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Designing bioinspired brick-and-mortar composites
using machine learning and statistical learning
Seyedreza Morsali 1, Dong Qian1 & Majid Minary-Jolandan1✉

The brick-and-mortar structure inspired by nature, such as in nacre, is considered one of the

most optimal designs for structural composites. Given the large number of design possibi-

lities, extensive computational work is required to guide their manufacturing. Here, we

propose a computational framework that combines statistical analysis and machine learning

with finite element analysis to establish structure–property design strategies for brick-and-

mortar composites. Approximately 20,000 models with different geometrical designs were

categorized into good and bad based on their failure modes, with statistical analysis of the

results used to find the importance of each feature. Aspect ratio of the bricks and horizontal

mortar thickness were identified as the main influencing features. A decision tree machine

learning model was then established to draw the boundaries of good design space. This

approach might be used for the design of brick-and-mortar composites with improved

mechanical properties.
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Data-driven methods such as machine learning (ML) and
statistical analysis (SA) are efficient toolsets for extrac-
ting process–structure–property relation or for design–

synthesis–characterization of materials1–18. ML and SA are able
to address large and complex tasks by focusing on the most
relevant information in an overwhelming quantity of data while
providing similar or better accuracy to the finite element analysis
(FEA) and experiment19–22.

In particular, ML and SA have been used for design analysis of
various composites and structural materials. Alakent and Soyer-
Uzun implemented statistical learning methods to develop design
guidelines for biocomposites with high tensile strengths23. Chen
and Gu used an integrated approach combining finite element
method, molecular dynamics, and ML to investigate the effect of
constituent materials (assumed to be perfectly brittle) on the
mechanical behavior of composites24. Gu et al. used a perceptron
and convolutional neural network (machine/deep learning
model) to demonstrate their capacity to accurately and efficiently
predict the toughness and strength of a two-dimensional (2D)
composite25. The results showed that ML accurately predicted the
performances of composite geometries relative to each other. The
optimum structures of the composite in terms of strength and
toughness were obtained. Qi et al. used an artificial neural net-
work to predict the unconfined compressive strength of cemented
paste backfill26. Tiryaki and Aydin employed ML models to
predict the compression strength of heat-treated woods27. Deep
learning approaches were used for mining structure–property
linkages in high contrast composites from simulation datasets,
and to establish structure–property localization linkages for
elastic deformation of three-dimensional high contrast
composites16,18.

Yang et al. developed deep learning models to capture non-
linear mapping between three-dimensional material micro-
structure and its macroscale (effective) stiffness16. Due to the lack
of a suitable experimental data set, they assumed that the ground
truth could be captured by the results of micromechanical finite
element models. They employed a multilayer perceptron neural
network (ML model) and convolutional neural network (ML/
deep model). The results showed that the proposed convolutional
neural network outperforms the sophisticated physics-based
classic approaches by as much as 54% in terms of testing the
mean absolute stiffness error. However, the deep learning
approach did not perform very well for some mid-range values of
effective stiffness.

This manuscript presents a ML statistical learning approach for
the analysis and design of brick-and-mortar composite archi-
tecture with a large data set (>20,000 samples). The structure of

the “brick-and-mortar” composite is shown in Fig. 1. This
architecture is inspired by natural materials, and there have been
many studies in the literature aiming at manufacturing such
composites28–32. Natural materials such as nacreous part of sea
shells have developed structural composites, using a set of rather
ordinary constituents, which exhibit extraordinary mechanical
properties. For example, sea shells convert a brittle ceramic
material (aragonite calcium carbonate) to a super-tough material
(nacre) by incorporation of ~5% polymer, in a layered brick-and-
mortar microstructure. More specifically, the fracture toughness
of aragonite is ~0.25MPam1/2, while the toughness of nacre is
~10MPam1/2, a 40-fold increase in toughness, and a factor of
nearly 2000 in terms of energy28,33. If we are able to improve the
fracture toughness of synthetic composites by 40-folds through
bioinspired design principles (e.g., brick-and-mortar micro-
structure), we will obtain composite materials that have the
strength, stiffness, and low weight of ceramics, while their fracture
toughness and work-to-failure matches or surpasses those of
metals and alloys.

In this work, the mortar and bricks were assumed to be metal
and ceramic, respectively. Metal–ceramic composites have been
identified as the most promising type for brick-and-mortar
architecture. For the brick-and-mortar composite architecture,
there are several geometrical design parameters, including the
mortar volume fraction, the aspect ratio of the bricks, mortar
thickness, and shift in stagger arrangement of the bricks, among
others. Additionally, materials properties of the brick and mortar
should be also added to this list. Such a large design space cannot
be fully examined by experimental work since manufacturing
processes for such composites are often costly28,29.

In Fig. 1, the bricks and mortar regions are respectively colored
gray and blue. The mortar is further split into vertical (VI) and
horizontal (HI) sections (red and blue regions in Fig. 1b,
respectively). The smallest informative repeating section was
selected as the representative volume element (RVE), assuming
that the global behavior of the brick-and-mortar structure is the
same as that of the RVE (Fig. 1)34. The RVE consists of bricks,
and vertical (VI) and horizontal (HI) mortars regions35,36. The
RVE contains two bricks that are separated by HI vertically and
shifted by s horizontally. For transverse loading, the boundary
conditions consist of symmetric conditions along the left and
bottom edges of the RVE (Fig. 2). In addition, the top and right
edges were constrained to have equal displacements in the per-
pendicular direction to satisfy periodic boundary conditions.
Therefore, it is possible to apply uniform stress to the RVE by
applying a point force to one point on the right edge. The
imposed periodic boundary conditions on the RVE cannot handle
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Fig. 1 The brick and mortar architecture and the representative volume element. a A brick‐and‐mortar composite microstructure. Bricks are arranged in a
staggered pattern, which are perfectly bonded with the mortar. The mortar (soft and ductile) and the bricks (hard and brittle) are represented by blue and
gray, respectively. b The selected RVE (representative volume element) with the geometrical features. The mortar is divided into two sections: the vertical
and horizontal sections, which for clarity are colored red and blue, respectively. The definition of each symbol is given in Table 2. VI and HI are the vertical
and horizontal interfaces, respectively. w and h are the brick length and height, respectively. t1 and t2 are mortar vertical and horizontal thickness,
respectively, and s is the shift in stagger arrangement.
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the application of other loading types, for example, shear.
Moreover, the RVE can only predict the strain/stress distribution
within the bulk composite and it does not consider the edge
effect.

In this work, the strength is evaluated using the elastic defor-
mation analysis to predict the stress required to trigger various
failure modes. Based on the theoretical failure modes, the designs
are split into two classes, that is, “good” and “bad.” For the brick-
and-mortar structure, the ideal failure mode is the failure of the
vertical mortar, followed by failure of the horizontal mortar, and
subsequent pull-out of the bricks. Such a failure mode results in
the highest fracture toughens. In this work, we assigned good
design to the cases that the VI fails first. In the good class, the
composite can still carry the load by horizontal mortar and bricks
after VI failure37–41. Therefore, the other two (HI failure and
brick failure) were considered as a bad design. Using the data set,
ML models were trained to capture the relationships between the
features and classes (classification). Furthermore, to illustrate the
potential of the ML approach beyond classification, a quantitative
regression ML model was also developed to estimate the strength.
More specifically, the proposed regression model was employed
to capture the nonlinear mapping between the composite
microstructure and its strength.

The presented model can predict the strength of high contrast
elastic composites with a wide range of microstructures while
exhibiting high accuracy and very low computational cost for new
evaluations. It was found that the thickness of vertical to horizontal

mortar ratio (TR) and the aspect ratio of the brick (AR) are the
main influencing features defining the design class while mortar
volume fraction (vm) and shifting distance of the bricks (s) are not
significantly different for each class. Moreover, these results
emphasize the importance of simultaneously controlling TR and
vm. The high and low values of TR and vm, respectively, assure the
high strength, while low AR can be used for good design.

Results
Data generation. The data generation procedure and ML model
development are shown in Fig. 3. The data set was generated by
MATLAB and ABAQUS. Mechanical strengths obtained from
FEA were considered as the ground truth and held the correct
class. The failure of the VI, HI, or bricks and their combination
are the main failure modes of a brick-and-mortar composite
(Fig. 1b). Each failure mode results in different strengths and
toughness levels. Theoretical models predict that the most
desirable failure mode is the VI failure first, followed by HI
failure37. Following VI and HI failure, the bricks can pull-out,
which is preferred to brick failure. The brick failure will result in
catastrophic failure. Therefore, in this work, we categorized fail-
ure modes with VI-failure-first as “good.” Classifying the data
into the good and bad design was done by comparing the max-
imum stress in VI, HI, and bricks with their corresponding
strength, given that the system is considered to behave elastically.
Finally, all geometries in the data set were categorized into “good”
labeled as “1” and “bad” labeled as “0” classes25. Higher stress in
VI would result in lower composite strength in good designs.
Hence, the strength in the good design was defined by reciprocal
of the maximum stress in VI. The generated data set (D) contains
the geometrical features, the classes, and the strength of
~20,000 samples. D was then randomly partitioned into three
non-intersecting sets: training data set (Dtraining)= 70% of D,
validation data set (Dv)= 10% of D, and test data set (Dtest)=
20% of D for ML calculation.

Machine learning model. Figure 4 shows the depth effect on the
decision tree performance. The decision tree construction
strongly depends on the number of branches (depth)42,43. To
accurately select the depth, decision trees with different depths
from 1 to 11 were evaluated over Dv. We used the area under
the receiver operating characteristics curve (AUC, the area under
the curve) as the evaluation metric. The results showed that the
highest AUC value is 0.95, and it belongs to the decision tree with
depth 6. Therefore, the decision tree with depth 6 was selected as
the optimum case with the least bias and variance. The decision
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Fig. 2 RVE periodic boundary conditions (BCs). The applied periodic
boundary conditions restrict the top and right edges of the RVE to remain
parallel to their initial positions by adding two constraints to the nodes on
the right and top sides of the RVE to have equal displacements in the x and
y directions, respectively. Uniform tensile stress with the magnitude of one
is applied to the right edge of RVE.

Fig. 3 Data generation and ML model development procedure. The data set was generated by MATLAB53 and ABAQUS52. Mechanical strengths
obtained from FEA were considered as the ground truth and held the correct class. The classification to good and bad classes was done through the
decision tree with its leaves representing different features conditions. A support vector regression was used for strength prediction.
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tree can distinguish a 2D brick-and-mortar structure as either a
“good” or a “bad” design. For geometries labeled as “good”
designs in the data set, their performances can be compared in the
terms of strength. A support vector regression (SVR) with the
radial basis function (RBF) kernel was employed to predict
strength values.

RBF is one of the most widely used kernel functions because of
its ability to generalize nonlinear functions and efficiently manage
large datasets. SVR specifies the epsilon-tube within which no
penalty is associated with the training loss function with points
predicted within a distance epsilon from the actual value. Scikit-
learn implementation of SVR is a wrapper around LIBSVM44 that
uses the decomposition method as the optimizer45. The MSE was
used to measure the difference between the strength predicted by
SVR and the actual value from the FEA results (Fig. 4b). The MSE
equation is expressed as:

MSE ¼ 1
n

Xn
i¼1

ðyprediction � ytrueÞ; ð1Þ

in which yprediction and ytrue are the predicted strength and the
actual strength for geometry i in Dv, respectively. γ is an
important hyperparameter for SVR46. The MSE vs. γ over Dv is
shown in Fig. 4b. γ ~0.15 shows the least MSE and was selected
for this problem. The obtained hyper-parameters for ML models
are given in Table 1.

Feature selection. The presented method was used to generate a
data set containing a large amount of information. The selection
of relevant features and the elimination of irrelevant ones is one
of the central problems in SA and ML47. By focusing on only a
small subset of features, an ML algorithm significantly reduces the
number of hypotheses under consideration and can quickly
search for better designs from a very large number of possible
composite designs for further evaluation. The good geometries
may have simple geometric patterns, which are easier to be
recognized. Therefore, we first tried to find the relevant features
that determine whether a design is good or bad.

To select the relevant features, an SA of the features was carried
out. The distribution of features, that is, AR, TR, s, and vm in
good and bad classes in the Dtraining are displayed in Fig. 5. In the
box plot, the black line is the median. The bottom to top of each
box show 25–75% (interquartile) range. The results reveal that
medians and the range of AR and TR for the good and bad
designs are fully separable. The figure shows more than 75% of
the data in good class has the TR and AR below ~1.3 and ~18,
respectively.

No visible correlation between s and vm for the classes is
observed since they are approximately balanced around the mean
values for both classes. Therefore, TR and AR were the selected
features for the classification problem. It is worthy to note that
considering only two features, that is, AR and TR as the input for
classification problem drops the computational cost while
maintaining the performance. The maximum AUC of decision
tree classifier on all features (with depth 10) was calculated to be
just ~3% higher than the decision tree on just two features, that is,
AR and TR (with depth 6).

Classification. Based on the results of SA, AR and TR were
selected to train a decision tree classification model. The con-
struction of the decision tree strongly depends on the number of
branches (depth). A complex tree with a large depth may be
overfit to the data, while a simple tree with small depth may be
underfit to the data. To carefully select how training parameters
in the decision tree affect the prediction, the number of branches
was systematically varied in the training process. The good and
bad classes produced in the pre-processing step were considered
as the ground truth and held the correct classes. The AUC of the
decision tree models over Dv is shown in Fig. 4a. The AUC of the
decision tree increases to 0.95 by increasing the depth to 6. No
further AUC improvement is observed afterward. Therefore, 6 is
the optimum value for depth that provides the highest perfor-
mance and simplicity. The selected decision tree showed the same
values of AUC over Dtest. Dtraining in AR-TR space (Fig. 6a) and
partitioned AR-TR space (Fig. 6b) is depicted in Fig. 6. Good
design in Dtraining dominates a larger portion of the space.
Seventy-five percent of the Dtraining is good design, and only 25%

Table 1 The hyper-parameters for each ML prediction model.

Model Parameters

Decision tree Criterion= entropy, the minimum number of samples leaf= 153, 2 input variables
Support vector regression Kernel= RBF, C= 2000, γ= 0.1525, ϵ= 0.001

Fig. 4 The depth effect on the decision tree performance. a The AUC
(area under the curve) vs. the depth for the decision tree, and the b MSE
(mean squared error) as a function of γ (hyperparameter) for SVR with the
radial basis function (RBF) kernel over Dv (validation data set). The dashed
lines show the selected value for each hyperparameter.
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is bad design. The developed decision tree was used to partition
the AR-TR space. Figure 6b shows the boundaries created by the
decision tree for the good and bad classes. Eighty-three percent of
the AR-TR space is colored in orange (good design).

Figure 6c shows stress distribution for the samples in Dtraining

(selected points in Fig. 6a) with different failure modes. Regions
of the bricks just above and below the VI have the highest stress
values for all the cases (Fig. 6c). Therefore, they are susceptible
regions for brick failure. As shown in the pie chart in Fig. 7, 5%
and 20% of the geometries in the Dtraining have HI and brick
failure as the failure mode, respectively. Figure 7 displays the
probable location of failure for each failure mode, that is, VI, HI,
or brick failure. As it was expected, the failure probability of the
brick above or below of VI is ~94% due to higher stress
concentration (Fig. 6c). Eighty-five percent of HI failures happen
near brick corners due to stress concentration.

Regression. In addition to being able to determine the strength
value, a regression model can also be implemented to rank the
designs based on their strength. Figure 8 shows the ranking
comparison predicted using the SVR model and the actual
strength ranking in the Dtraining and Dtest. It can be argued that the
regression model predicts ranking in the Dtraining with high
accuracy for strength since the majority of the points lie very close
to the line y= x. Additionally, as can be seen in Fig. 8, although
the SVR model does not observe the FE strength or FE ranking
information, the results are also impressive when predicting the
ranks of geometries in Dtest. The decision tree and regression
model are very useful when using ML as a filter to quickly search
for better designs with high accuracy from a very large number of
possible composite designs for further evaluation in a short period.

Geometrical pattern. The previous section has shown that our
ML model can accurately categorize geometries and rank geo-
metries relative to each other. One question is whether the ML

models can actually capture the physics and mechanics of this
composite design problem based on the patterns they have
earned. Figure 9 shows the frequency distribution of the features
and strength over Dtest. The results demonstrate that, on average,
the ML models can predict the geometries that have high-
strength, nearly as well as the FEA approach, without ever solving
finite element equations. High similarities between the geome-
trical patterns of ML and FEA are observed. It is interesting to
note that the majority of geometries provide a low strength while
only a small fraction of them has high strength (Fig. 9). The
average strength of Dtest is ~0.74, while the top 100 samples have
a strength of ~0.99.

The feature frequency histogram for the top 100 geometries is
shown in Fig. 9b–e. Considering the top geometries for both
properties obtained from the FEA and ML, there are high
similarities in frequency distributions. The optimal combination
of mortar and brick geometries that maximizes strength would be
the designs with TR above ~1.6, vm below ~0.3, and AR between
10 and 20. Without considering mechanics knowledge, without
even knowing the geometry, the ML models find the patterns that
lead to high strength. As can be seen from Fig. 9c, d, the TR and s
histograms show the skewed distributions with long-tail points to
the right (right-skewed), while left-skewed distributions were
observed for AR and vm histograms (Fig. 9b, e).

One million random geometries. To demonstrate a potential
application of ML in composite design and optimization, we
applied the ML models to a much larger data set to determine the
relations between the features and strength. First, one million
random geometries (D1M) were generated and imported to the
decision tree to filter out the bad designs. In the second step, we
used the SVR model to search for a relation between the features
and strength. Figure 10 represents how a combination of features
contribute to strength.

Fig. 5 The distribution of features in good and bad classes in training data set (Dtraining). The box plot for different features’ distribution in the good [1]
and bad [0] designs in Dtraining: a AR, b TR, c s, and d vm. The segments inside each box show the median and the whiskers above and below the box show
the minimum and maximum. The boxes contain at least 75% of the training samples. Filled circles in a, b display surprisingly high maxima or surprisingly
low minima. All the features’ distributions are almost symmetric expect the TR in good design that shows skewed distribution. TR (horizontal mortar ratio),
AR (the aspect ratio of the brick), vm mortar volume fraction, and s (shifting distance of the bricks).
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Discussion
In order to test the dependency of the results on the size of
Dtraining, the ML models were trained with three different sizes of
the training data densities, that is, 50%, 60%, and 70%, while the
Dv (10%) and Dtest (20%) were kept fixed. Less than 2% dis-
crepancy in results was observed in AUC and MSE for different
Dtraining. Therefore, it was concluded that enough data points
were generated from the finite element simulation. It is also worth
mentioning that the decision tree regressor (DTR) was also tested
for the regression problem. The MSE of the DTR in its best
performance (depth of 7) was 3.4% that was more than 10 times

higher than the SVR. Therefore, the SVR was selected for strength
prediction.

Based on Fig. 6c, for the fixed value of AR, increasing the TR
may cause HI and brick failure (bad design): this is because
increasing the TR corresponds to thicker VI and larger strength
of VI. For short bricks, VI failure controls the strength, as the
stress required for HI failure (brick pull-out) and brick failure is
smaller than the stress required to yield VI. However, for the
designs with TR above one, as AR increases from two (brick
length increases), the HI failure governs the composite strength. If
the bricks are long (AR > ~23), the HI strength is higher than the

a b
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VI failure

Brick failure

HI failure

Fig. 6 Boundaries of the good and bad design in design space and the stress distribution in selected points. a Scatterplot of good and bad designs in TR-
AR design space for Dtraining. The response is color coded: the orange cross and blue circle represent points in the good and bad classes, respectively. b The
partitioned space by the decision tree. Orange and blue correspond to good and bad classes, respectively. c The von Mises stress distribution obtained
from FEA for selected points shown in a. The stress contours are von Misses stress, and the figures are undeformed geometry of the RVE. The stress
magnitude is normalized with respect to the applied load. The selected points illustrate the different failure possibilities: the black triangle represents a
sample in the good class (VI fails first). The black circle and square are examples of bad designs with HI and brick failure, respectively. The red color shows
the region with the highest stress value. All the geometries in c have the same value of s= 0.2 and vm= 0.5 while they present different failure modes. The
heights of RVE obtained from Eq. 1 and Eq. 2 are 0.43, 0.1, and 0.15 for the points shown by the triangle, circle, and square point in a, respectively. The stars
in c show the location of the failure initiation. Failure is considered as the onset of yielding in the mortar and fracture of the ceramics. TR (horizontal mortar
ratio), AR (the aspect ratio of the brick), vm mortar volume fraction, and s (shifting distance of the bricks).
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stress required to break the bricks, such that the bricks fail prior
to HI. In other words, longer bricks increase the stress generated
in the bricks that can cause brick failure to occur. These results
are consistent with the analytical results reported in ref. 37, as the
analytical model predicts no brick failure for AR= 5.

In Fig. 10, the white space in the TR-AR graph shows the bad
designs that are filtered out by the decision tree. For a fixed AR,
increasing TR corresponds to thicker VI. As the mortar sections
become thicker, the applied stress required to cause them to fail
increases. Thus, the strength increases with TR. This is not a valid
conclusion for all the samples in D1M. For instance, the maximum
strength D1M happens at AR= 40 and TR=−2. Therefore, each
individual case needs to be investigated separately. No specific
pattern in AR-s space was observed. Lower vm increases the
strength as the maximum strength was observed around 0.1–0.2
(Figs. 9e and 10). Figure 10 illustrates that TR and vm have a
profound effect on strength. For example, consider the case of
AR= 10: in all cases, the vertical strength is varied by a factor of
two upon varying TR and vm between their upper and lower
bounds. While the stiffness could be considerably improved by
increasing the AR as it is reported in ref. 37, the strength does not
show a trend with brick size as no obvious trend between strength
and brick size can be observed in vm vs. AR contour map.
However, there are points in the AR vs. vm contour map with the
relative strength higher than 0.9. Approximately 52% of these
points have AR between 30 and 35, while 44% have AR between
40 and 45. The values of vm and TR for these points are <0.5 and
−1, respectively. FEA simulations also confirm that the imple-
mentation of these values in the design would result in higher
strength.

The simulation time to calculate the stress–strain responses of
20,000 FEA models was ~50 h, while using the ML approach to
predict the strength of one million geometries took only 6 s using
the same computational resource. This comparatively short time
demonstrates ML models’ capability to find the trend for the best
design despite using a very small computational cost. Clearly, a
much more detailed study is needed to understand trade-offs
between all other design possibilities, other mechanical properties
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of brick-and-mortar, or mechanical behavior under different
loading conditions.

The presented RVE draws inspiration from previous analytical
and numerical studies for the micromechanical modeling of
composite materials29,37,48–50. For reference, the FEA model
predictions are compared to the measured properties of
the nacre-inspired synthetic Al2O3/PMMA (poly(methyl metha-
crylate)) composite28, and an analytical model presented in
ref. 37. Using the properties for Alumina and PMMA reported in
ref. 37, and the pertinent composite details from ref. 28 (vm= 0.2,
h= 8 μm, w= 50 μm, and t2= 1.5 μm), the presented model
predicts a composite modulus of 111 GPa, close to the measured
value of 115 GPa in the experiment. The analytical model in
ref. 37 predicts a composite modulus of 122 GPa. The slight dis-
crepancy between analytical results37 and the experiment28 could
be attributed to the following assumptions: (i) the horizontal

mortar experiences pure shear and the vertical mortar sections
experience pure tension, (ii) the bricks experience purely axial
elongation, and (iii) the mortar is assumed infinitesimal in
comparison to other dimensions. These assumptions may not be
valid for brick–mortar structures with a large value of vm, parti-
cularly metal/ceramic composites that usually have vm larger
than 4037. Using the FEA, no simplifying assumptions need to be
imposed on the geometry or mechanical behavior.

In this work, an ML approach was designed and implemented to
model an elastic homogenization structure–property linkage in a
brick-and-mortar composite material system. We propose an
intelligent technique to predict the tensile strength. This technique
is a combination of the FEA, SA, and ML. The SA was used for
feature selection, while the ML was used for architecture tuning.
Twenty thousand designs under different combinations of features
were tested by the FEA for data set preparation. The FEA model
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Fig. 9 The frequency distribution of the features and strength over Dtest. a Frequency histogram of strength for geometries obtained from the FEA and
those obtained from ML models. The results are normalized w.r.t. the maximum strength in Dtest. The frequency histogram of geometrical features in the
top 100 models in Dtest predicted by ML and FEA: b AR, c TR, d s, and e vm. TR (horizontal mortar ratio), AR (the aspect ratio of the brick), vm mortar
volume fraction, and s (shifting distance of the bricks).
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describes the strength of an idealized composite, with bricks
arranged in a staggered pattern that are perfectly bonded with
mortar. These models were employed to train ML models. A large
data set with one million geometries was imported into the trained
ML models to further understand the relationship between each of
those features and the mechanical behavior of the system. The
results show that the thickness of vertical to horizontal mortar ratio
(TR) and the aspect ratio of the brick (AR) are the main influencing
features defining the design class, while mortar volume fraction (vm)
and shifting distance of the bricks (s) are not significantly different
for each class. Moreover, these results emphasize the importance of
simultaneously controlling TR and vm. The high and low values of
TR and vm, respectively, assure the high strength, while low AR can
be used for good design.

Methods
Brick and mortar model. All the constituents were assumed to behave elastically.
The ratio of elastic moduli and strengths of the mortar to brick was assumed to be
0.5 based on the average values in the Ashby plot for metals and ceramics51. The
von Mises stress was used to predict the yielding initiation of metal, and the
maximum normal stress was used as the elastic limit for the ceramic phase, given
the brittle nature of most ceramics. By comparing the maximum generated stress
within metal and ceramic and knowing their strength, we can predict the initial
failure mode that occurs at the limit of elasticity in the components. Post-yield
analysis can be added to obtain information on the fracture and toughness in the
composite. Poisson’s ratio for all the materials was considered to be 0.3. Geome-
trical symbols used in the model are presented in Table 2.

t1 and t2 are the thicknesses of the vertical and horizontal mortar sections,
respectively. LR is assumed to be one, without loss of generality. Moreover, all the
parameters are normalized with respect to LR. The volume fraction of the mortar
phase is derived from:

vm ¼ 2ðt2 þ t1 ´ hÞ
WR

: ð2Þ
The RVE height is obtained by solving a system of equations:

TR ¼ log
t1
t2

� �
; ð3Þ

AR ¼ w
h
; ð4Þ

1 ¼ t1 þ w; ð5Þ

WR ¼ 2ðhþ t2Þ: ð6Þ
AR is the aspect ratio of each brick and TR is the logarithmic thickness ratio of

vertical and horizontal mortar sections. A logarithmic scale was used to better
display the small and large values. AR, TR, vm, and s were selected as independent
geometrical features (dimensionless variables) that need to be quantified for
constructing the RVE. Therefore, there are five unknown geometrical features, that
is, t1, t2, w, h, and WR. The values of these unknown features can be obtained by
solving the system of equations (Eqs. 2–6).

The dimensionless variable s is the shift in the staggered arrangement, divided
by the RVE length= 1. These features vary continuously within their upper and
lower limits (Table 3). The volume fraction vm varies from 0.01 (~pure brick) to
0.99 (~pure mortar). For the model, we used the range vm from 0.01 to 0.99 to
avoid the extreme cases of pure brick and pure mortar. The shift in staggered
arrangement s varies from 0 to the length of RVE that is 1. By virtue of symmetry,
the results for the range of s between 0 (both layers of brick are aligned) to 0.5 is
similar to 0.5 to 1 (both layers of brick are aligned). Therefore, the minimum and
maximum values of s were assumed to be 0.01 to 0.5. TR= log (t1/t2) can vary from

Fig. 10 This figure shows how a combination of features contribute to strength for one million random geometries. Contour maps of composite strength
at the elastic limit for D1M. The contour shows the strength of a different combination of the geometrical features. The values of strength are normalized w.
r.t. maximum values of strength in D1M. The apparent noise in the contour maps is because the strength depends on four features, while each contour map
shows variation in just two features.

Table 2 Geometrical symbols in RVE.

Symbol Definition

w Brick length
h Brick height
t1 Mortar vertical thickness
t2 Mortar horizontal thickness
s Shift in the staggered arrangement
LR RVE length
WR RVE height

Table 3 The upper and lower bounds of geometrical
features.

Symbol Minimum Maximum

AR 2 50
TR −2 2
vm 0.01 0.99
s 0.01 0.5
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negative infinity to positive infinity. The finite element simulation revealed that the
values of TR <−2 and >2 would not alter the results. AR= w/h is the aspect ratio of
the bricks. A range of 2–50 was used based on experimental literature and
reasonable brick aspect ratio. Based on our previous experimental work, the
literature values and commercially available bricks, a typical range for AR is
5–2028,29. Progress in additive manufacturing methods may be able to extend this
range. We used a range of 2–50 as an extreme case.

The total number of geometry combinations is infinite. Therefore, we used
sampling methods to generate the data set. To prevent under-coverage, multi-stage
sampling was used. In the first stage, systematic sampling was employed to cover
the entire design space by points with a specific distance in between. In the next
step, a simple random sampling strategy selected the random values for the features
in their predefined range (Table 3). The final data set contains >20,000 geometries.

Data generation. The ABAQUS FEA package with the implicit solvers imple-
mented in ABAQUS/Standard52 was utilized to solve the stress and strain fields
within the RVE. The RVE meshed with 132, 4-nodes plain-strain element CPE4R.
Mesh sensitivity analysis showed that four times larger mesh density had <3%
discrepancy in predicted stress and strain values. To analyze different geometrical
configurations an algorithm capable of automatic generation of ABAQUS script
files was implanted. This procedure was carried out using MATLAB53. The FEA
simulations were run 20,000 times on the generated RVE geometries using the
presented algorithm. In the final step, a data set (D) containing geometrical features
values and the FEA results was created.

ML model. The ML calculations were performed using Scikit-learn47, the ML
library in Python. The decision tree classification algorithm was selected because of
its high interpretability and good performance54. A decision tree represents the
features in the form of a tree. We trained decision tree models with binary
information to estimate their ability to reproduce actual performances based on
limited Dtraining. The classification was done through the decision tree with its
leaves representing different features conditions. The entropy evaluation function
was chosen as the criterion for the branching process. The geometrical features and
their classes (good or bad) were assigned as inputs and outputs for the
decision tree.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
The code that support the findings of this study are available from the corresponding
author upon request.
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