
ARTICLE

Two-dimensional superconductivity and
magnetotransport from topological surface
states in AuSn4 semimetal
Dong Shen1,3, Chia Nung Kuo2,3, Tien Wei Yang1, I Nan Chen1, Chin Shan Lue2 & Li Min Wang1✉

Topological materials such as Dirac or Weyl semimetals are new states of matter char-

acterized by symmetry-protected surface states responsible for exotic low-temperature

magnetotransport properties. Here, transport measurements on AuSn4 single crystals, a

topological nodal-line semimetal candidate, reveal the presence of two-dimensional super-

conductivity with a transition temperature Tc ~ 2.40 K. The two-dimensional nature of

superconductivity is verified by a Berezinsky–Kosterlitz–Thouless transition, Bose-metal

phase, and vortex dynamics interpreted in terms of thermally-assisted flux motion in two

dimensions. The normal-state magnetoconductivity at low temperatures is found to be well

described by the weak-antilocalization transport formula, which has been commonly

observed in topological materials, strongly supporting the scenario that normal-state mag-

netotransport in AuSn4 is dominated by the surface electrons of topological Dirac-cone

states. The entire results are summarized in a phase diagram in the temperature–magnetic

field plane, which displays different regimes of transport. The combination of two-

dimensional superconductivity and surface-driven magnetotransport suggests the topologi-

cal nature of superconductivity in AuSn4.
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Superconductivity in reduced dimensions has attracted great
attention since it is not only of importance for exploring
attractive quantum phenomena at a novel state but also

for potential application for developing superconducting
electronics1,2. Recently, several new two-dimensional (2D)
ultrathin superconducting systems have been realized in different
materials and hetero-interfaces3–9. Typical transition metal oxide
interfaces and interface superconductivity between chalcogenides
reported so far include LaAlO3/SrTiO3 (ref. 3) and PbTe/PbSe
families4, respectively. In addition, 2D superconductivity has been
particularly observed in some micrometer-size flakes with a few-
layer thickness, such as exfoliated 1T-MoS2 (ref. 5), NbSe2 (ref. 6),
and ZrNCl single crystals7, or chemical-vapor-deposition-
synthesized Mo2C8 and 1Td-MoTe2 thin films9. Otherwise,
another novel state of quantum matter, the topological material,
has become an important topic in condensed matter physics10, in
which the robust topological surface states are topologically
protected against time reversal-invariant perturbations. In parti-
cular, the topological Dirac or Weyl semimetals are new states of
matter that exhibit a linear band dispersion in the bulk along
momentum directions, whose low-energy quasiparticles are the
condensed-matter analogs of Dirac and Weyl fermions in relati-
vistic high-energy physics, constituting one of the most popular
topics in condensed matter physics11 and extending towards a
new kind of topological materials, namely, topological super-
conductors (TSs)12. In TSs, the opening of the superconducting
gap is associated with the emergence of zero-energy excitations
that are their own antiparticles13–15, where their zero-energy
states are generally called Majorana-bound states. It has been
pointed out that inducing s wave superconductivity on the surface
state of a topological material results in a p wave superconductor
that hosts Majorana fermions in its vortex cores13,16. Motivated
by the prospect of creating Majorana fermions, which have
potential applications in quantum computations15, several
attempts have been made to induce superconductivity on the
surfaces of topological materials using bulk superconductors17,18

or interface superconductivity induced by the superconducting
proximity effect19. Recently He et al.20,21 have reported transport
measurements on a Bi2Te3/FeTe heterostructure with both non-
superconducting materials, which reveal superconductivity at the
interface and show the two-dimensional nature of the observed
superconductivity with the highest transition temperature around
12 K. More recently, Zhang et al.22 have further demonstrated
that without the fabrication of heterostructure for any proximity
effect, the iron-based superconductor FeTe0.55Se0.45 (super-
conducting transition temperature Tc= 14.5 K) hosts Dirac-cone-

type spin-helical surface states at the Fermi level; the surface
states exhibit an s wave superconducting gap below Tc, and reveal
2D topological superconductivity, providing a simple and possi-
bly high-temperature platform for realizing Majorana-bound
states.

Recently, a novel topological structure of Dirac node arcs and
extremely large magnetoresistance of >104% have been reported
in PtSn4 and PdSn4 semimetals23–26; these have been recognized
as a new breed of topological materials, namely, topological
nodal-line (or nodal loop) semimetals (NLSMs). Meanwhile,
AuSn4 is isostructural with the Dirac nodal arc semimetals PtSn4
and PdSn4 (refs. 27,28), revealing superconductivity with Tc of
2.38 K, as reported in the 1960s29,30. Surprisingly few studies have
so far been made regarding the superconductivity of AuSn4.
Inspired by the obtained topological NLSMs PtSn4 and PdSn4,
natural superconductivity in AuSn4 can be regarded as a candi-
date of topological superconductivity on its surface, as we have
noted that the surface states of FeTe0.55Se0.45 are 2D topologically
superconducting. Therefore it will be intriguing to probe the
dimensionality of superconductivity in AuSn4.

In this work, we show that the resulting superconductivity
possesses the characteristics of AuSn4 with a Tc of ~2.40 K. The
superconductivity exhibits 2D nature by showing evidence of a
Berezinsky–Kosterlitz–Thouless (BKT) transition, Bose-metal
phase, and the vortex dynamics interpreted in terms of ther-
mally assisted flux motion in two dimensions. Moreover, it is
found that in the normal state the low-temperature magneto-
conductivity of AuSn4 can be well described by the weak-
antilocalization (WAL) transport formula. The results strongly
support the concept that the surface electrons in Dirac-cone states
dominate the normal-state magnetotransport in AuSn4 single
crystals, leading to the observed 2D superconductivity. In contrast
to the recently discovered 2D superconductors, which were fab-
ricated in the shape of micrometer-size flakes with a few-layer
thickness, the millimeter-size bulk AuSn4 single crystals pecu-
liarly exhibit 2D superconductivity, and display large normal-
state magnetoresistance accompanied by high carrier mobility,
revealing the advantages of AuSn4 as the key to understanding
topological 2D superconductivity.

Results
Structure and bulk superconductivity in AuSn4 single crystals.
Figure 1a is a typical picture of the cleaved single crystals,
showing millimeter-sized crystals with metallic luster. The crystal
structure in real space is schematically shown in Fig. 1b. The

Fig. 1 Crystal structure of AuSn4. a A typical picture of the cleaved single crystals. b Schematic AuSn4 crystal structure in real space. c X-ray θ−2θ
diffraction spectrum for a single crystalline AuSn4 specimen. Inset is a photograph of the Laue pattern from the [001] direction for AuSn4, and shows the
directions of the crystal axes [110] and [�110] as indicated.
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crystallographic c-axis is anticipated to be perpendicular to the
mirrored surface shown in Fig. 1a. Figure 1c shows the X-ray
θ–2θ diffraction spectrum for a single crystalline specimen, in
which only the (00n) (n= 2, 4, 6, and 8) diffraction peaks were
observed, indicating that the [001] direction is perpendicular to
the plane of the crystals. The lattice constant of the c-axis can be
determined precisely to be 11.708 Å and is very close to that of
11.707 Å as reported27. The inset of Fig. 1c shows the Laue dif-
fraction pattern of single crystalline AuSn4, indicating good
crystallization of crystal as judged by the sharp spots in the Laue
pattern. All peaks in the diffraction pattern can be well indexed
with the orthorhombic Aea2 space group, with the structure
similar to PtSn4.

Figure 2a shows the zero-field-cooling (ZFC) and field-cooling
(FC) magnetizations in H= 5 Oe parallel to the crystal c-axis for
an AuSn4 single crystal, demonstrating the observation of
superconducting transition temperature Tc ≈ 2.40 K, which is
consistent with a previous report of 2.38 K29. The superconduct-
ing shielding fraction is estimated to be over 99%, based on the
magnetization at 2 K. The smaller FC signal, compared with
the ZFC signal, is caused by vortex pinning. Figure 2b shows the
measured magnetization M(H) curves of AuSn4 at various
temperatures in magnetic fields parallel to the crystal c-axis
(out-of-plane H). The lower critical field Hc1 is determined by the
≤1% deviation of the M(H) curve from the linear fitting in the
even lower-field regime. According to the traditional nodeless
Bardeen–Cooper–Schrieffer (BCS) and the two-fluid model
theories, the temperature dependence of Hc1 is proportional to
λ−2 and can be expressed by Hc1(T)=Hc1(0) [1− (T/Tc)4],
where λ is the magnetic penetration depth. Figure 2c shows the
obtained Hc1 as a function of reduced temperature (T/Tc)4 for
AuSn4, and also shows a good approximation with adopted

Hc1(0)= 39.4 Oe. The temperature dependence of Hc1 indicates
that the bulk superconductivity of AuSn4 resembles that of the s
wave BCS superconductor as observed for an NbN film31. Bulk
superconductivity is also confirmed by a large anomaly at 2.418 K
in heat capacity. Figure 2d illustrates the low-temperature heat
capacity Cp/T versus T2 and the equal-area approximation for
the Tc determination. The experimental data can fit in the
temperature range of 2.5–3.0 K by using the formula Cp= γT+
βT3, where the electronic specific-heat coefficient (Sommerfeld
coefficient) γ= 6.73 mJ mol−1 K−2 and phonon specific-heat
coefficient β= 2.55 mJ mol−1 K−4 were obtained. Figure 2e
illustrates the excess specific heat ΔCp/T of superconductivity
by subtracting a smooth normal-state background, estimated by
fitting the specific heat through the data above the super-
conducting transition region. Using γ and the specific-heat-jump
value ΔCp/Tc at Tc, ΔCp/γTc could be calculated and was found to
be 1.26, which is slightly smaller than the BCS value of 1.43.
Figure 2f shows the whole temperature range of resistivity. The
normal-state resistivity for AuSn4 reveals a metallic-like character
(dρ/dT > 0), with the residual resistivity ratio ≈48. The inset of
Fig. 2f shows the temperature dependence of resistivity ρ(T) in
zero field at temperatures near Tc. The estimated Tc, as
determined by an intersection of two linear fitting lines
extrapolated from the normal-state resistivity and resistive
transition, respectively, is 2.421 K, which agrees with magnetiza-
tion and specific heat measurements. It is worth mentioning that
samples from different batches of AuSn4 crystals show almost the
same superconductivity, as well as the normal-state transport
properties (for details, see Supplementary Note 1). The bulk
superconductivity of AuSn4, characterized by the magnetization
and special heat measurements, reveals a conventional nodeless
BCS superconductor. However, the superconductivity explored by

Fig. 2 Magnetic and transport properties of AuSn4. a ZFC and FC magnetizations in H= 5 Oe parallel to the crystal c-axis for an AuSn4 single crystal.
b Magnetization M(H) curves of AuSn4 at various temperatures in out-of-plane fields. c Obtained Hc1 as a function of reduced temperature (T/Tc)4 for
AuSn4 with a solid line showing fit to the data. d Low-temperature heat capacity Cp/T vs. T2 with the red line showing the linear fit in the temperature range
of 2.5–3.0 K and the equal-area approximation for the Tc determination. e The excess specific heat ΔCp/T of superconductivity by subtracting a smooth
normal-state background as represented by the red dashed line. f Whole temperature range of resistivity for AuSn4. The inset shows ρ(T) in zero field at
temperatures near Tc.
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electrical transport measurement is open to question due to the
contribution of the surface conductivity.

Mixed-state magnetotransport properties and 2D super-
conductivity. Figure 3a, b shows the resistivity as a function of
temperature in magnetic fields parallel to the crystal c-axis and ab
plane, respectively. Figure 3c shows the upper critical fields Hc2,c(T)
and Hc2,ab(T) for an AuSn4 crystal in fields parallel to the crystal
c-axis and ab plane, respectively, where the corresponding upper
critical field Hc2 values are derived from the resistive transition in the
curves of Fig. 3a, b, like the Tc determination in the inset of Fig. 2f. As
seen, Hc2,c(T) shows the expected linear T dependence, which follows
the standard linearized Ginzburg–Landau (GL) theory,

Hc2;c Tð Þ ¼ Φ0

2πξGLð0Þ2
1� T

Tc

� �
/ 1� T

Tc

� �
; ð1Þ

where Φ0 is the flux quantum and ξGL(0) is the GL coherence length
at T= 0 K. However, it is noted that upper critical field for Hc2,ab(T)
follows the GL form of temperature-dependent behavior for 2D
superconductors32:

Hc2;ab Tð Þ ¼
ffiffiffi
3

p
Φ0

πξGLð0Þdsc
1� T

Tc

� �1=2

/ 1� T
Tc

� �1=2

; ð2Þ

where dsc is a corresponding superconducting thickness; the resulting
fitting curve is shown in Fig. 3c as well. Using the temperature-
dependent Hc2 relationships of Eqs. (1) and (2), the mean value of
ξGL(0) could be calculated as 75.58 nm, and the mean value of
superconducting thickness dsc was then estimated to be 417.2 nm,
which is greatly less than the sample thickness d of ~100 μm, but
larger than ξGL(0). Regarding the d > ξGL(0) case, as reported on
the GaN/NbN epitaxial semiconductor/superconductor hetero-
structures33, it has been proposed that samples may behave like a thin

film. In view of the 2D-Hc2,ab(T) behavior, let us then consider that
the 2D electrical transport may originate from the surface conducting
channel within a thickness of dsc. When the temperature approaches
the critical temperature, the coherence ξGL would increase to be larger
than dsc, thus, the sample would reach the 2D limit. Taking into
account that ξGL(T)= ξGL(0)·(1−T/Tc)−1/2, we can estimate the
crossover temperature as dsc= ξGL and have the crossover tempera-
ture of T/Tc= 0.967, i.e., at T= 2.32 K, which is in accordance with
the apparent 2D behavior ofHc2(T) at T > 2.30 K, as shown in Fig. 3c.
This result gives a good account of the surface conductivity that can
be explored by electrical transport measurements. The derived Hc2(T)
values were used to plot the Hc2,ab/Hc2,c ratio versus reduced tem-
perature T/Tc, as seen in Fig. 3d; it does show a diverging char-
acteristic on approaching Tc, characteristic for a 2D nature, as recently
observed5,8,20. The 2D superconducting behavior is further confirmed
by experiments with a tilted magnetic field. Figure 3e shows the
magnetic field dependence of the resistivity under different θ at 2.1 K,
where θ is the tilted angle between the normal sample plane and the
direction of the applied magnetic field (see the inset of Fig. 3f).
Clearly, the superconducting transition shifts to a higher field with the
external magnetic field rotating from perpendicular θ= 0° (H // c) to
parallel θ= 90° (H // ab). The upper critical field Hc2 was extracted
from Fig. 3e, and plotted in Fig. 3f, as a function of the tilted angle θ;
as seen, a cusp-like peak is clearly observed at θ≈ 90°. The angular
dependence of Hc2(θ) was fitted using the 2D Tinkham formula34

j Hc2 θð Þ cos θ
Hc2;c

j þ Hc2 θð Þ sin θ
Hc2;ab

� �2
¼ 1 and the three-dimensional aniso-

tropic GL model35 Hc2 θð Þ cos θ
Hc2;c

� �2
þ Hc2 θð Þ sin θ

Hc2;ab

� �2
¼ 1; with the values

of Hc2,c and Hc2,ab, as previously obtained. As shown in Fig. 3f, the
cusp-shaped dependence can only be well explained with the 2D
Tinkham model, further demonstrating that the single-crystal AuSn4
exhibits the 2D nature of superconductivity.

Fig. 3 Mixed-state magnetotransport properties of single crystal AuSn4. Temperature dependence of resistivity in magnetic fields parallel to: a the
crystal c-axis and b ab plane. c Upper critical fields Hc2,c(T) and Hc2,ab(T) for an AuSn4 crystal. d The Hc2,ab/Hc2,c ratio vs. reduced temperature T/Tc. Solid
lines represent the fits to the data. e Magnetic field dependence of the resistivity under different θ at 2.1 K. f The angular dependence of the upper critical
field Hc2(θ), as extracted from e. The blue solid line and the green solid line represent the fitting with the 2D Tinkham formula and the 3D anisotropic mass
model, respectively. The inset is a schematic drawing of a tilt experimental setup, where θ is the tilted angle between the normal of the sample plane and
the direction of the applied magnetic field. The direction of applied current I is also indicated.
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In Fig. 3a, b, the resistivity under magnetic field shows a
broadening behavior due to thermally activated flux motion,
which has been proposed by Anderson and Kim36, and can be
described by: ρ(T, H)= ρ0 exp(−U/kBT). Here U is the activation
energy, which is normally both field- and temperature-dependent.
In the Anderson–Kim model, the U value is an indication of the
magnitude of effective pinning energy. Figure 4a, b shows the
Arrhenius plot of resistivity as a function of 1/T for AuSn4 in
magnetic fields of different magnitudes, parallel to the crystal c-
axis and ab plane, respectively. The resistive transition just below
Tc reveals linear behavior in the Arrhenius plot and follows the
equation of thermally activated flux motion as highlighted by
straight solid lines. In Fig. 4a for resistive transitions in fields
parallel to the crystal c-axis, all fitting lines in different fields cross
to one point, whose corresponding temperature Tm of 2.401 K is
close to the Tc of AuSn4, being in agreement with that reported
on the Bi2Te3/FeTe heterostructures21. One may notice the
difference that the Arrhenius plots of resistive transitions for H //
ab plane in Fig. 4b do not show this result, implying that the
simple Arrhenius relation can only be satisfied in a narrower
region. It is known that the effects of prefactor ρ0 and nonlinear
relation of U(T, H) may lead to ρ(T, H) deviating from Arrhenius
relation for H // ab plane as seen in Fe(Te,S) single crystals37.
Figure 4c shows the field-dependent U extracted from Anderson
and Kim’s theory, in which U(H) is plotted as a function of the
magnetic field on a semi-logarithmic scale. As seen, U(H)
decreases monotonically with increased magnetic field due to
an increase of vortex density and interaction between the vortices.
It is found that the field dependence of activation energy U can be
written as U(H)=U0 ln(H0/H) with U0= 30.54 (31.35) K and
H0= 118.3 (186.9) Oe for H // c-axis (H // ab plane). It has been
pointed out that in clean 2D superconductors, U is expected to

follow a logarithmic dependence on the magnetic field, based on
collective flux creep model38. As shown in Fig. 4c, a linear
relationship of U(H)∝−lnH is observed, in accordance with the
model of thermally assisted collective flux motion in two
dimensions, as recently observed in other 2D crystalline super-
conductors5–8. Figure 4d shows a lnρ0–lnH plot extracted from
the Arrhenius plot of resistivity with H // c-axis, and illustrates
the obtained result that ρ0 is proportional to H−p with p ≈ 12.7,
consistent with the calculation of p=U0/kBTm derived from the
Anderson–Kim resistivity theory (for details, see Supplementary
Note 2). In addition, the obtained values of Hc2, U, and H0 in the
H // ab plane are 160–200% larger than those in H // c-axis,
showing the anisotropic nature of flux pinning in AuSn4, which is
commonly observed in layered-structure superconductors,
and is much smaller than those of superconducting iron
pnictides and cuprates39,40. Therefore, the different properties
of AuSn4 between out-of-plane and in-plane magnetic fields
should originate from the anisotropic nature, and means that
the intrinsic pinning between the Au–Sn layers is dominant for
the H // ab plane, and is stronger than extrinsic pinning due to
stacking faults or defects for the H // c-axis.

BKT transition. It is well known that the 2D nature of the
observed superconductivity can be confirmed by testing whether
the electrical transport properties possess a signature of a BKT
transition that can be characterized by a BKT temperature TBKT,
below which a phase transition leading to a 2D topological order
emerges3,41,42. Figure 5a displays the I–V isotherms of a AuSn4
single crystal on a log–log scale. The straight lines in this plot
indicate the power-law behaviors, with the powers α equal to the
slopes of the lines (i.e., V∝ Iα). As seen, the I–V curves with a

Fig. 4 Arrhenius plot of resistivity for AuSn4. Arrhenius plot of resistivity for AuSn4 in magnetic fields: a parallel to the crystal c-axis and b ab plane. Solid
lines are corresponding fitting results from the Arrhenius relation. c Field-dependent activation energies extracted from the Arrhenius plot of resistivity on a
semi-logarithmic scale. Solid lines are fitting results from the function U(H)= U0 ln(H0/H). d A lnρ0–lnH plot extracted from the Arrhenius plot of
resistivity with H // c-axis. The solid line represents the relation of ρ0∝H−p with p≈ 12.7.
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slope of 1 coincides with the high-temperature isotherms at
temperatures above 2.40 K, which indicates their ohmic char-
acteristics, while the I–V curve with a slope of 3 marks the
initiation of a BKT transition, V∝ I3; the slopes of the lines then
increase drastically at lower temperatures. Notice that, due to the
studied bulk single-crystal samples, there is no obviously finite-
size-induced linear tail in the I–V data, as is usually observed in
thin-film samples, such as one-unit-cell FeSe films43 or YBa2-
Cu3O7−δ films44. Thus, fitting is usually applied to the upper
portion of the dataset, meaning just below the critical currents, as
conducted for the Bi2Te3/FeTe heterostructure20 and Mo2C
crystals8. As is known, the standard BKT transition is carried out
in zero magnetic field, characterized by the thermally driven
vortex–anti-vortex pairs unbinding at temperatures above
TBKT41,42, while the vortex–anti-vortex pairs will break down in
the presence of magnetic fields. Figure 5b shows the corre-
sponding I–V isotherms with an applied field of 5 Oe; one can see
that the slopes of the lines increase gradually as temperature
decreases. Figure 5c shows the temperature dependence of the
power-law exponent α deduced from the power-law fits in Fig. 5a,
b. In Fig. 5c, the zero-field value of α approaches 3 at the tem-
perature of 2.40 K, which is thus close to TBKT; it increases rapidly
for temperatures lower than 2.40 K, while the 5-Oe value of α
increases continuously from 1.0 to 4.6 as the temperature
decreases from 2.45 to 2.33 K. These observations are regarded as
the hallmark of a BKT transition, which is surprisingly observed
on a “bulk” AuSn4 single crystal. In the infinite-size homogeneous
case, a jump is expected from α= 3 to α= 1, as shown in Fig. 5c,
whereas for both the one-unit-cell FeSe films43 and Bi2Te3/FeTe
heterostructure sample20, the α value seems to show a smooth
transition rather than a sudden sharp jump. Recalling the sharp

resistive transition, as shown in Fig. 2f, it is expected that the BKT
transition, which occurs at the temperature of 2.40 K, should be
close to the resistive transition temperature of 2.42 K, as pre-
sented. Moreover, as described by the BKT theory for a 2D super-
conductor, the temperature-dependent resistivity at zero field is
predicted to be in a form of the Halperin–Nelson (HN) relation45 at
temperatures just above TBKT: ρ(T)= ρn exp(−bt−1/2), where ρn and
b are material-specific parameters, and t=T−TBKT is the tem-
perature deviation. As shown in the inset of Fig. 5c, the ρ–T curve
near the TBKT regime can be well fitted with HN relation and
b= 0.048 K1/2, giving evidence of the 2D nature of superconductivity.
Furthermore, a scaling ansatz has been proposed by Fisher et al.46 for
a general analysis of a superconducting phase transition in D
dimensions using a dynamic scaling argument. This successful ansatz
has been applied to a wide variety of systems and transitions,
including 2D superconductors, Josephson-junction arrays, and
superfluids47, using the experimentally determined quantities V and

I, I
T ð IVÞð

1
ZÞ ¼ F ± ð1ξT Þ, where ξ is the coherence length, F± are scaling

functions above and below the transition, and z= 2 in a dynamic
scaling analysis of 2D system I–V data. At this point, all that is
required to do dynamic scaling is the temperature dependence of ξ,
which can be defined above the transition as the size of a fluctuation
or as the average distance between two free vortices and has been

given by ξ∝ exp b
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�TBKTj j

p
� �

with the constant b previously pre-

sented in the HN relation46,47. This scaling approach has been used
to as a measure of proof of the existence or absence of a BKT
transition; in effect, if the properly scaled current–voltage (IV) curves
collapse (do not collapse) onto universal scaling curves above and
below the transition, then a BKT transition is likely (unlikely) to be

Fig. 5 BKT nature of AuSn4. I–V isotherms of an AuSn4 single crystal on a ln–ln scale with: a a zero field and b an applied field of 5 Oe. The straight lines
are power-law fits to the data at different temperatures. c Temperature dependence of the power-law exponent α deduced from the power-law fits in a and
b. Dashed lines denote the α values of 3 (red) and 1 (purple), respectively. The inset shows the ρ–T curve near the TBKT regime that can be well fitted with
HN relation, as illustrated by the solid line. d Scaled plot of I

T
I
V

� �1=2
as a function of the scaling function variable Iξ

T for data in a. The dashed line represents
the best collapse onto a scaling curve at temperatures above TBKT.

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-020-00060-8

6 COMMUNICATIONS MATERIALS |            (2020) 1:56 | https://doi.org/10.1038/s43246-020-00060-8 | www.nature.com/commsmat

www.nature.com/commsmat


present. In Fig. 5d we plot I
T

I
V

� �1=2
as a function of the scaling

function variable Iξ
T for data in Fig. 5a and vary the fitting parameter

TBKT to achieve the best collapse onto a scaling curve. With TBKT=
2.401 K, which is a little lower than Tc of 2.421K determined by the
resistive transition, the scaling data present an acceptable scaling
collapse (do not collapse) above (below) the transition TBKT, agreeing
well with the expected BKT behavior near the transition. One may
notice that the scaling data at T= 2.40 K shows a nearly constant
value, which can be understood by taking account of V∝ I3 at T=
2.40 K≈TBKT, leading to an invariant term of I

T
I
V

� �1=2
(∝I1.5/V0.5) at

a fixed temperature. These two resulting TBKT values respectively
derived from the HN relation and universal scaling are highly con-
sistent with the value extracted from the power analysis that α ≈ 3 at
T= 2.40 K. Our analysis thus provides strong evidences for a 2D
nature of the observed superconductivity in AuSn4.

Normal-state WAL transport properties. The 2D nature of the
observed superconductivity in AuSn4 will lead us further into
considering the origin of 2D superconductivity. Since AuSn4 is
isostructural with the Dirac nodal arc semimetals PtSn4 and
PdSn4, the origin of natural 2D superconductivity in AuSn4 can
be inferred from Dirac-like surface band dispersion. Thus, the
normal-state transport properties of AuSn4 are worth studying.
Figure 6a shows a result of resistivity with applied fields parallel
to the crystal c-axis. As shown, the ρ(H) increases with the
applied fields, and a clear non-saturating field-dependent mag-
netoresistance MR(H), defined as MR(H)= [ρ(H)− ρ(0)]/ ρ(0),
can be seen for temperatures up to 50 K and field up to 6 T, as
shown in Fig. 6b. A sharp normal-state resistivity dip is clearly
observed at lower temperatures, even at temperatures above Tc or
H >Hc2; when the temperature increases, the resistivity dip at low
fields is broadened and the MR(H) becomes linear at an inter-
mediate field in the whole normal-state region. It is known that a
sharp magnetoresistance dip at low temperatures indicates
the presence of a WAL effect; when we increase the temperature,
the magnetoresistance dip broadens at the low field due to the
decrease of the phase coherence length at higher temperatures48.
Similar types of magnetoresistance behavior without any sign of
saturation have been seen in topological materials48–50. In par-
ticular, Shrestha et al.49 have recently shown extremely large non-
saturating magnetoresistance (540% at T= 2 K under 7 T) and
ultrahigh Hall mobility (4.5 × 104 cm2 V−1 s−1 at T= 5 K) due to
topological surface states in the metallic Bi2Te3 topological
insulator49, results which are comparable with those of magne-
toresistance ≈ 650% at 2.5 K under 6 T and Hall mobility ≈ 3.5 ×
103 cm2 V−1 s−1 at T= 2.5 K observed on our AuSn4 single
crystals (for details, see Supplementary Note 3). We may also note
that, due to the non-negligible contribution of transverse resis-
tivity, as arising from the high Hall mobility, the original
experimental resistivity data were asymmetric in the field.
According to the argument proposed by Segal et al.51, the odd
longitudinal resistivity can be eliminated via counting the average
experimental data in the positive and negative fields, leading to a
duplicate result of magnetoresistance in the positive and negative
fields, as shown in Fig. 6a, b, respectively. Additionally, in the ρ
(H) curves at T < 3.75 K, a crossover of ρ(H) values from a
downward-trend field dependence to a nearly linear H depen-
dence can be observed when the magnetic field is beyond a
crossover field H*. The crossover field H* can be determined by
the plot of an intersection of two linear fitting lines, as shown by
the two guide lines in Fig. 6a. One can see that the H* shifts to a
lower field with the increase in temperature, as shown in the inset
of Fig. 6a. The temperature dependence of the H* suggests the
existence of a linear-dispersion electronic band in AuSn4, as seen

in topological materials48–50. Now that the normal-state transport
property of AuSn4 indicates a crossover from a WAL-dominant
MR(H) to a linear and non-saturating MR(H), the field-
dependent transverse magnetoconductivity will be analyzed
within the framework of a WAL electrical transport. Figure 7
shows the field-dependent transverse magnetoconductivity
change ratio for AuSn4 at low temperatures, where the magne-
toconductivity change ratio ΔMC is defined as ΔMC= [σ(H)− σ
(0)]/σ(0). As is known, the transverse magnetoconductivity can be
expressed by σT(H)= σWAL+ σn, where σWAL is the surface
conductivity from WAL corrections related with intranodal
scattering, and σn is from conventional Fermi surface contribu-
tions52. The WAL formula is expressed as σWAL= a

ffiffiffiffi
H

p
+ σ0 and

σn= (ρn+A·H2)−1, where a, σ0, ρn, and A are determined from
the line of best fitting. As seen, the low-field transverse ΔMC can
be well described by the WAL transport formula with a negligible
value of A ≈ 0. The inset of Fig. 7 shows the temperature
dependence of the obtained a values. One can see that parameter
a is negative due to a positive magnetoresistance and at higher
temperatures; the decrease in |a| values with an increase in

Fig. 6 Magnetoresistance of AuSn4. a Resistivity with applied fields
parallel to the crystal c-axis at various temperatures. The intersection of
two dashed lines denotes the determination of the crossover field H*. The
inset shows the temperature dependence of H*, as obtained from data in a.
b Non-saturating MR(H) for temperature up to 50 K and field of up to 6 T.
Note the drastic increase in magnetoresistance at 2.5 K plotted with a
contracted scale of MR(H) × 1/6. Also note that the data show a duplicate
result of magnetoresistance in positive and negative fields, as described in
the text.
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temperature indicates a gradual absence of the WAL effect on the
field-dependent transverse magnetoconductivity. It is known that
in topological materials, strong spin–orbit coupling can induce
WAL53, and this WAL effect originates from the strong
spin–orbit coupling in the band structure, and results in the spin-
momentum locking in the topological surface states54. Therefore,
the WAL phenomenon is always observed in topological mate-
rials as an important consequence of spin-momentum locking, as
well as the full suppression of backscattering, which is a finger-
print of the surface states55. Since the normal-state transport
properties of AuSn4 exhibit the WAL behavior, one can deduce
that AuSn4 also belongs to the topological semimetals, same as its
isostructural compounds of PtSn4 and PdSn4. All the results
clearly prove that the natural 2D superconductivity in AuSn4
originates from Dirac-like surface band dispersion, leading to the
conclusion that topological superconductivity possibly exists on
its surface and exhibits 2D nature. This work also provides
important experimental results for further studies on the
topological-semimetal candidate of AuSn4, such as the theoretical
band-structure calculation and angle-resolved photoemission
spectroscopy experiments, which are popular topics in condensed
matter physics.

Discussion
These presented results enabled us to construct a phase diagram
of AuSn4 crystals in the magnetic field-temperature (H–T) plane.
The 2D superconductivity let us consider the emergence of the
Bose-metal phase recently identified in 1T-MoS2 and NbSe2
(refs. 5,56). Returning to the Arrhenius plot of resistivity, as shown
in Fig. 8a, this study replotted some selected low-field Arrhenius
plots of resistivity with H // c-axis, for a detailed discussion of the
Bose-metal phase in AuSn4. It has been pointed that a strongly
disordered 2D superconductor makes a transition to an insulating
state under a perpendicular magnetic field applied57, while a
system with a low disorder, such as a high-quality single crystal,
should show a quantum phase transition to an intermediate 2D
metallic state, Bose metal (BM), with a resistance much lower
than the normal-state resistivity6,57,58. This state is characterized
by saturation of the resistance as T approaches 0 K. Additionally,
the resistance obeys a power law with the magnetic field, which
has been theoretically addressed using a simple scaling of power-
law BM resistivity57, ρ∝ (H−Hc0)2ν, where Hc0 and ν are the
critical field of ~Hc1(0) and the exponent of this step of the
superconducting-BM transition, respectively. Figure 8a displays

the possible existence of the BM phase in AuSn4, where following
on a sharp drop in resistivity at the superconducting transition
point, the resistivity deviates from thermally activated behavior
and gradually decreases to a small value compared to ρN as the
temperature is lowered. The field resistivity does not exhibit a
saturated constant value as seen in 1T-MoS2 (ref. 5), which should
be due to the presence of bulk superconductivity. Thus, the
deviation temperature T* for finite field values as indicated in
Fig. 8a can be deduced to define the BM phase in the 2D
superconductivity regime. Also shown in Fig. 8b is a log–log scale
plot of resistivity versus perpendicular magnetic field for tem-
peratures below TBKT with a fit to the power-law dependence by
the use of Hc0= 39.4 Oe and ν= 2.18–2.42 for different tem-
peratures. This power-law resistivity demonstrates the possible
existence of the BM phase in AuSn4. For further confirming the
BM phase of 2D superconductors, we adopted the Ullah–Dorsey
(UD) scaling theory59 to calculate the excess conductance gen-
erated by the fluctuation of the superconducting order parameter.
The excess conductivity, Gfl≡ 1/ρ (T)− 1/ρN(T), under different
magnetic field is scaled with the universal relation60:

Gfl �
μ0H
T

� �0:5

¼ Ffl
T � Tc Hð Þ
ðμ0HTÞ0:5

 !
; Ffl xð Þ / �x x � 0ð Þ

x�s x � 0ð Þ

	
:

ð3Þ
Here, s= 1 in the case of a 2D system, Tc(H) is the mean field

transition temperature in a magnetic field and ρN(T) is the
normal-state resistivity. As shown in Fig. 8c, by using ρ(T) data in
the presence of a magnetic field and taking Tc(H) derived from
the data corresponding to the temperature on the Hc2(T) curve as
previously obtained in Fig. 3a, it is found that Gfl·(μ0H/T)0.5

curves with a fitting parameter ρN of ~2.564 μΩ cm for scaling in
the AuSn4 at T > Tc(H) collapse onto a single curve with the slope
of −1 in log–log plots, indeed obeying the 2D UD scaling law of
Eq. (3). However, it must be noted that this kind of metallic state
can also be interpreted as a result of quantum creep, as seen in a
ZrNCl electric-double-layer transistor7. In this model, the sheet
resistance Rs in the limit of the strong dissipation obeys a general
form61:

Rs
�h
4e2

κ

1� κ
with ¼ exp C

�h
e2

1
RN

H � Hc2;c

Hc2;c

 !" #
; ð4Þ

where RN is the normal-state sheet resistance and C is a
dimensionless constant. According to Eq. (4), it can be predicted

that the term ln 1þ 1
Rs

�h
4e2

� �
should be in proportion to

Hc2;c�H
Hc2;c

, and

will show a linear relationship passing through the origin point.
However, as seen in Fig. 8d, the plots of the lnð1þ 1

Rs

_
4e2Þ �

Hc2;c�H
Hc2;c

relation at temperatures of 2.05 and 2.20 K cannot be well fitted to
Eq. (4) for a wide range by adjusting the C value; thus, an extra
constant C0 is required for linear fitting, i.e., the relationship does
not pass through the origin point. This result indicates that the
quantum-creep model does not apply to the AuSn4 case. Sum-
marizing these results of Hc1,c(T), T*(H), Hc2,c(T), and the
normal-state H*(T), we can construct a phase diagram of AuSn4
crystals in the H–T plane, as presented in Fig. 9, displaying dif-
ferent regimes of transport arising due to vortex dynamics and
surface Dirac linear dispersion. The normal state is divided by H*
(T), according to the crossover from a WAL-dominant transport
(shaded in orange) to a linear and non-saturating magnetoresis-
tance transport (shaded in red). The 2D superconducting phase is
separated from the normal state by the Hc2,c(T) line. As the
temperature is lowered below Tc, AuSn4 goes into a 2D thermally
activated flux flow (TAFF) regime (shaded in yellow), where the
resistivity exhibits an activated behavior due to temperature-

Fig. 7 Magnetoconductivity of AuSn4. Field-dependent transverse
magnetoconductivity change ratio for AuSn4 at low temperatures. Solid
lines denote the fitting of WAL formula. Inset: temperature dependence of
obtained a values via the fitting of WAL formula.
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driven depairing of the vortex–anti-vortex pairs. The boundary
between the TAFF and the BM (shaded in green) regimes is
defined by the temperature T*(H), which characterizes the finite
resistive dissipation at higher magnetic fields. At sufficiently low
temperatures and magnetic fields, the subsequent BCS bulk-

superconductivity Meissner state (MS, shaded in blue) is char-
acterized by the Hc1,c(T) line. Compared to conventional BCS
type-II superconductors, our results show that the presence of
Dirac-like surface band dispersion in AuSn4 crystals gives rise to a
nontrivial 2D superconducting phase in the phase diagram,
exerting a drastic impact on the possible topological super-
conductivity in AuSn4.

In summary, the dimensionality of superconductivity in AuSn4
single crystals has been explored herein. The bulk super-
conductivity with the Tc of ~2.40 K probed by the magnetization
and special heat measurements reveals a characteristic of con-
ventional BCS type-II superconductors. However, the super-
conductivity investigated with electrical transport properties
exhibits 2D nature by showing evidence of a BKT transition, BM
phase, and the diverging ratio of in-plane to out-plane upper
critical field on approaching Tc. The vortex dynamics of AuSn4
further display that the activation energy U(H) and upper critical
field Hc2(T) can be interpreted in terms of the TAFF model in two
dimensions. Moreover, it is found that in the normal state, the
low-temperature magnetoconductivity of AuSn4 can be well
described by the WAL transport formula, which has been com-
monly observed on topological materials; thus, it strongly sup-
ports the scenario that the surface electrons in Dirac-cone states
dominate the normal-state magnetotransport in AuSn4 single
crystals. The results clearly prove that the natural 2D super-
conductivity in AuSn4 originates from Dirac-like surface band
dispersion, leading to the conclusion that topological super-
conductivity possibly exists on its surface and exhibits 2D nature.
Finally, a phase diagram of AuSn4 crystals in the H–T plane has
been constructed, which displays different regimes of transport
arising due to the vortex dynamics and surface Dirac linear

Fig. 8 Characteristics of Bose-metal phase in AuSn4. a Details of some selected low-field Arrhenius plots of resistivity with H // c-axis, where dashed
lines illustrate the resistivity deviation from the thermally activated behavior to a small value at temperature T*, as compared to the normal-state resistivity.
b A log–log scale plot of resistivity vs. perpendicular magnetic field μ0(H−Hc0) for temperatures below TBKT. Solid lines represent the fit to the power-law
dependence, as described in the text. c Ullah–Dorsey scaling of fluctuation conductivity using the ρ(T) data in the presence of a magnetic field. The dashed
line indicates the slope of −1 in a log–log plot. d Plots of the ln 1þ 1

Rs
�h

4e2

� �
� Hc2;c�H

Hc2;c
relation at temperatures of 2.05 and 2.20 K, where the dashed lines

represent the linear fit to Eq. (4) with an extra constant C0, where C0= 14.63 and 14.80 for 2.05 and 2.20 K, respectively.

Fig. 9 Phase diagram of AuSn4 crystals in the H–T plane. Phase diagram
of AuSn4 crystals in the H–T plane via summarizing the results of Hc1,c(T),
T*(H), Hc2,c(T), and the normal-state H*(T). The normal state is divided by
H*(T), showing the crossover from a WAL-dominant transport (shaded in
orange) to a linear and non-saturating magnetoresistance transport
(shaded in red). The 2D superconducting phase is separated from the
normal state by Hc2,c(T) line and consists of a 2D TAFF regime (shaded in
yellow) and a BM regime (shaded in green) separated by the temperature
T*(H). At sufficiently low temperatures and magnetic fields, the subsequent
BCS bulk-superconductivity Meissner state (MS, shaded in blue) is
characterized by the Hc1,c(T) line.
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dispersion, drastically impacting the possible topological super-
conductivity in AuSn4.

Methods
Single-crystal growth. AuSn4 single crystals were grown from Sn flux with a
starting composition of Au:Sn = 0.09:0.91. The mixtures of high-purity Au pieces
and Sn ingots were sealed under vacuum in a quartz tube. The quartz ampoule was
heated to 630 °C for 10 h, cooled to 310 °C for 6 h and then slowly cooled down to
240 °C at a rate of 1 °C per hour. The remaining Sn flux was separated by cen-
trifugation and several platelet-like crystals with a typical size of 3 × 2 × 0.3 mm3

were mechanically removed from the quartz ampoule. The as-grown crystals are
ductile and exhibit a silvery luster. However, they cannot be mechanically exfo-
liated to be a few-layer thickness like graphene. The AuSn4 crystals are stable in air
over months but corrode in diluted hydrochloric acid. The phase purity and the
crystal structure of obtained crystals were characterized by powder X-ray diffrac-
tion (Bruker D2 phaser) and Laue diffraction (Photonic Science) measurements
with Cu-Kα radiation on single crystals.

Transport measurements. For in-plane electrical transport measurements, the
cleaved shiny crystals were cut into dimensions of ~3.0 × 1.0 × 0.1 mm3. Five leads
were soldered with indium, and a Hall-measurement geometry was formed to allow
simultaneous measurements of both longitudinal (ρ) and transverse (Hall) resis-
tivities (ρxy) using the standard dc four-probe technique. Hall voltages were taken
in opposing fields parallel to the c-axis up to 6 T and at a dc current density of ~30
A cm−2. The low-temperature specific heat Cp measurement was carried out using
a 3He heat-pulsed thermal relaxation calorimeter (PPMS-16 from Quantum
Design) in the temperature range of 0.5–3.0 K. The magnetization was measured in
a superconducting quantum interference device (SQUID) system (MPMS from
Quantum Design).

Data availability
The data that support the findings of this study are available on reasonable request.
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