Casimir
energy through the distance dy, which is in agreement with
Egs. (13, 14). Specifically, for e.=1eV one finds that dy=
100 nm, while for e¢.=5eV, dy=20nm. Since the quantum
mechanical Casimir interaction is domated by Matsubara
frequencies with % < €, the onset of a metallic-like interaction
is strongly related to the range of validity of the linear band
structure approximation controlled by e.. For separations smaller

than dy one needs to include bands beyond the linear energy
approximation studied here. Such an explicit dependence upon
the cutoff energy is not present in 2D materials with Dirac energy
spectra, where the optical response and Casimir energy are
independent of the bandwidth of the linear bands, except at very
small distances!31%:36,

The role of cone separation in the interaction. The parameter b
enters into the reflection matrices in a complicated way, which
makes it difficult to obtain analytical expressions for the Casimir
energy for the considered materials. To get some idea about the
role of the cone separation, we consider the situation when there
is no surface conductivity and the bulk conductivity tensor con-

tains only off-diagonal components with Uzy‘,b =0 = j%, which
capture the anomalous Hall effect Egs. (8, 9). We find that in the
limiting case of small distance, the Casimir energy is

E  hco?

Am AT Semid b =
where b, , are the cone separation parameters for the two inter-
acting materials. In the large distance limit, the energy for perfect
metals is obtained.

Equation 15 shows a d~! scaling law in the short distance
separation and the a? dependence in the numerator indicates that
the energy is of rather small magnitude. It is also recognized that
the product b,b, can be positive or negative given that the cone
separation can be in positive or negative domains in momentum
space?122, This behavior is reminiscent of the Casimir interaction
in other topological materials, whose response is dominated by
the Hall conductivity!3-1>. The positive sign of the product of the
cone separation parameters, which are essentially proportional to
the constant anomalous Hall conductivity, is associated with
repulsion as found in 3D topological insulators and 2D Chern
insulators. However, since b, , are continuous, the Casimir energy
is not quantized as found in other topological materials due to the
discrete nature of their Hall conductivities. Additionally, the
Casimir energy in topological and Chern insulators has d—3
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Fig. 4 Quantum mechanical Casimir energy for materials with ¥’ = 0 cones. The Casimir energy scaled by £, = — 7’325’;3 as a function of: a distance for

coinciding nontilted Weyl cones (b= 0, ¥ = 0) and different values of the cutoff parameter e.; b the unitless parameter d - b with bulk e,x = €yy =€, =1
and no surface conductivity; ¢, d distance for separated nontilted Weyl cones with b; = b, = b calculated with the full conductivity (diagonal and Hall

components) with I"'=10-3 eV (full curves), diagonal conductivity and no Hall components with I"'=10-3 eV (dashed curves), and diagonal conductivity
and no Hall components with I"= 0 (dotted curves) for e.=1eV and e. =5 eV respectively. Also, by, denote the cone separations of the two interacting

Wey| materials.

scaling law, while in Weyl semimetals there is a crossover in
distance dependence from d—! at small separations to d—3 at large
separations.

The numerical results for the interaction energy when only the

bulk Hall conductivity Gzy,b =0 =

2b is taken i
4,2 1s taken into account are

shown in Fig. 4b. The repulsive interaction at small separations is
dictated by the sign of the b;b, product according to Eq. (15),
while at large separations the energy approaches the limit of
perfect metals, which is in agreement with the above discussed
analytical expressions. The strongest repulsion is found for b - d
(x10%) ~ 1/2, thus characteristic values b=5-20nm~! corre-
spond to d=0.1-0.025 microns. Nevertheless, this repulsive
interaction is at least two orders of magnitude smaller than Ej; in
the sub-micron and micron separation region (depending on b
values), as suggested by Fig. 4b.

In Fig. 4¢c, d the numerical results for the normalized Casimir
energy as a function of separation calculated by taking into
account the full optical conductivity tensor of dissipative
materials are shown for two values of the cutoff energy. The
corresponding energies obtained when only the diagonal
components of the conductivity with and without dissipation
are taken into account, are also shown. These results reveal the
surprising role of dissipation: while the low and high d limits in E
are best captured for calculations with the diagonal conductivity
(no Hall components), the low d limit is better described when
I'=0, while the higher d range is better described when
dissipation is finite. Figure 4c, d further shows that the role of
cone separation is to bring E closer to Ey in the intermediate
distance range and and all repulsive effects are washed out by the
dominant diagonal components of the optical response.

At this point, one might ask how the surface conductivity due
to the Fermi arcs affects the Weyl Casimir interaction. For the
chosen b, = (0, bk,)0,,s=0 as discussed earlier, thus to probe
this property WSMs separated along the y-axis or x-axis must be
considered with the appropriate Fresnel matrices given in
the Supplementary Material. Although the numerical calculations
are technically difficult we find that the surface conductivity plays
even a lesser effect in the Casimir energy as compared to the one
of the Hall conductivity as discussed above. The surface
conductivity increases the metallic-like nature of the interaction,
but given the smallness of the effect further results are not given.

Casimir interaction and cone tilting. In what follows, we further
investigate how other characteristics affect the interaction
between Weyl materials. More specifically, by utilizing the full
optical response dissipative type I and type II WSMs separated
along the z-axis are considered and the Casimir energy upon
cutoff energy, degree of tilting, and chemical potential is calcu-
lated. For this purpose, the generalized Lifshitz formula in Eq.
(20), while the optical response and Fresnel matrices can be found
in the Supplementary Material. These results help us find ways to
modulate the Weyl Casimir interaction as well as recognize sig-
natures of the optical response and compare with the above
discussed analytical expressions.

The scaling dependence shown in Fig. 5a indicates that Casimir
energy increases as d is increased, although for the case of ¥ =0,
p=0 this increase is at a much smaller scale as compared
to the other displayed cases. This behavior is reminiscent of
the interaction between Drude-like metals controlled by the
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Fig. 5 Quantum Casimir energy for Weyl semimetals. The Casimir energy scaled by £, = — 7’;0”;3 for two identical Weyl semimetals separated along the

y-direction as a function of: a distance for different values of cone tilting and chemical potential (e.=5 eV, E, =1¢eV, ¢/vg = 300). The vertical axis of the
inset is in log scale for better visibility; b cutoff energy scaled by Ey, for different separations (e, =5 eV, ¥=0, ¢/vg =300, u = 0); (c) tilting for different
separations and chemical potentials (¢.=5 eV, E, =1 ¢V, ¢/vi =300, u = 0); d chemical potential for different titling and separations (e.=5 eV, £, =
1 eV, c/vi =300); e distance for different values of the Fermi velocity (e.=5 eV, E,=1¢eV, u=0, ¥=0.5). In all calculations I/E,=10-3.

magnitude of their plasma frequencies. The larger the plasma
frequencies, the closer the interaction is to the one for perfect
metals. In the case of larger ¥ and p, the intraband conductivities
dominate the Casimir interaction due to their large wp, while for
¥=0 and y=0 the optical response is dominated by the
interband components and E/Ey; is a small fraction.

The behavior of FEy; vs. d for ¥ =0, 4 = 0 in Fig. 5a is actually
very similar to the analytical results of the Casimir energy for
coinciding Weyl cones whose dy=20 nm when eJ/E,=5
(Fig. 4a). Indeed, F/Ey; at large distances (d > d) is practically
determined by the prefactor in Eq. (13), which indicates that type
I WSM with y =0 behaves as a Dirac material with coinciding
cones in the displayed region of distance separation. For the other
cases in Fig. 5a, however, the nonzero plasma frequency elevates
the role of the intraband conductivity and the interaction is
essentially similar to the one of Drude-like metals2. Given that the
cutoff energy plays a prominent role in w) Eqs. (6, 7), Fig. 5b
shows how the Casimir interaction changes as a function of ¢ for
type I and IT WSMs. The much more pronounced enhancement
of E for type II WSMs as ¢ is increased is due to the large
intraband optical conductivity and specifically the strong
dependence of its plasma frequency on the energy cutoff (Egs.
(6, 7)). Figure 5c displays how the Casimir energy changes as a
function of degree of cone tilting. The change of an almost flat
E/Ey to a linear-like behavior at ¥ ~ 1 signals a transition in the
Casimir energy from type I to type II WSM. Again, the much
stronger interaction for type II WSMs as compared to type I
WSMs in Fig. 5¢ gives another perspective of the much enhanced
role of the intraband optical conductivity for ¥ > 1. Figure 5d
further shows that the chemical potential is also an effective
parameter in controlling the magnitude of the Casimir energy for
both types of WSMs, although the degree of tilting and distance
separation can affect the degree of change. Additionally,
increasing the Fermi velocity of the linear bands in Eq. (4) can
increase the magnitude of Casimir energy although the
characteristic behavior in terms of distance and other parameters
are preserved (Fig. 5e).

Our numerical calculations indicate that the b parameter plays
a rather small role and the Casimir interaction is dominated by
the contributions from the diagonal components in the optical
tensor. This can be easily understood in the context of the above
discussions for the limiting cases of coinciding Weyl cones and
materials with only Hall conductivity components. In fact, taking
the case of non-tilted Weyl cones and expanding the Fresnel
reflection matrices for small oy, due to 0y, < 0 = 0,,, We find
that the first order correction (which contains b) in the small
distance limit between Weyl semimetals with ¢ = 0 is the same as
Eq. (15). Given the much longer range due to the d~! dependence
and the o? in the numerator, it becomes clear that first order
correction is much smaller than the dominant Casimir energy

due to the diagonal components of the bulk conductivity
response.

Thermal Casimir energy. Thermal fluctuations in the Casimir
energy are captured in the n = 0 Matsubara term of Eq. (20) and
they are expected to dominate at room temperature at separations
on the sub-micron and micron scales for many materials>*. To
study the thermal effects in the Casimir interaction of WSMs, we
calculate the conductivity at finite T in the limit £ — 07 using the
results in the Supplementary Note 2 and the Maldague’s
formulal34>46 The interband conductivity is linear in £ in the
limit of small frequency and it is well approximated as

2ack €
~ lo £ 0;is 16
® \ Max (), %) ) e

? 2e¥

Uij(if)

3nvg

where y is the Euler’s constant. The intraband conductivity at
finite T and £ — 0 has the typical Drude-like expression

LII)2
zw( A1)

0;(i€) ~ .

) )

where wj" are the plasma frequencies for type I and type II

WSMs. Since the optical response at £ — 07 is dominated by the
intraband contribution, the thermal Casimir energy is found as

b Bl (18)

167d
where ((s) is the Riemann zeta function. Thus the thermal effects
in the WSM Casimir interaction are of the usual form of a
Drude metal.

Experimental measurements of the Casimir interaction in Weyl
semimetals can be realized using a setup based on an atomic force
microscope, which has been used for several other materials such
as noble metals, ferromagnets, oxides, and graphene covered
substrates!247:48. Such a setup allows measuring a Casimir force
whose magnitude is a fraction of the one of perfect metals and
probe separations in the submicron-micron range. By taking type
I and II Weyl semimetals one can potentially measure the
interaction as a function of distance and get information on the
role of cone tilting. By doping the materials or applying external
gate voltage, one can also probe the role of the chemical potential.
For distance separations in the submicron-micron range the
linear band approximation dominates the Casimir interaction in
most Weyl semimetals which ensures valid comparison with our
theory. Due to the similarity of Weyl materials with metallic
systems it is expected that thermal effects will not be important at
such distances and the atomic force microscope technology at
room temperature!247:48 will capture the quantum mechanical
limit of the interaction.
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In this study, we present a comprehensive investigation of the
bulk and surface conductivity components by distinguishing
between type I and type II WSMs, which are then applied to the
quantum mecahnical and thermal limits of the Casimir interac-
tion. Our results indicate that although there is a complex
interplay between the electronic and optical properties of these
materials, the interaction exhibits a behaviors similar to the one of
metallic-like systems due to the dominant role of the diagonal
bulk conductivity components. The quantum mechanical energy
can be modulated as a function of chemical potential and cone
tilting as captured by the y and ¥ dependences in the plasma
frequency for type I and type II materials. The explicit e,
dependence in the bulk conductivity renders strong dependence
of the energy upon the cutoff corresponding to the validity of the
linear energy dispersion. For separations larger than the
characteristic distance d, set by €. the linear energy dispersion
will dominate the interaction, while for larger than d, separations
other energy bands are expected to be important and have to be
considered in the electronic and optical properties of the
materials. Unlike topological and Chern insulator, where the
nontrivial topology can result in significant repulsive and even
quantization effects, the anomalous Hall conductivity plays a
rather small role in the quantum interaction in Weyl materials.
We also find that because of the dominant diagonal bulk
conductivity, thermal fluctuations are expected to affect the
Casimir interaction in a similar way as the case of metallic
systems. Our investigation is a testament that a thorough
understanding of the fundamental electronic and optical proper-
ties of materials is necessary in order to make progress towards
other research areas, such as light-matter interactions and the
Casimir force as a particular example.

Methods

Kubo formalism. The optical response of a given material is directly related to its
electronic structure. The dynamical optical conductivity tensor is a fundamental
property, which is a necessary ingredient in understanding light-matter interac-
tions, such as the Casimir force. The components of this tensor can be calculated
using the Kubo formalism*®. For a given cone specified by its chirality #, these are

A, N, A, A, A, A
y o [ dMe <" W< UV > n (BT — ng (B
Uij(“%q) =i Z d ) i " A b ’
o @) he+i/n)+ B - B E" - B
(19)

Here \uf(’”> and Ei’” (A\,A" = % correspond to the electron and hole states) are the
eigenspinors and eigenenergies for the Hamiltonian in Egs. (3-5) and v/ =
Vi H!/h = nvg(oy,0,,0,) is the velocity operator. Also, the Fermi-Dirac dis-

tribution function is nl_-(Ei’”) =1/ (eEt/kT 4 1) and 7 is the relaxation time.

Lifshitz formalism. The Casimir interaction can be calculated using the Lifshitz
approach®4, however for lossy materials with reflection matrices with complex
frequency dependence this formalism must be applied carefully. Specifically, one
must account for contributions from propagating and evanescent waves, which can
arise from frequencies above and below the light cone, respectively®’. Thus, for
semi-infinite planar objects taken to be separated by a distance d along the z-axis,
the interaction energy per unit area A can be written as

E & &

E_¢ & 20

=it (20)
£ ' d’k B
Z:kBTZn:/(zn)HZ log det(1 — R, - Rje %), (21)

Here R; = Rj(ky, ky, ky) for j=1, 2 are the 2 x 2 Fresnel reflection matrices for the
interacting objects, where k, = {/k2 + k)z, + & /¢t with &, = 2nnkpT/h being the
Matsubara frequencies (1 =0, 1, 2, ... and k; = (k, ky)). Also, R]f = Rj(—k“7 k., ky)
denotes the reflection matrix for scattering with opposite direction!”. The gen-
eralized Lifshitz expression from Egs. (20) is necessary for the interaction involving
Weyl semimetals. From our subsequent calculations we find that the reflection

matrices may not be real in some imaginary frequency ranges. This is attributed to
the interplay between propagating and evanescent wave stemming from the

anisotropic optical response, which motivates the generalization of the Lifshitz
formalism>°.

The reflection matrices depend explicitly on the optical response of the involved
materials and they are obtained by applying electromagnetic boundary conditions
for semi-infinite 3D objects with planar surfaces separated at a finite distance.
Resolving the reflection matrices is technically difficult as each type of Weyl
semimetal has anisotropic bulk and surface optical response as well as nonzero bulk
Hall response. Nevertheless, the electric and magnetic fields can be expanded in
terms of the suitable for planar geometry orthogonal functions M (r) =
k_lHV x [2¢(r)] and Ny (r) = £Vx My (r) (i) = &7, k) =, [k} + k)z,). Details of
the derivation of the electromagnetic radiation impinging on the x =0, y =0, or
z =0 surface of a semi-infinite Weyl material can be found in Supplementary
Notes 3, 4.

Data availability
The data that support the plots in the paper and other findings of this study are available
from the corresponding author upon reasonable request.
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