

ARTICLE https://doi.org/10.1038/s43246-020-00086-y

OPEN

Check for updates

Active-matrix monolithic gas sensor array based on MoS₂ thin-film transistors

Sehwan Kim^{1,3}, Heekyeong Park^{1,3}, Sooho Choo^{1,3}, Seongho Baek¹, Yena Kwon¹, Na Liu¹, Jeong Yong Yang², Cheol-Woong Yang^{1⊠}, Geonwook Yoo ^{2⊠} & Sunkook Kim^{1⊠}

Highly sensitive and system integrable gas sensors play a significant role in industry and daily life, and MoS₂ has emerged as one of the most promising two-dimensional nanomaterials for gas sensor technology. In this study, we demonstrate a scalable and monolithically integrated active-matrix gas sensor array based on large-area bilayer MoS₂ films synthesized via two-successive steps: radio-frequency magnetron sputtering and thermal sulfurization. The fabricated thin-film transistors exhibit consistent electrical performance over a few centimeters area and resulting gas sensors detect NO₂ with ultra-high sensitivity across a wide detection range, from 1 to 256 ppm. This is due to the abundant grain boundaries of the sputtered MoS₂ channel, which perform as active sites for absorption of NO₂ gas molecules. The demonstrated active-matrix gas sensor arrays display good switching capabilities and are anticipated to be readily integrated with additional circuitry for different gas sensing and monitoring applications.

¹Department of Advanced Materials and Science Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. ²School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea. ³These authors contributed equally: Sehwan Kim, Heekyeong Park, Sooho Choo. ^{Se}email: cwyang@skku.edu; gwyoo@ssu.ac.kr; seonkuk@skku.edu

as sensors, which allow ubiquitous and personal airquality monitoring, pollution tracking, and preventive health care via point-of-care breath analysis, are in great demand and will become one of indispensable internet of things sensors toward the hyper-connected¹⁻⁵. To achieve this agenda, development of low-power and monolithically integrated gas sensors without sacrificing their sensitivity is crucial, and thus various gas-sensing methods have been proposed based on electrochemical, resistive, and nanomechanical system⁶⁻¹². In particular, chemiresistors made of semiconducting metal oxides have been extensively explored and are now the most common gassensing devices. These gas sensors operate in resistance modulation resulting from gas-oxide charge transfer at an elevated temperature, but they are typically bulky and require high-power consumption. In recent years, field-effect transistors (FETs) have emerged and shown a potential for overcoming the aforementioned drawbacks13-15.

The FET-based gas sensor works on a principle of carrier transport modulation on the channel induced by gas molecules. Various nanomaterials, such as silicon nanowires, carbon nanotubes, and organic semiconductors, have been used as channel materials of the FET-based gas sensors to realize high sensitivity^{16–24}. Especially, two-dimensional (2D) nanomaterials including transition metal dichalcogenides have attracted a significant attention as a promising candidate for ultrasensitive gas sensors because of a high surface-to-volume ratio and excellent charge sensitivity^{25–29}.

In particular, ultrahigh sensitive gas sensors based on molybdenum disulfide (MoS_2) have been successfully fabricated with mechanical and chemical exfoliation methods^{30–32}. However, poor reproducibility and uniformity of exfoliated MoS_2 flakes significantly limit their practical applications. In this regard, massive efforts to grow large-area and high-crystalline MoS_2 films have been devoted, and a feasibility of diverse growth methods has been demonstrated, including chemical vapor deposition (CVD)^{33,34}, atomic layer deposition (ALD)^{35,36}, and physical vapor deposition (PVD)^{37,38}. Nonetheless, the poor reliability and reproducibility of CVD owing to the unstable gas flow dynamic in the chamber as well as high-cost and low throughput of ALD reduce the availability of rather efficient and scalable growth techniques. Thus, a sputtering for large-area uniform MoS₂ films has been developed, because sputtering is a widely commercialized technique in the industry to facilitate mass-production of thin films. The sputtered MoS₂ shows large-area uniformity and good electrical properties^{39,40}. However, no reports have been conducted on MoS₂ gas sensor arrays driven by large-area active-matrix.

Here, we demonstrate a scalable, highly sensitive, and monolithically integrable gas sensor active-matrix array based on bilayer MoS₂ films synthesized via a two-step method, that is, through subsequent radio-frequency (RF) magnetron sputtering and thermal sulfurization. The fabricated MoS₂ thin-film transistor (TFT)-based gas sensor exhibits a reduction of field-effect mobility ($\mu_{\rm FE}$) and a positive threshold voltage ($V_{\rm TH}$) shift upon the exposure to nitrogen dioxide (NO₂) at room temperature, which are dissimilar to the change of exfoliated MoS₂-based gas sensors. We found that two-step-grown MoS₂ film has a polycrystalline structure and its abundant grain boundaries activate the adsorption of NO₂ molecules, resulting in the increment of potential barriers to inhibit the carrier transport in the channel. Monolithic integration of the active-matrix gas sensor array comprising switching and sensing TFTs is presented with transient gas-sensing characteristics.

Results and discussion

Characterizations of two-step-grown MoS₂. The schematic image of Fig. 1a shows the synthesis of MOS_2 film on a silicon (Si)/silicon dioxide (SiO₂) substrate, where molybdenum (Mo) metal was pre-deposited by RF magnetron sputtering at room temperature with RF power of 150 W, and then sulfurized at 750 °C in a CVD chamber with a gas mixture of hydrogen sulfide (H₂S), hydrogen (H₂), and argon (Ar). The sulfurization induced a transition from the Mo film into a layered MoS₂ structure (bottom of Fig. 1a). The thickness of Mo film, which

Fig. 1 MoS₂ synthesized by two-step method. a Schematic image of two-step growth of bilayer MoS₂. b Optical image of MoS₂ film and Si/SiO₂ substrate, and thickness profile of MoS₂ film. c Raman and d XPS spectra of MoS₂ films.

determines the thickness of the final MoS₂ film, is controlled by the sputtering parameters and the deposition time⁴¹. However, in case of thick Mo film (>5 nm), it could not be completely sulfurized due to the limited diffusion length of sulfur (S) atoms, resulting in multiphase film with MoS₂ on top and Mo underneath^{41,42}. To obtain fully sulfurized MoS₂ films, we deposited ultra-thin Mo film with the thickness of 2 nm by optimizing the deposition time to 180 s. In the optical image of Fig. 1b, the fabricated MoS₂ film showed a blue color, which is completely different from the purple color of Si/SiO₂ substrate, with a highly uniform distribution over a centimeter scale, denoting its continuity and connectivity of the large-area MoS2 film. The thickness of the MoS₂ film was measured as 1.64 nm using atomic force microscopy (AFM), which may suggest two MoS₂ layers (insets of Fig. 1b). Raman spectrum of the MoS₂ film (Fig. 1c) showed two typical peaks of in-plane (E12g) and out-of-plane (A_{1g}) modes at 383.52 cm⁻¹ and 405.69 cm⁻¹, respectively. The peak difference (Δk) between the E¹_{2g} and A_{1g} modes was calculated to be 22.17 cm^{-1} , corresponding to bilayer MoS₂⁴³, consistently with the AFM result. The average values of the E^{1}_{2g} and A_{1g} peaks from randomly distributed nine points on the 2 × $2 \text{ cm}^2 \text{ MoS}_2$ film were estimated to 383.32 and 405.49 cm⁻¹, respectively, with Δk of 22.17 cm⁻¹ (Inset of Fig. 1c), indicating high homogeneity of bilayer MoS₂ on large-area.

X-ray photoelectron spectroscopy (XPS) was employed to identify chemical binding states of Mo and S atoms in the MoS₂ film. XPS spectra of Mo 3*d* and S 2*p* core levels of the MoS₂ film including deconvolution curves were depicted in Fig. 1d. In Mo 3*d* spectrum, two strong doublet peaks were observed at 229.75 (Mo⁴⁺ 3*d*_{5/2}) and 232.88 eV (Mo⁴⁺ 3*d*_{3/2}), respectively, corresponding to MoS₂ bonding⁴⁴. In addition, two small doublets peaks of Mo⁶⁺ 3*d*_{5/2} and Mo⁶⁺ 3*d*_{3/2} were confirmed at 232.93 and 236.06 eV, respectively, which were attributed to the existence of residual MoO₃⁴⁴. However, the atomic fractions of the Mo⁶⁺, which was estimated to be 13% (<20% of the total Mo species), is reasonable for air-exposed MoS₂ films⁴⁵. In the S 2*p* spectrum, only two doublet peaks belonging to MoS₂ bonding appeared at 162.44 (S²⁻ 2*p*_{3/2}) and 163.62 eV (S²⁻ 2*p*_{1/2}), respectively. The quantitative ratio between S²⁻ 2*p* and Mo⁴⁺ 3*d* was ~1.96, which indicates a perfect MoS₂ configuration.

Transmission electron microscopy observations of MoS₂ film. The atomic structure of the MoS₂ film was explored through transmission electron microscopy (TEM). The cross-sectional TEM image of the MoS₂ film shows its 2D bilayer structure as shown in Fig. 2a. A plan-view TEM image of the MoS₂ over an area of 41×41 nm² exhibits its large-area continuous lattice (Fig. 2b). In addition, several kinds of Moirè patterns were observed, indicating a lattice mismatch between two layers. A layered structure is formed by the van der Waals (vdW) interactions between the different layers. The relatively weak vdW forces can induce variations in strain response between adjacent layers, resulting in the lattice mismatch by sliding the layer or nucleating ripples⁴⁶. The MoS₂ films with Moirè fringes exhibit a ring-shape of fast Fourier transform (FFT) pattern (Inset of Fig. 2b), suggesting a polycrystalline structure of the films. The high-resolution TEM image of Fig. 2c shows partially wellorganized hexagonal lattice structures along with grain boundaries. In Fig. 2d, two MoS₂ grains of (100) plane meet each other with a relative misorientation of 30°, and the corresponding FFT patterns of the high-resolution TEM image (Inset of Fig. 2d) reveal their diffraction spots indicated with different colors. Despite the insufficient statistical data to identify the size of the MoS₂ grain, we can anticipate that many grain boundaries were possessed in the polycrystalline MoS₂ films.

Electrical properties of MoS2 TFTs. To investigate electrical characteristics of the large-area synthesized MoS₂ films, we fabricated MoS₂ TFTs as shown in Fig. 3a. The MoS₂ films on Si/ SiO₂ substrate were patterned by photolithography combined with dry etching to obtain active channels for transistors. Titanium (Ti) and gold (Au) electrodes were placed for source and drain contacts. Figure 3b illustrates bottom gate voltage (V_{GS}) -drain current (I_{DS}) curves of the MoS₂ TFT in logarithmic (red circle line) and linear (blue square line) scales with V_{GS} range from -40 to 40 V and drain voltage (V_{DS}) of 1 V, where a channel width (W) and length (L) were 20 and 7 µm, respectively. We observed an excellent n-type semiconducting property with a very high on-off ratio (I_{on}/I_{off}) over 2×10^6 . V_{DS} - I_{DS} curves of the MoS_2 TFT obtained in the V_{GS} range from -40 to 40 V at intervals of 10 V (Fig. 3c) also exhibited typical n-type characteristics. Here, the top-down approach of the sputtered MoS₂ facilitated a large-volume integrated 2D MoS₂ sensor arrays on a substrate. Figure 3d shows statistics on the electrical parameters of maximum transconductance (gm) and VTH obtained by randomly distributed 24 MoS₂ TFTs on a substrate (Supplementary Fig. 1), revealing very narrow distributions and small standard deviations of 9% for $g_{\rm m}$ and 17% for $V_{\rm TH}$, respectively. These statistical distribution of as-fabricated transistors shows superior electrical uniformity.

NO₂ gas-sensing behavior. NO₂ gas not only has a huge impact on the environment but can also be a diagnostic tool for breath analysis⁴⁷. To confirm sensing responses of the MoS₂ TFT to NO₂ gas, the device was mounted on a stage in a gas chamber equipped with a semiconductor characterization system. An optical image of the MoS₂ gas-sensing TFT was shown in Fig. 4a, where W/L of the device was 20/7 µm. Figure 4b shows V_{GS}-I_{DS} curves of the MoS₂ gas sensor measured under various concentrations of NO2 gas from 0 to 256 ppm. Increasing the NO_2 concentration resulted in the significant decrease of I_{DS} over the whole range of V_{GS} , which denotes that the NO₂ adsorption on the MoS₂ surface reduces the conductivity of the MoS₂ channel. We also measured a time-resolved sensing response of the device to confirm its real-time current behavior when NO₂ gas was injected into the chamber for 5 min, and then the sensor was recovered via pure N₂ purging for 5 min (Fig. 4c). The concentration of NO₂ gas was ranged from 8 to 256 ppm, and 1 V of $V_{\rm DS}$ was applied. The response is calculated as $(R_{gas}-R_0)/R_0$, where R_{gas} represents a resistance of the device under the NO₂ gas environment and R_0 is its initial resistance without NO₂ gas exposure. V_{GS} was fixed at 0 V since most MoS₂ TFTs exhibited higher response values at V_{GS} near 0 V (Supplementary Figs. 2a-d). Considering that the average $V_{\rm TH}$ of the MoS₂ TFTs was evaluated as 13.5 V (Fig. 3d), $V_{\rm GS}$ range near 0 V is considered as a subthreshold regime. The high response in subthreshold region has been proposed earlier in many TFT-based sensors⁴⁸⁻⁵⁰. In Fig. 4c, as the NO₂ concentration increased, R_{gas} also increased, resulting in positive values of response. However, the response value was not saturated within 5 min owing to a continuous condensation of gas molecules on the MoS_2 surface^{51,52}. When we measured the electrical response longer than 5 min (Supplementary Fig. 3), the saturation in sensing response was observed. In addition, rapid recovery was observed when the NO₂ gas was removed (Fig. 4c), indicating great suitability of MoS₂ TFTs for gassensing applications. To confirm a limit of detection of the MoS₂ gas sensor, we tried to measure the sensing response of the device at lower ppm level from 1 to 4 ppm. The sensor presented the response value of 0.5% for 1 ppm of NO₂ concentration (Supplementary Fig. 4).

Fig. 2 TEM images of MoS₂ film. a Cross-sectional and b plan-view TEM images. c Basal plane and d grain boundary (Inset of FFT patterns extracted from each figure).

Fig. 3 Electrical properties of MoS₂ TFTs. a Schematic image of MoS₂ TFTs. b Transfer characteristics and c output characteristics of MoS₂ TFT. d Plot of g_m and V_{TH} of 24 different MoS₂ TFTs.

Fig. 4 NO_2 gas-sensing performances of MOS_2 TFTs. a Optical microscopic image of MOS_2 TFT. b Transfer characteristics of MOS_2 TFT upon NO_2 exposure with different concentrations ranging from 0 to 256 ppm. c Real-time sensing response of gas sensor with NO_2 exposure from 8 to 256 ppm concentration. d Response of nine different gas sensors measured at NO_2 concentrations of 8, 32, and 128 ppm and average response at each concentration.

To evaluate a sensing uniformity of the MoS_2 gas sensors, the sensing responses of nine different devices were examined under the injection of various NO_2 concentrations. The response of each TFT was presented by different colors depending on different concentrations of NO_2 ; red for 8 ppm, green for 32 ppm and blue for 128 ppm, and the average values of nine TFTs were marked as dotted lines. The response of each device did not deviate significantly from the mean value, which was supported by low standard errors of 1.36, 1.34, and 2.65, respectively.

For in-depth study of the sensing mechanism of the twostep-grown MoS₂ gas sensor, we examined variations of device electrical parameters of the device under increasing NO2 gas concentrations. The $V_{\rm TH}$ and $\mu_{\rm FE}$ values were extracted from each V_{GS} - I_{DS} curves in Fig. 4b. In Fig. 5a, the variation of V_{TH} $(\Delta V_{\rm TH})$ is plotted as a function of NO₂ concentration, indicating continuous positive shift of V_{TH}, especially, with rapid changes in low concentrations. Moreover, μ_{FE} gradually degraded when the NO₂ concentrations increased (blue circle in Fig. 5b). These electrical behaviors are unequivocally different from the previously reported exfoliated MoS₂ TFT gas sensors^{29,53}. As shown in Supplementary Fig. 5a, for comparison purposes, we also measured the sensing responses of exfoliated MoS₂ TFT having a channel area similar to that of the two-step-grown MoS₂ TFT. In the exfoliated MoS₂ gas sensors, NO₂ gas molecules are physically adsorbed on the basal surface of the MoS₂ by vdW interactions^{32,54-56}, which generates in-gap states in bandgap region close to the valence band and thus, increases the tunneling of hole carriers^{29,53}. As a result, Ioff for the transistor gradually increased along with NO₂ concentrations (Supplementary Fig. 5b). However, these devices showed no change in $\mu_{\rm FE}$ according to NO₂ concentrations, as shown in an orange square in Fig. 5b, unlike the two-step-grown MoS₂ TFT. The major difference between two MoS₂ FETs is the crystalline structure of MoS₂

films, i.e., the two-step-grown MoS₂ film is polycrystalline, whereas the exfoliated MoS₂ flake is single-crystal. On the polycrystalline MoS₂ surface, the abundant grain boundaries are expected to serve as active binding sites for NO₂ molecules, so that the adsorption of NO₂ on grain boundaries is more dominant than that on basal plane^{57–59}, as shown in schematic illumination of an inset of Fig. 5a. This can be further understood by the fact that the shifts of $V_{\rm TH}$ and $\mu_{\rm FE}$ variation were gradually diminished as the grain boundaries became saturated.

There are many reports on organic TFT-based chemical sensors, having many grain boundaries in their channels, like the two-step-grown MoS₂⁵⁹⁻⁶¹. In organic TFT sensors, the adsorption of gas analytes on the grain boundaries induces local electric fields through polarization of the semiconductor, leading to the trapping of mobile carriers, and consequently, to variations in current behaviors. To establish the relationship between the NO₂ adsorption on the MoS₂ grain boundaries and the $I_{\rm DS}$ decrease involving the variations of $V_{\rm TH}$ and $\mu_{\rm FE}$, the temperature-dependent current behavior measurements were conducted on two-step-grown MoS2 TFT with and without NO₂ gas exposure. We measured V_{GS} - I_{DS} curves at different temperatures from 350 to 400 K at intervals of 10 K under pure N₂ (Supplementary Fig. 6a) and NO₂ environments with the concentration of 256 ppm (Supplementary Fig. 6b). In both cases, two devices exhibited thermally activated I_{DS} when the temperature increased. We extracted a carrier activation energy (E_A) from experimentally measured results by using the following equation:

$I_{DS} = I_{D0} exp(-E_A/k_B T)$

where I_{D0} is the prefactor, k_B is the Boltzmann constant, and T is temperature^{62–64}. Supplementary Figs. 7a and b plot I_{DS} as a function of $1/k_BT$ derived from Supplementary Figs. 6a and b,

Fig. 5 Atomic structure-dependent NO₂ **sensing behavior. a** ΔV_{TH} according to NO₂ exposure and schematic image of NO₂ adsorption on MoS₂ grain boundaries (inset). **b** Comparison of μ_{FE} between exfoliated and two-step-grown MoS₂ TFTs under different concentrations of NO₂. **c** Calculated activation energy (E_A) as a function of V_{GS} and **d** density of states for MoS₂ TFT with and without NO₂ gas exposure.

respectively, and Supplementary Figs. 7c and d are I_{D0} according to V_{GS} . The calculated E_A curves according to V_{GS} are presented in Fig. 5c, which show a higher E_A values under NO₂ environment than only N₂ environment in the whole range of V_{GS} . This indicates that the absorption of NO₂ gas molecules induced a higher potential barrier for electron carriers to hop to the next grain. Furthermore, we can estimate the density of sub-gap states as follows:

$$N(E) = C_{ox}q^{-1} \left(\partial E_A \partial V_{GS}^{-1}\right)^{-1}$$

where C_{ox} is oxide capacitance and q is electron charge. Figure 5d shows the calculated density of states near conduction band (E_c). A new sub-state was observed near E_c -0.2 eV under NO₂ environment, providing direct evidence of the formation of trap state. These results indicate that the NO₂ adsorption on the grain boundaries generates trap states in the forbidden band, inducing charge trapping and increment in the potential barrier, which inhibits the carrier transport in the channel and induces the decrease of I_{DS} and μ_{FE} .

Active-matrix of gas sensors based on MoS_2 TFT. Large-area and uniform MoS_2 films enable to manufacture a monolithically integrated circuit of active-matrix gas sensor array. Figure 6a shows an optical image of the NO_2 gas-sensing active-matrix consisting of 7×6 pixels; each pixel contains both one switching TFT and one sensing TFT based on largearea synthesized MoS_2 film as shown in Fig. 6b. Switching TFTs were operated by local bottom gate separated from back gate and an 80 nm thick aluminum oxide (Al_2O_3) was used as gate dielectric. To prevent the reaction between NO_2 gas molecules and MoS_2 of switching transistors, their MoS_2 channels were encapsulated by a 20 nm thick SiO_2 insulator. Figure 6c shows the transfer curve of a switching MoS₂ TFT at a supplied voltage (V_{DD}) of 1 V under switching gate bias (V_{SW}) from -10 to 10 V. The switching states of the MoS₂ TFT were determined to be ON when V_{SW} is 10 V and OFF when V_{SW} is -10 V, respectively. Based on the electrical property of the switching TFT, we operated the integrated gas-sensing circuit under different NO₂ gas concentrations from 8 to 64 ppm at V_{DD} of 1 V (Fig. 6d). Here, back gate voltage (V_{Back}) was fixed at 0 V so that the sensing TFTs can operate in subthreshold regime. V_{SW} was applied to 10 and -10 V periodically for 5 min. When the device is on the ON state (V_{SW} of 10 V), the channel of switching TFT was opened and the drain current flowed through the channel of sensing TFT. Under NO₂ environment, the device current (I_{DD}) gradually decreased in a good agreement with the sensing behavior of the single MoS₂ TFT as shown in Fig. 4c. However, the OFF state (V_{SW} of -10 V) limits the current flow in the channel of sensing TFT, resulting in current values independent of NO₂ concentrations. As a result, both the great sensing and switching performances of the twostep-grown MoS₂ gas sensor active-matrix were confirmed in Fig. 6d. In addition, statistical distributions of the switching and gas-sensing properties of active matrix were presented in the mapping images that present the I_{DD} level of each MoS₂ pixel before and after the exposure of NO₂ gas when the devices were on the OFF (Supplementary Fig. 8a) and ON (Supplementary Fig. 8b) states, respectively. V_{DD} of 1 V and V_{Back} of 0 V were fixed, respectively. All 42 MoS₂ gas sensors exhibited no noticeable variation in IDD values when the devices were OFF state. However, at ON state, the IDD values of all gas sensors were reduced when the NO₂ gas was added. However, the differences in the electrical properties were existed for each pixel. Therefore, device calibration is required for practical use.

Fig. 6 MoS₂ **TFTs-based gas sensor active-matrix. a** Image of MoS₂ gas sensor active-matrix consisting of 7×6 pixels. **b** Schematic image, circuit diagram, and optical image of integrated single pixel containing a switching TFT and a sensing TFT. **c** Transfer characteristic of switching TFT. **d** NO₂ gas-sensing behavior of MoS₂ gas sensor active device under dynamic switching.

Conclusion

In summary, we have demonstrated active-matrix gas sensor array with pixel circuits comprising gas-sensing TFT and switching TFT based on two-step-grown large-area MoS_2 films. Consistent g_m as well as $I_{\rm on}/I_{\rm off}$ ratio of ~ 2 × 10⁶ were obtained across a few centimeters of the grown film. The MoS₂ TFT-based gas sensors can detect as low as 1 ppm of NO2 level with a wide detection range of up to 256 ppm, and the decent gas-sensing performance are attributed to the abundant grain boundaries of the sputtered polycrystalline MoS₂ channel as investigated via structural TEM analysis as well as temperature-dependent current measurements with corresponding sub-gap states analysis. Furthermore, the pixel circuit of the demonstrated 7×6 active-matrix gas sensor array is capable of NO₂ gas sensing as well as electrical switching depending on operation regimes. The proposed two-step-grown MoS₂ TFTbased gas sensors with highly sensitive detection of gas molecules and scalability into integrated systems have enormous potential as a standard gas-sensing platform.

Methods

MoS₂ growth. Mo was deposited on P-type boron-doped Si/SiO₂ (300 nm) substrates, which were preliminarily cleaned in an ultrasonic bath for 10 min by sequentially using acetone, isopropyl alcohol, and deionized water. Both a Mo target (99.99%) with a 101.6 mm diameter and these substrates were placed in the sputtering chamber under high-vacuum conditions ($<3 \times 10^{-6}$ Torr). The working pressure was maintained at 10 mTorr with an Ar flow of 100 sccm. Prior to the deposition, the Mo target was pre-sputtered for 10 min to remove its oxidized surface and enhance the plasma stability. The Mo deposition was conducted with RF power of 150 W for 180 s at room temperature. The as-deposited Mo films were then placed in a CVD chamber for the sulfurization. The chamber temperature was raised to 750 °C for 30 min. Only Ar gas (50 sccm) was injected until 300 °C. At the higher temperatures, Ar/H₂/H₂S (50:5:1) gas mixture was added for 15 min. After the sulfurization process, the high temperature of 950 °C was maintained for 1 h to improve the crystallinity of synthesized MoS₂ films. **Characterizations**. The thickness of MoS₂ film was measured with AFM (XE7 Atomic Force Microscope, Park Systems). Raman spectra was obtained by Micro-Raman spectrometer system (ALPHA300, WITec Co.) at the MEMS · Sensor Platform Center of Sungkyunkwan University (SKKU) with an excitation laser at 532 nm with a power of 0.5 mW. XPS analysis was also conducted using AR-XPS system (Theta Probe AR-XPS System, ThermoFisher Scientific) with monochromated Al Ka radiation (1486.6 eV). For TEM measurments, the MoS₂ film was transferred onto copper (Cu) grids with a lacey carbon support film. Cross-sectional and plan-view TEM images were obtained by aberration corrected TEM(JEM-ARM200F, JEOL Ltd.) with an accelerating voltage of 80 kV. The electrical properties of the MoS₂ TFTs were investigated using a semiconductor characterization system (Keithley 4200 SCS, Keithley) and dark box under ambient condition.

Fabrications of MoS₂ TFT. The synthesized MoS₂ films were patterned via photolithography using mask aligner (MA6, SUSS MicroTec) and oxygen plasma reactive ion etching at 30 sccm and 50 W for 1 min to obtain TFT channels. For the lift-off process, the source and drain were pre-patterned through photolithography and, then, Ti/Au (20 nm/100 nm) were deposited by an electron beam evaporator. After the removal of the unnecessary Ti/Au part, the samples were annealed at 200 °C for 2 h in a vacuum chamber to improve the electrical junctions.

 NO_2 gas-sensing measurement. The fabricated MoS₂ FET-based gas sensors were inserted in a sensing chamber designed to evaluate the electrical properties under a gas flow. Before the gas injection, the vacuum condition (10 mTorr) was applied to remove unnecessary gases. NO₂ gas was diluted with N₂ gas; the flow rate of the injected gases was controlled by mass flow controllers and the total flow rate was maintained at 1000 sccm for the whole time. Before measuring the electrical properties of the sensors, each sample device was exposed to NO₂ gas for 10 min at room temperature.

Data availability

The data supporting the findings of this study are included in this paper and its supplementary information.

Received: 18 April 2020; Accepted: 8 September 2020; Published online: 13 November 2020

ARTICLE

References

- Zhang, J., Liu, X., Neri, G. & Pinna, N. Nanostructured materials for roomtemperature gas sensors. *Adv. Mater.* 28, 795–831 (2016).
- Andringa, A. M., Piliego, C., Katsouras, I., Blom, P. W. M. & de Leeuw, D. M. NO₂ detection and real-time sensing with field-effect transistors. *Chem. Mater.* 26, 773–785 (2014).
- Liu, X. et al. A survey on gas sensing technology. Sensors 12, 9635–9665 (2012).
- Billi, E., Viricelle, J. P., Montanaro, L. & Pijolat, C. Development of a protected gas sensor for exhaust automotive applications. *IEEE Sens. J.* 2, 342–348 (2002).
- Di Natale, C., Paolesse, R., Martinelli, E. & Capuano, R. Solid-state gas sensors for breath analysis: a review. *Anal. Chim. Acta* 824, 1–17 (2014).
- Barsan, N., Koziej, D. & Weimar, U. Metal oxide-based gas sensor research: how to? Sens. Actuat. B Chem. 121, 18–35 (2007).
- Franke, M. E., Koplin, T. J. & Simon, U. Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? *Small* 2, 36–50 (2006).
- McCue, J. T. & Ying, J. Y. SnO₂-In₂O₃ nanocomposites as semiconductor gas sensors for CO and NO_x detection. *Chem. Mater.* 19, 1009–1015 (2007).
- Kim, I. D. et al. Ultrasensitive chemiresistors based on electrospun TiO₂ nanofibers. *Nano Lett.* 6, 2009–2013 (2006).
- Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001).
- Sun, Y. F. et al. Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012).
- McAlpine, M. C., Ahmad, H., Wang, D. W. & Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. *Nat. Mater.* 6, 379–384 (2007).
- 13. Fahad, H. M. et al. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. *Sci. Adv.* **3**, 8 (2017).
- Torsi, L., Dodabalapur, A., Sabbatini, L. & Zambonin, P. G. Multi-parameter gas sensors based on organic thin-film-transistors. *Sens. Actuat. B Chem.* 67, 312–316 (2000).
- Zhang, J., Boyd, A., Tselev, A., Paranjape, M. & Barbara, P. Mechanism of NO₂ detection in carbon nanotube field effect transistor chemical sensors. *Appl. Phys. Lett.* 88, 3 (2006).
- Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. *Science* 293, 1289–1292 (2001).
- Han, J. W., Rim, T., Baek, C. K. & Meyyappan, M. Chemical gated field effect transistor by hybrid integration of one-dimensional silicon nanowire and twodimensional tin oxide thin film for low power gas sensor. ACS Appl. Mater. Interfaces 7, 21263–21269 (2015).
- Shehada, N. et al. Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. *Nano Lett.* 15, 1288–1295 (2015).
- Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).
- Mirica, K. A., Azzarelli, J. M., Weis, J. G., Schnorr, J. M. & Swager, T. M. Rapid prototyping of carbon-based chemiresistive gas sensors on paper. *Proc. Natl. Acad. Sci. USA* 110, E3265–E3270 (2013).
- Li, J., Lu, Y. J., Ye, Q., Delzeit, L. & Meyyappan, M. A gas sensor array using carbon nanotubes and microfabrication technology. *Electrochem. Solid State Lett.* 8, H100–H102 (2005).
- Gao, T., Woodka, M. D., Brunschwig, B. S. & Lewis, N. S. Chemiresistors for array-based vapor sensing using composites of carbon black with low volatility organic molecules. *Chem. Mater.* 18, 5193–5202 (2006).
- Janata, J. & Josowicz, M. Organic semiconductors in potentiometric gas sensors. J. Solid State Electrochem. 13, 41–49 (2009).
- Zang, Y. P. et al. Specific and reproducible gas sensors utilizing gas-phase chemical reaction on organic transistors. *Adv. Mater.* 26, 2862–2867 (2014).
- Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. *Nat. Mater.* 6, 652–655 (2007).
- Cui, S. M. et al. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. *Nat. Commun.* 6, 9 (2015).
- 27. Donarelli, M. & Ottaviano, L. 2D materials for gas sensing applications: a review on graphene oxide, MoS₂, WS₂ and phosphorene. *Sensors* **18**, 45 (2018).
- Liu, X. H., Ma, T. T., Pinna, N. & Zhang, J. Two-dimensional nanostructured materials for gas sensing. *Adv. Funct. Mater.* 27, 30 (2017).
- Baek, J. et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe₂ films. *Nano Res.* **10**, 1861–1871 (2017).
- 30. Li, H. et al. Fabrication of single- and multilayer MoS₂ film-based field-effect transistors for sensing NO at room temperature. *Small* **8**, 63–67 (2012).
- Donarelli, M. et al. Response to NO₂ and other gases of resistive chemically exfoliated MoS₂-based gas sensors. *Sens. Actuat. B Chem.* 207, 602–613 (2015).

- Late, D. J. et al. Sensing behavior of atomically thin-layered MoS₂ transistors. ACS Nano 7, 4879–4891 (2013).
- Tao, L. et al. Centimeter-scale CVD growth of highly crystalline single-layer MoS₂ film with spatial homogeneity and the visualization of grain boundaries. ACS Appl. Mater. Interfaces 9, 12073–12081 (2017).
- 34. Yu, Y. F. et al. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS₂ films. *Sci Rep.* **3**, 6 (2013).
- Pyeon, J. J. et al. Wafer-scale growth of MoS₂ thin films by atomic layer deposition. *Nanoscale* 8, 10792–10798 (2016).
- 36. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. *Nature* **520**, 656–660 (2015).
- Huang, J. H. et al. Large-area few-layer MoS₂ deposited by sputtering. *Mater. Res. Express* 3, 7 (2016).
- Park, H. et al. Exceptionally uniform and scalable multilayer MoS₂ phototransistor array based on large-scale MoS₂ grown by RF sputtering, electron beam irradiation, and sulfurization. ACS Appl. Mater. Interfaces 12, 20645–20652 (2020).
- 39. Muratore, C. et al. Continuous ultra-thin MoS₂ films grown by low-temperature physical vapor deposition. *Appl. Phys. Lett.* **104**, 5 (2014).
- Hussain, S. et al. Large-area, continuous and high electrical performances of bilayer to few layers MoS₂ fabricated by RF sputtering via post-deposition annealing method. *Sci. Rep.* 6, 13 (2016).
- Jo, S. S. et al. Formation of large-area MoS₂ thin films by oxygen-catalyzed sulfurization of Mo thin films. J. Vac. Sci. Technol. A 38, 013405 (2020).
- Park, J. et al. Thickness modulated MoS₂ grown by chemical vapor deposition for transparent and flexible electronic devices. *Appl. Phys. Lett.* **106**, 5 (2015).
- Li, H. et al. From bulk to monolayer MoS₂: evolution of raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
- Brown, N. M. D., Cui, N. Y. & McKinley, A. An XPS study of the surface modification of natural MoS₂ following treatment in an RF-oxygen plasma. *Appl. Surf. Sci.* 134, 11–21 (1998).
- Ko, T. Y. et al. On-stack two-dimensional conversion of MoS₂ into MoO₃. 2D Mater 4, 12 (2017).
- Wang, J., Namburu, R., Dubey, M. & Dongare, A. M. Origins of moire patterns in CVD-grown MoS₂ bilayer structures at the atomic scales. *Sci. Rep.* 8, 9 (2018).
- Zhou, Y., Gao, C. & Guo, Y. UV assisted ultrasensitive trace NO₂ gas sensing based on few-layer MoS₂ nanosheet–ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A 6, 10286–10296 (2018).
- Sarkar, D. & Banerjee, K. Proposal for tunnel-field-effect-transistor as ultrasensitive and label-free biosensors. *Appl. Phys. Lett.* 100, 143108 (2012).
- Gao, X. P. A., Zheng, G. & Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. *Nano Lett.* 10, 547–552 (2009).
- Sarkar, D. et al. MoS₂ field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014).
- He, Q. et al. Fabrication of flexible MoS₂ thin-film transistor arrays for practical cas-sensing applications. *Small* 8, 2994–2999 (2012).
- Robinson, J. A. et al. Role of defects in single-walled carbon nanotube chemical sensors. *Nano Lett.* 6, 1747–1751 (2006).
- Im, H. et al. On MoS₂ thin-film transistor design consideration for a NO₂ gas sensor. ACS Sens. 4, 2930–2936 (2019).
- 54. Li, W. L. et al. Gas sensors based on mechanically exfoliated MoS₂ nanosheets for room-temperature NO₂ detection. *Sensors* **19**, 12 (2019).
- Perkins, F. K. et al. Chemical vapor sensing with monolayer MoS₂. Nano Lett. 13, 668–673 (2013).
- Yue, Q., Shao, Z. Z., Chang, S. L. & Li, J. B. Adsorption of gas molecules on monolayer MoS₂ and effect of applied electric field. *Nanoscale Res. Lett.* 8, 7 (2013).
- Torsi, L. et al. Regioregular polythiophene field-effect transistors employed as chemical sensors. Sens. Actuat. B Chem. 93, 257–262 (2003).
- Wang, L., Fine, D., Khondaker, S. I., Jung, T. & Dodabalapur, A. Sub 10 nm conjugated polymer transistors for chemical sensing. *Sens. Actuat. B Chem.* 113, 539–544 (2006).
- Duarte, D. & Dodabalapur, A. Investigation of the physics of sensing in organic field effect transistor based sensors. J. Appl. Phys. 111, 7 (2012).
- 60. Wang, L., Fine, D. & Dodabalapur, A. Nanoscale chemical sensor based on organic thin-film transistors. *Appl. Phys. Lett.* **85**, 6386–6388 (2004).
- Kim, S. & Dodabalapur, A. Polarization effects from the ambient and the gate dielectric on charge transport in polymer field-effect transistors. *Appl. Phys. Lett.* 110, 4 (2017).
- Chen, C., Abe, K., Kumomi, H. & Kanicki, J. Density of states of a-InGaZnO from temperature-dependent field-effect studies. *IEEE Trans. Electron. Devices* 56, 1177–1183 (2009).
- Horowitz, G., Hajlaoui, M. E. & Hajlaoui, R. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456–4463 (2000).
- 64. Jung, C. et al. Highly crystalline CVD-grown multilayer MoSe₂ thin film transistor for fast photodetector. *Sci. Rep.* **5**, 9 (2015).

Acknowledgements

This research was supported in part by the National Research Foundation of Korea (2018R1A2B2003558 and 2015R1A5A1037548). This work was supported in part by the Industrial Strategic Technology Development Program (20000300) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) and the Korea Basic Science Institute(KBSI) National Research Facilities & Equipment Center(NFEC) grant funded by the Korea government (Ministry of Education) (no. 2019R1A6C1010031).

Author contributions

Sunkook Kim and G. Yoo conceived the project. Sehwan Kim and H. Park, and J.Y. Yang fabricated the TFT-based gas sensor using the MoS2 synthesized by S. Choo and S. Baek. Y. Kwon, N. Liu, and C.-W. Yang contributed to structural and chemical characterizations of the MoS₂ using TEM and XPS. All authors wrote and contributed to the manuscript.

Competing interests

The authors declare no competing financial or non-financial interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s43246-020-00086-y.

Correspondence and requests for materials should be addressed to C.-W.Y., G.Y. or S.K.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2020