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Ex vivo drug response heterogeneity reveals 
personalized therapeutic strategies for 
patients with multiple myeloma

Klara Kropivsek    1,2,8, Paul Kachel3,8, Sandra Goetze    2,4,5, 
Rebekka Wegmann    1,2, Yasmin Festl1,2, Yannik Severin1,2, Benjamin D. Hale1,2, 
Julien Mena1,2, Audrey van Drogen2,4,5, Nadja Dietliker3, Joëlle Tchinda6, 
Bernd Wollscheid2,4,5, Markus G. Manz    3,7,9 & Berend Snijder    1,2,7,9 

Multiple myeloma (MM) is a plasma cell malignancy defined by complex 
genetics and extensive patient heterogeneity. Despite a growing arsenal 
of approved therapies, MM remains incurable and in need of guidelines to 
identify effective personalized treatments. Here, we survey the ex vivo drug 
and immunotherapy sensitivities across 101 bone marrow samples from 
70 patients with MM using multiplexed immunofluorescence, automated 
microscopy and deep-learning-based single-cell phenotyping. Combined 
with sample-matched genetics, proteotyping and cytokine profiling, we 
map the molecular regulatory network of drug sensitivity, implicating the 
DNA repair pathway and EYA3 expression in proteasome inhibitor sensitivity 
and major histocompatibility complex class II expression in the response to 
elotuzumab. Globally, ex vivo drug sensitivity associated with bone marrow 
microenvironmental signatures reflecting treatment stage, clonality and 
inflammation. Furthermore, ex vivo drug sensitivity significantly stratified 
clinical treatment responses, including to immunotherapy. Taken together, 
our study provides molecular and actionable insights into diverse treatment 
strategies for patients with MM.

MM is a cancer driven by malignant plasma cells (myeloma cells) in the 
bone marrow (BM)1,2. Patients with MM require treatment to decrease 
the malignant plasma cell counts, fight the detrimental effects of the 
disease, improve quality of life and prolong survival. The events that 
lead to malignant transformation are in part intrinsic to healthy plasma 
cell function. These include the genetic rearrangements and cellular 
adaptations required for the production of diverse antibody repertoires 
and the longevity, supported by the BM niche, required for long-term 

immunity3,4. Aberrant recombination can lead to chromosomal trans-
locations, a central characteristic of MM5. Over 90% of translocations 
affect chromosome 14, specifically the IGH locus at 14q32.22, which is 
among the most heavily transcribed genes in plasma cells6. The result-
ing fusion products can place partner genes under the control of the IGH 
enhancer, leading, for example, to deregulation of cyclin D expression7. 
Genes involved in B-cell lineage differentiation are frequently mutated 
in multiple myeloma, including PRDM1 and interferon regulatory factor 

Received: 27 April 2022

Accepted: 17 March 2023

Published online: 20 April 2023

 Check for updates

1Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland. 2Swiss Institute of Bioinformatics, Lausanne, Switzerland. 
3Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland. 4Institute of Translational 
Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. 5Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, 
Switzerland. 6Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland. 7Comprehensive Cancer Center 
Zurich (CCCZ), Zurich, Switzerland. 8These authors contributed equally: Klara Kropivsek, Paul Kachel. 9These authors jointly supervised this work: Markus 
G. Manz, Berend Snijder.  e-mail: snijder@imsb.biol.ethz.ch

http://www.nature.com/natcancer
https://doi.org/10.1038/s43018-023-00544-9
http://orcid.org/0000-0003-1866-4094
http://orcid.org/0000-0001-6880-8020
http://orcid.org/0000-0001-9616-3303
http://orcid.org/0000-0002-4676-7931
http://orcid.org/0000-0003-3386-6583
http://crossmark.crossref.org/dialog/?doi=10.1038/s43018-023-00544-9&domain=pdf
mailto:snijder@imsb.biol.ethz.ch


Nature Cancer | Volume 4 | May 2023 | 734–753 735

Resource https://doi.org/10.1038/s43018-023-00544-9

To assess the impact of this heterogeneity on drug responses and 
identify therapeutic strategies, we combined ex vivo image-based 
drug screening (PCY) combined with data-independent acquisition 
(DIA)-sliding window of all theoretical mass spectra (SWATH) pro-
teotyping53 (Fig. 1a) of real-time BM aspirates from a clinically rep-
resentative patient cohort (Fig. 1b; ethical approval number BASEC: 
2017-00603). We collected 138 BM samples from 89 unique patients 
(Supplementary Table 1). Nine samples were additionally collected, but 
were excluded from the final analysis because of insufficient material or 
the diagnosis not matching. The patient stages at the time of sampling 
range from precursor stages monoclonal gammopathy of undeter-
mined significance, smoldering MM (SMM) and untreated MM (MM:0) 
to samples from patients with MM after three or more previous lines 
of therapy (MM:3+) and extramedullary disease, plasma cell leukemia 
(Fig. 1b). Depending on sample availability, we combined PCY testing 
with proteotyping53 of magnetic bead-based enriched CD138+ plasma 
cells, CD14+ monocytes and CD3+ T cells and integrated these results 
with the matched clinical data (Fig. 1b and Extended Data Fig. 1a,b).

Single-cell analysis of complex bone marrow samples
The generated image-based dataset, comprising 729 million imaged 
BM-residing mononuclear cells (BMNCs), offers a unique phenotypic 
view on cellular heterogeneity in MM. To quantify this heterogene-
ity, a convolutional neural network (CNN)54 (Extended Data Fig. 2a–c) 
first classified each imaged BMNC into either CD138+/CD319+ plasma 
cell-marker-positive cells, CD3+ T cells, CD14+ monocytes or an ‘other’ 
class for all marker-negative cells (Extended Data Fig. 2d). Convolu-
tional neural networks learn latent-space representations that cluster 
data with similar features, useful for the discovery of subpopulations 
of cells with similar phenotypic features in single-cell imaging52. Within 
our cohort, such visualization of the latent-space features (activa-
tions of the CNN’s last fully connected layer; Fig. 2a) of cells from 
control conditions revealed considerable phenotypic heterogeneity 
across the cohort (Fig. 2b). This included abundant bona fide CD14+ 
monocytes with unexpected intracellular green signal (Extended Data 
Fig. 2d), as well as considerable cell size variability within the plasma 
cell-marker-positive cell class (Fig. 2c).

High-throughput phenotypic detection of myeloma cells
Myeloma cells are characterized by large cytoplasms55, positive expres-
sion of plasma cell markers (including CD38, CD138 and CD319) and 
cytogenetic aberrations5. Therefore, a second neural network classi-
fied the subset of big plasma cell-marker-positive cells, which are the 
putative myeloma cells that form the target population for the ex vivo 
drug screens (Fig. 2d). We confirmed this myeloma cell identification 
strategy using molecular and genetic analysis of FACS-sorted CD138+/
CD319+ plasma cell-marker-positive big and small cells (Extended 
Data Fig. 2e). Indeed, across four validation samples, the majority of 
big cells were hyperdiploid (Fig. 2e) and additionally expressed the 
plasma cell marker CD38 (Extended Data Fig. 2g). In contrast, the 
plasma-marker-positive small cells were nearly completely diploid 
and only partially CD38-positive and thus not all bona fide plasma 
cells (Fig. 2e and Extended Data Fig. 2f,g). Neither big nor small 
plasma cell marker-positive cells were immature plasma or B cells, 
as both were B-cell marker CD19-negative (Extended Data Fig. 2g). 
We further compared our image-based myeloma quantification with 
the sample-matched cytological and histological plasma cell counts 
performed in clinical routine. PCY-based myeloma cell abundance 
measurements were in good concordance with clinical evaluation of 
plasma cell infiltration into the BM by cytology (RSp = 0.7; P < 2 × 10−13; 
Fig. 2f), which is on par with the similarity between clinical pathology 
and clinical cytology (RSp = 0.74; P < 6 × 10−10; Extended Data Fig. 2h). 
As expected, newly diagnosed patients showed a high abundance of 
myeloma cells by PCY that were strongly reduced after treatment and 
re-emerged at relapse (Fig. 2g). Furthermore, sequential samples from 

4 (IRF4), a key driver of MM5,8,9. In all, chromosomal gains, deletions, 
translocations and gene mutations increase the genetic complexity 
while enhancing myeloma cell survival and proliferative capacity.

The BM environment contributes to disease progression and treat-
ment response by providing a protective niche and proliferative factors 
to myeloma cells10. Myeloma niche interactions are reflected in altered 
BM composition of both immune, stromal, osteoclast and osteoblast 
cells, as well as altered levels of secreted factors11,12. Cytokines tumor 
necrosis factor (TNF)-α and interleukin (IL)-6, for example, are provided 
by the niche and can induce proliferation of myeloma cells, creating a 
tumor-supportive microenvironment13,14.

Many treatment options exist for MM that together have mark-
edly prolonged overall survival in the last decades. Advances in MM 
therapy and management came from the introduction of proteasome 
inhibitors (PIs; for example, bortezomib, carfilzomib and ixazomib) 
and immunomodulatory agents (IMiDs; for example, thalidomide, 
lenalidomide and pomalidomide)15. These are commonly given as 
double- or triple-drug combinations with corticosteroids (dexametha-
sone or prednisone). Deep responses to these therapies correlate with 
a longer time to relapse and improved overall survival16 and are com-
monly followed by autologous stem cell transplantation in younger 
and fit patients17. Introduction of targeted immunotherapies has fur-
ther brought clinical benefits to patients with MM, often in combina-
tions with the above-mentioned small compound therapies18–20. These 
immunotherapies include monoclonal antibodies directed against 
myeloma surface antigens, such as daratumumab targeting CD38 
(ref. 21) and elotuzumab targeting SLAMF7/CD319 (refs. 22,23), as well 
as BCMA-targeted chimeric antigen receptor (CAR) T cell therapy24.

Despite this plethora of approved treatment options, MM is 
still incurable and most patients eventually relapse and die of the 
illness25. Myeloma cells evade treatment both by innate26,27 and 
treatment-induced mechanisms28,29. A well-studied example is the 
deletion of chromosome arm 17p (del17p), frequently acquired during 
disease progression. Del17p is associated with mutations in TP53 and 
with a more aggressive disease that responds poorly to proteasome 
inhibition28,30–32.

MM has been extensively analyzed by comprehensive molecu-
lar profiling (‘omics’) techniques. Several studies used genomic9,33, 
transcriptomic34 and proteomic35–37 measurements to strengthen the 
knowledge of disease biology, identify drug targets, predict the risk 
of progression38 and explain acquired resistance mechanisms26,39; 
however, omics measurements have not yet transformed the clinical 
routine for MM.

Complementary to molecularly guided precision medicine, 
drug testing directly on patient biopsies is increasingly successfully 
implemented for personalized treatment selection40–42 and analysis 
of drug sensitivity43–45. For MM, several ex vivo drug screening studies 
have been performed with bulk viability assays informing on possible 
treatment options, including BCL2 inhibition by venetoclax46–48. We 
have recently reported that image-based ex vivo drug testing (called 
pharmacoscopy; PCY) recommends treatments that lead to significant 
progression-free survival improvement for patients suffering from 
relapsed/refractory hematological malignancies, compared to the 
patient’s own responses to previous treatment40,41,49. This high-content 
single-cell approach also allows measurement of ex vivo sensitivity to 
immunotherapies, by quantifying immune cell activation, target cell 
engagement and target cell killing50–52. Based on these observations, 
we set out to adapt PCY to MM, use it at scale to systematically analyze 
disease heterogeneity in treatment sensitivity and resistance and evalu-
ate the clinical predictive power of the approach for MM.

Results
MM (or plasma cell myeloma) is characterized by the clonal expansion 
of myeloma cells (malignant plasma cells) and accumulation of genetic 
lesions, leading to extensive intra- and inter-patient heterogeneity5,34,39. 
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Fig. 1 | Workflow and cohort details for the integrative functional, molecular 
and clinical analysis of patients with MM. a, Schematic indicating the 
study workflow and derived results. Data are available as described in the 
Data Availability section, as well as at https://myelomics.com. b, Circos plot 
representing the multiple myeloma cohort and samples collected during the 

observational clinical study. A total of 138 patient samples from 89 unique 
patients are shown, with the follow-up samples from recurring patients 
connected with the lines in the inner part of the circos plot (unique color per 
patient). sFLC, serum-free light chain; NA, not available. For further details see 
legend, Extended Data Fig. 1 and Supplementary Table 1.

http://www.nature.com/natcancer
https://myelomics.com


Nature Cancer | Volume 4 | May 2023 | 734–753 737

Resource https://doi.org/10.1038/s43018-023-00544-9

patients achieving a partial response (PR) or better to their concurrent 
clinical treatments showed a decrease in myeloma cell abundance 
by PCY (Fig. 2h). Thus, the phenotypic signature of myeloma cells 
and the associated deep-learning strategy for their detection from 
high-throughput microscopy images forms a clinically concordant 
basis for quantitative single-cell resolved ex vivo drug screening.

Distinct bone marrow communities reflect clinical stage
Imaging millions of BMNCs of each patient sample provides the oppor-
tunity to analyze the cellular BM composition across the patient cohort. 
To capture the cellular heterogeneity identified by the latent space of 
the four-class CNN, we used graph clustering on the latent-space fea-
tures to identify phenotypic cell subpopulations (Fig. 3a and Extended 

Data Fig. 3a). Comparing the cellular composition of the BM samples 
across these subclasses (Extended Data Fig. 3b) revealed three, sur-
prisingly simple, predominant sample composition modes, which we 
refer to as PhenoGroups (PGs). Myeloma cells were highest abundant 
in samples of PG1, T cells and monocytes in PG2 and ‘other’ cells in PG3 
(Fig. 3b). We confirmed that the identification of these three PGs was 
robust to different clustering methods (Extended Data Fig. 3c–e) and 
supported by the four-class CNN abundances (Extended Data Fig. 3f,g).

Given the dynamic coevolution of cancer and immune cells in the 
BM niche in myeloma12, we analyzed the clinical associations with the 
identified PGs (Fig. 3c,dk,l and Extended Data Fig. 4a). Serum-free light 
chains (sFLCs) in blood, an indicator of active disease56, were highest 
in patients with samples from PG1, consistent with their high myeloma 
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myeloma cells. a, t-Stochastic neighbor embedding (t-SNE) of the CNN latent 
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97 patient samples). b, Marker expression levels per cell projected onto the 
embedding of a. c, Example cropped microscopy images showing representative 
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marker-positive cells (bottom). Scale bar, 10 µm. Box-plots of cell diameter of 
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image of sample MM147 indicating hyperdiploidy for three nuclei (right). Blue 
indicates 4,6-diamidino-2-phenylindole (DAPI) stain. Scale bar, 10 µm. f, Scatter-
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cell abundance (Fig. 3c). PG1 was significantly enriched in samples from 
patients who have received up to one previous line of therapy. In contrast, 
more pretreated patients dominated in PG2 and PG3 (Fig. 3d, left and 
middle). Light-chain clonality strongly associated with the PGs, with 
Lambda clones representing over 60% of samples in PG1, whereas over 
70% of samples in PG3 were Kappa clones (Fig. 3d, right). Other clinical 
parameters, including patient age and sex, genetic aberrations and the 
type of previous therapy line, did not associate with the PGs (Extended 
Data Fig. 4a). Thus, the three distinct cellular communities detected 
across the cohort reflected different disease-associated processes, active 
disease in PG1 and high immune cell infiltration in PG2, with associations 
to both the patient’s treatment stage and clonality of the disease.

Complexity of the BM environment in MM results from dynamic 
changes in cell composition12,57 and the interaction of myeloma cells 
with the surrounding stromal cells11. We therefore further analyzed the 
PG signatures by systematic cytokine profiling in BM sera of 48 selected 
samples (Fig. 3e, Extended Data Fig. 4b,c and Supplementary Table 2). 
Principal-component analysis and analysis of variance (ANOVA) on 

normalized cytokine abundances revealed that the immune-infiltrated 
samples from PG2 were particularly high in proinflammatory cytokines, 
including TNF-α and IL-6 (refs. 13,14), whereas PG1 was notably low in 
IL-6 (Fig. 3e and Extended Data Fig. 4b,c). Thus, both the image-based 
cell composition and cytokine profiling are consistent with the pres-
ence of three predominant BM states among our patient cohort that 
dynamically change during the disease course.

The myeloma cell proteotype
With the aim to identify the molecular drivers of drug response in 
MM, we characterized the proteotype of myeloma cells. Because of 
the heterogeneity among CD138+ enriched cells in MM (Fig. 2a–e), we 
followed two complementary strategies: (1) Where the cell numbers 
allowed it, across the (discovery) cohort we performed proteotyping 
analysis of plasma cells enriched by their CD138 surface expression 
using MACS for 77 patient samples (Supplementary Table 3). For the 
5,663 detected proteins, we next calculated their abundance asso-
ciation with the sample-matched fraction of myeloma cells relative 
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Fig. 3 | Bone-marrow composition reflects clinical stage, disease clonality 
and inflammation. a, Scheme for determining the PGs. Top 100 activations from 
the ResNet CNN latent space for the 489,753 cells depicted in Fig. 2a are analyzed 
by spectral clustering (k = 15; Extended Data Fig. 3a) and the remainder of cells 
were k-NN-classified into respective spectral clusters. Sample composition 
(based on dimethylsulfoxide (DMSO) control cells) is calculated (Extended Data 
Fig. 3b) and a sample similarity matrix is calculated by correlating spectral cluster 
abundance per sample. The sample similarity matrix reveals three predominant 
PhenoGroups revealed by dendrogram cutting (PG1 = purple, PG2 = yellow, 
PG3 = blue). b, Box-plots indicating the fraction of cells per sample, split by cell 
class and sample PG (for a total of n = 97 patient samples). Box-plots as in Fig. 2c. 
P values were calculated using ANOVA. Pairwise P values derived from multiple 

pairwise comparison of the group means using Tukey’s honestly significant 
difference criterion. c, Box-plots showing the clinically measured sFLCs matched 
to each sample, shown per PG (n = 78 patient samples). Green dashed lines 
represent normal levels (<26 mg l−1 for Lambda and <19 mg l−1 for Kappa). The  
P value depicted was calculated as in b, box-plots as in Fig. 2c. d, Distribution of 
selected clinical parameters across PhenoGroups: fraction of patient samples 
with selected features are shown as stacked bar graphs. P values are calculated 
using a chi-squared test of independence. For disease stage abbreviations, 
see legend in Fig. 1b (n = 97 patient samples). e, Box-plot of z score normalized 
cytokine levels of TNF-α in patient BM sera per PG. The P values depicted were 
calculated as in b. Box-plots as in Fig. 2c (n = 45 patient samples).
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to all plasma cell-marker-positive cells as measured by PCY (Fig. 4a). 
Thus, proteins that score positively by this approach should be more 
abundant in myeloma cells, whereas proteins that score negatively 
should be less abundant in myeloma cells. (2) Complementary to this 
discovery approach, we performed validation measurements in the 
genetically characterized flow-sorted CD138+/CD319+ big (myeloma; 
mostly hyperdiploid) and small (mostly diploid) cells from four patients 
(Fig. 4b, Extended Data Fig. 2e and Fig. 2e). Of note, both discovery and 
validation proteotyping detected numerous plasma cell-associated 
proteins, even for the mostly diploid small plasma cell-marker-positive 
cells, whereas common B-cell markers were not detected (Extended 
Data Fig. 5a). When comparing the results of these two approaches, 
we observed significant consistency between the myeloma-associated 
proteins of the discovery cohort and the differentially expressed pro-
teins of the validation measurements (P < 1 × 10−20 by Spearman’s rank 
correlation; P < 5.5 × 10−5 by Fisher’s exact test; Fig. 4c). The resulting 
myeloma proteotype signature (top right quadrant in Fig. 4c, consist-
ing of 411 proteins; Supplementary Table 4) aligned well with known 
features of MM; notable was the high expression of IRF4 in myeloma 
cells, a master regulator of plasma cell differentiation and a key driver 
of MM8 (Fig. 4c,d). Gene Ontology enrichment analysis and additional 
investigation of the myeloma proteotype signature highlighted high 
abundance of the antibody secretory pathway, as well as of mitochon-
drial, ribosomal, proteasomal and translational machinery37,39 (Fig. 4e). 
The identified myeloma proteotype further suggested promising and 
recently investigated myeloma drug targets, including CDK5 (ref. 58) 
(Extended Data Fig. 5b) and endoplasmic reticulum (ER)-stress associ-
ated HSPA5 and HSP90B1 (ref. 59) (Supplementary Table 4).

We confirmed the presence of the myeloma proteotype signature 
in single-cell RNA sequencing (scRNA-seq) of MM patient samples, 
re-analyzing publicly available data of the KYDAR study39. We calculated 
the ratio of the mean expression of detected genes from either the mye-
loma signature or from the healthy/small plasma cell-marker-positive 
cell signature genes (bottom left quadrant in Fig. 4c). We classified 
more myeloma-like cells based on their highly increased expression of 
the myeloma signature (ratio > 5; Fig. 4f and Extended Data Fig. 5c,d).  
Notably, across the 34 patients with relapsed or refractory MM ana-
lyzed at baseline in the KYDAR study, the myeloma-like cells tended 
to be more abundant in refractory patients who failed to respond to 
a bortezomib-containing first-line treatment (Fig. 4g,h)39. Thus, the 
myeloma proteotype signature was associated with aggressive disease 
in scRNA-seq analysis of patients with MM.

The MM drug response landscape reveals patient variability
To get an overview of the drug response differences between patients 
with MM, we next measured the ex vivo myeloma cell responses of 

101 BM samples by PCY to a panel of 61 drugs and drug combinations 
(Supplementary Tables 5 and 6, Fig. 5 and Extended Data Fig. 6a,b). 
We quantified the level of on- and off-target drug efficacy after 24 h of 
incubation by contrasting the ex vivo drug response of myeloma cells 
with that of healthy cells of the MM BM samples present in the assay. 
Positive PCY scores indicate on-target efficacy, which is more extensive 
death of myeloma cells compared to the patient’s own healthy cells, 
whereas negative PCY scores indicate off-target toxicity, which is more 
extensive death of healthy cells compared to the myeloma cells. The 
PCY scores showed excellent technical reproducibility and strongly 
correlated with myeloma cell numbers relative to control (Extended 
Data Fig. 6a). The latter indicates that the myeloma PCY scores were pre-
dominantly determined by drug-induced changes in the viability of the 
myeloma cells, not healthy cells, simplifying the interpretation of the 
results. Furthermore, we observed that the PCY-based drug responses 
were reproducible across different concentrations (Extended Data  
Fig. 6b and Supplementary Table 5). Clustering the drug responses 
across the cohort further revealed strong similarity in the responses to 
drugs and drug combinations of the same class, resulting in the group-
ing of drug class annotations (Fig. 5). The emerging drug response land-
scape revealed extensive variability between patients (Fig. 5). Across 
the clinically oriented drug panel, PI-containing treatments were active 
in the largest fraction of patient samples, as expected based on their 
repeated use in the treatment of MM; however, notable differences were 
observed, with subsets of patient samples responding well to all three 
tested PIs, whereas others responded ex vivo to none (with PCY scores 
close to 0). Top drug combinations across the cohort included the com-
bination of the corticosteroid dexamethasone with either bortezomib 
or carfilzomib, which form the backbone of non-immunotherapy-based 
clinical treatments for MM.

Furthermore, we observed considerable sensitivity to approved 
and experimental immunotherapies for MM, albeit with reduced 
response depths compared to tested PI-containing treatments, likely 
explained by their different dynamics and mode of action. Immuno-
therapies with ex vivo on-target responses (PCY > 0) included daratu-
mumab (targeting CD38) and elotuzumab (targeting CD319/SLAMF7), 
both clinically approved for MM18–21. Subsets of samples responded well 
to experimental immunotherapy combinations, including combina-
tions containing checkpoint inhibitors nivolumab and pembrolizumab 
(both targeting PD-1), avelumab (targeting PDL-1) and ipilimumab 
(targeting CTLA-4). As expected, obinutuzumab, which targets B-cell 
marker CD20, was among the least active ex vivo tested drugs, con-
sistent with the absence of CD20 and other B-cell marker expression 
by proteotyping (Extended Data Fig. 5a). Such ex vivo responses to 
targeted immunotherapies and checkpoint inhibitors imply immune 
cell activation and engagement between effector cells and myeloma 

Fig. 4 | The molecular proteotype of myeloma cells. a, Work scheme for the 
integration of proteotype and PCY data on the discovery cohort (n = 77 patient 
samples). b, Work scheme for validation cohort (n = 4 patient samples; also 
analyzed in Fig. 2e). c, Scatter-plot. The y axis represents myeloma and protein 
abundance associations calculated as in a as signed P values of Spearman’s  
rank correlations. The x axis represents the difference in protein abundance 
between FACS-sorted myeloma and small plasma cell-marker-positive cells  
from four myeloma samples (scheme b). Top-right quadrant shows proteins 
positively associated with myeloma cells across the discovery cohort (n = 77)  
and upregulated in myeloma cells in the validation cohort (n = 4). Lower-left 
quadrant contains negatively associated with and downregulated proteins in 
myeloma cells. Gray dashed line represent the cutoffs for y axis (P < 0.05) and  
x axis (absolute fold change > 0.3). Fisher’s exact test insert indicates significance 
in overlap of proteins, significant in both discovery and validation cohorts 
(P < 5.47 × 10−5). Selected proteins are numbered and protein identifiers reported 
in the respective quadrants. Proteins formatted in bold letters are shown in d 
(see also Supplementary Table 4). Spearman’s rank and Pearson’s correlations 
and P values are indicated (top left). d, Example data for myeloma-associated 

proteins IRF4, SLC25A4, NDUFA2 and CD38. Top scatter-plots indicate protein 
abundance (y axis) against percentage myeloma by PCY (x axis) (n = 77 patient 
samples). Bottom box-plots (as in Fig. 2c) show protein abundance (y axis) per 
FACS-sorted myeloma (M) and small plasma cell-marker-positive cells (S) cells of 
the validation cohort (n = 4 patient samples). P values from a paired two-tailed 
Student’s t-test. Pearson’s and Spearman’s rank correlation and associated  
P values are provided under the title of each upper plot. P values not corrected for 
multiple testing. e, Gene Ontology enrichment analysis of the myeloma protein 
signature. P value by hypergeometric test, false discovery rate (FDR)-adjusted 
for multiple comparisons. SRP, signal recognition particle. f, Uniform Manifold 
Approximation and Projection representation of scRNA expression levels39 
colored by their myeloma-like and small plasma cell-marker-like transcriptional 
signature (n = 31,305 cells from 34 patients). g, Bar-plots of the percentage 
plasma cells colored as in f (n = 34 patients). h, Box-plots (as in Fig. 2c) show 
percentage myeloma-like cells per relapse (n = 18 patients) and refractory (n = 16 
patients) disease stages. Indicated P value (not significant) is from an unpaired 
two-tailed Student’s t-test.
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cells. Both can be analyzed by measuring cell morphology and cell–
cell contacts in our image data50–52. Engagement of activated T cells 
with myeloma cells particularly associated with ex vivo response to 

elotuzumab and combinations thereof, as well as with response to 
the immune checkpoint inhibitors (Extended Data Fig. 6c,d). In con-
trast, ex vivo response to daratumumab and dara-combinations were 

Protein abundance di�erence: myeloma cell versus small plasma-marker- positive cell
(n = 4 MM samples; fold change (log10(myeloma/small plasma-marker-positive))
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associated with engagement between monocytes and myeloma cells 
(Extended Data Fig. 6e,f), in line with previous reports on the involve-
ment of monocytes in the response to daratumumab60,61. Immune 
cell involvement in drug responses, however, seemed to go beyond 
responses to immunotherapies. For instance, ex vivo response to the 
strongest drug combinations, dexamethasone with either bortezomib 
or carfilzomib, associated with increased interactions between mono-
cytes and myeloma cells (Extended Data Fig. 6g). Thus, our ex vivo drug 
response measurements incorporated the patient’s own immune cells, 
informing on differential involvement of effector cells and revealing 
extensive patient heterogeneity in drug sensitivity and resistance.

The molecular network underlying the drug response 
landscape
To identify the molecular states associated with these differential 
drug responses, we correlated the drug responses with myeloma 
protein abundances across the discovery cohort (Extended Data  
Fig. 6h,i and Supplementary Table 7). We further identified key predic-
tor proteins of drug response using regularized (elastic net) regression 

(Supplementary Table 7). Clustering the top variable drug–protein cor-
relations revealed a notable bimodal pattern, with PIs, dexamethasone, 
elesclomol and panobinostat-containing treatments globally following 
one protein association pattern, whereas immunotherapies, IMiDs 
(lenalidomide and pomalidomide) and chemotherapies followed the 
opposite protein association pattern (Extended Data Fig. 6i). As protein 
abundance of co-regulated proteins is often correlated, we analyzed 
these protein–drug response associations in the context of their known 
regulatory network (as defined by the STRING database62) (Fig. 6a). 
Visualizing the core network of strongest drug-associated proteins 
across all of the 61 drugs and drug combinations revealed well-defined 
functionally related protein subnetworks, centered around a ribosomal 
and translational core network (including, for example, RPS6, DEPTOR, 
EEF1A1 and EIF3D) connected to messenger RNA splicing (including 
SRSF2, SRSF6 and SRSF9), tRNA synthesis (EPRS, NARS and SARS), 
DNA repair (including H2AX, EYA3, XRCC5 and RAD50), protein ubi-
quitination and degradation (including PSMD7, PDMB10, NEDD8 and 
UBE2M) and a more diverse signaling and cell adhesion subnetwork 
(including STATs, integrins, ER-resident chaperones and HLA-DRB5, 
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among others) (Fig. 6a). Visualizing the associations with any one 
drug on this network highlighted striking contextual relationships. 
For example, a top negative association to bortezomib was DEPTOR63, 
which connected to the strongly positively associated RPS6 (Fig. 6b). 
These opposite yet connected associations are in line with RPS6 being 
regulated downstream of mTOR and S6K signaling, whereas DEPTOR is 
a negative regulator of mTOR. Combined, these associations suggest 
a bortezomib-sensitive MM state that is DEPTOR-low and RPS6-high, 
further characterized by high abundance of ribosomal, translational 
and mRNA splicing machinery (Fig. 6b–d).

The second strongest negative bortezomib association captured 
in the network analysis was EYA3, part of the DNA repair subnetwork  
(Fig. 6e,f). EYA3 is a phosphatase of tyrosine-142 phosphorylated 

histone H2AX64. H2AX phosphorylation, including phosphorylated 
serine-139 (γ-H2AX), is a hallmark of genotoxic stress65. As such, EYA 
proteins are key regulators of the survival decision in response to 
genotoxic stress and DNA damage64, although they have to date not 
been implicated in the response to bortezomib in MM. Bortezomib 
treatment is known to reduce DNA repair capabilities in MM28 and 
bortezomib-resistant MM samples in our cohort showed increased 
EYA3 expression levels, suggesting increased EYA3 expression might 
help MM cells survive bortezomib-induced genotoxic stress. In line 
with this interpretation, bortezomib strongly induced γ-H2AX accu-
mulation after 24 h of treatment in myeloma cells across six validation 
samples of newly diagnosed patients (Fig. 6g), notably higher than the 
γ-H2AX levels induced in the same samples by the DNA-damaging agent 
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bendamustine (Extended Data Fig. 7a). Thus, our data hint toward a role 
for EYA3 in regulating the survival decision upon bortezomib-induced 
genotoxic stress in primary myeloma cells.

We tested whether these DEPTOR/RPS6 and EYA3 associations 
with bortezomib sensitivity observed in primary MM samples were 
recapitulated in publicly available drug results and transcriptom-
ics of MM-derived cell lines66. Indeed, DEPTOR-high-expressing cell 
lines showed increased resistance to bortezomib (Extended Data  
Fig. 7b). And DEPTOR and RPS6 transcript abundance were significantly 
anticorrelated (Extended Data Fig. 7c). Furthermore, EYA3 transcript 
abundance was associated with increased bortezomib resistance 
(Extended Data Fig. 7d). Thus, our primary MM sample proteomics 
and image-based drug screening results could be recapitulated in 
transcriptomics and bulk-drug screening results on MM-derived cell 
lines, further supporting a role for both DEPTOR and EYA3 as regulators 
of bortezomib sensitivity in MM.

We next investigated elotuzumab, a clinically approved SLAMF7/
CD319-targeting immunotherapy, as an example of the opposite 
drug–protein association cluster (Fig. 6h). Elotuzumab was ex vivo 
more effective against myeloma cells with relatively reduced riboso-
mal, mRNA splicing and ER chaperone protein abundance (Fig. 6h).  
The top-ranked positive association was with the major histocompat-
ibility complex class II (MHC-II) subunit DRβ5 (HLA-DRB5) (Fig. 6i,j).  
While mature plasma cells typically do not express MHC-II mole-
cules, myeloma cells can re-express MHC-II molecules in response 
to extrinsic cues such as interferon-γ67. MHC-II molecules mediate 
antigen presentation to CD4+ T cells, leading to cell–cell contacts that  
can be quantified by PCY50–52. Across the cohort, we observed 
increased interactions between myeloma cells and activated 
T cells upon elotuzumab treatment for HLA-DRB5-high MM sam-
ples compared to HLA-DRB5-low samples (Fig. 6k), suggesting that 
MHC-II-mediated antigen presentation associates with increased 
sensitivity to elotuzumab.

The pan-drug–protein association analysis suggested a molecu-
lar rationale for existing clinical treatment regimes. For example, 
chemotherapy, such as melphalan and immunotherapies often follow 
PI-containing treatments in the clinic and seemed to target comple-
mentary proteotypic states of myeloma cells in our analysis (Extended 
Data Fig. 6i). Melphalan’s protein associations were highly distinct from 
those of bortezomib (Extended Data Fig. 7e), with increased efficacy in 
myeloma cells with high expression levels of integrin B2 (ITGB2) and E3 
ubiquitin-protein ligase TRIP12, among others (Extended Data Fig. 7f).  
Results from other protein–drug networks can be visualized and 
accessed at https://myelomics.com.

Treatment strategies for clinically defined subcohorts
Our cohort analysis allowed us to explore possible clinical biomarkers 
to guide treatment decisions in MM. To this end, we integrated genetic, 
clinical and PG annotations with the ex vivo drug responses for patients 
with confirmed clonal disease and available clinical data (Fig. 7a and 
Extended Data Fig. 8a,b). The largest number of associations related 
to the PGs. PG2, characterized by high monocyte and T cell infiltration 
and high TNF-α and IL-6 cytokine levels (Fig. 3b,e and Extended Data 
Fig. 4b,c), responded poorly ex vivo to combinations of bortezomib and 
corticosteroids (dexamethasone or prednisone) optionally including 
immunotherapies. PG3, characterized by a high fraction of ‘other’ cells, 
in contrast, showed significantly higher ex vivo sensitivity to combina-
tions of dexamethasone and IMiDs (lenalidomide, pomalidomide or 
thalidomide), optionally including immunotherapies, compared to 
PG1 and PG2 (Fig. 7a,b and Extended Data Fig. 8a,b). The PGs showed 
significant associations also when grouping the responses to all tested 
immunotherapy combinations, with samples of PG2 not responding to 
most immunotherapy combinations ex vivo (PCY scores of around 0),  
whereas samples of PG3 on average showed the strongest ex vivo 
responses, suggesting a strong role for the BM microenvironment 

in influencing response to immunotherapy, revealed by our ex vivo 
platform (Fig. 7c and Extended Data Fig. 8c).

Beyond the PGs, genetics and patient characteristics also showed 
exploratory associations to drug response. The common chromosomal 
translocation t(11;14)(q13;q32), linked to upregulation of cyclin D1 
(CCND1)7, associated with worse response ex vivo to several less com-
monly used triple-drug combinations of PIs, steroids and IMiDs, when 
compared to t(11;14)-negative samples. Significantly higher sensitivity 
of t(11;14)-positive samples was, however, observed to elotuzumab  
(Fig. 7a,b). Deletion of the 17p13 chromosomal region [del(17p)] is asso-
ciated with mutations in TP53 and poor outcomes in MM30. Moreover, 
bortezomib has been shown to activate and depend on p53 in myeloma 
cell line models68,69. Consistently, with a median PCY score of around 
0, the del(17p) mutant samples showed significant ex vivo resistance 
to bortezomib (Fig. 7a,b), further pointing toward a role for the DNA 
repair pathway in regulating sensitivity to bortezomib in primary 
myeloma samples. The combination of elotuzumab with checkpoint 
inhibitor pembrolizumab resulted in significantly higher on-target 
PCY scores in MM samples with Kappa-clonal disease; and the clinically 
used combination of dexamethasone with daratumumab was observed 
to work best in samples of patients younger than 65 years (Fig. 7a,b). 
Thus, our results provide a rich resource to explore possible response 
biomarkers and treatment strategies to both existing and experimental 
myeloma treatment options.

Pharmacoscopy stratifies clinical response to immunotherapy
For a subset of 34 patients in our cohort, the time of sampling and PCY 
testing preceded the initiation of a new therapy line to which the clinical 
response (time to next treatment) could be documented (Supplemen-
tary Table 8). These clinical response data allowed us to test whether 
a patient’s ex vivo sensitivity to their next treatment line is predictive 
of clinical benefit. Given that patients mostly received combination 
treatments, we summed the PCY scores for all ex vivo tested treat-
ments matching the patient’s next treatment line, resulting in an ‘inte-
grated PCY’ score (iPCY; Fig. 8a). As for the PCY scores, we observed 
that iPCY scores for patients receiving immunotherapies (‘immuno-
therapy subcohort’; n = 15 patients; Fig. 8b,c) were considerably lower 
than iPCY scores for patients treatment regimens that did not include 
immunotherapies (‘non-immunotherapy subcohort’; n = 19 patients; 
Fig. 8b and Extended Data Fig. 9a). We, therefore, labeled patients 
whose iPCY score was above average of their respective subcohort to 
be PCY ‘sensitive’ (Fig. 8b), whereas patients with below average iPCY 
scores were called ‘resistant’. Kaplan–Meier analysis of all 34 patients 
showed highly significant increases in the time to next treatment for 
PCY-sensitive patients compared to PCY-resistant patients (log-rank 
P = 0.00763; hazard ratio (HR) = 4.57, 1.77–11.8 95% confidence interval 
(CI95)) (Fig. 8d).

When analyzing the two subcohorts separately, we found 
the response to immunotherapy to be significantly stratified by 
PCY sensitivity before treatment initiation (P = 0.0222; HR = 7.01, 
1.59–31 CI95); Fig. 8e), whereas the non-immunotherapy subcohort 
trended in the same way but did not reach significance (P = 0.0898; 
HR = 3.49, 1.01–12.1 CI95) (Fig. 8f). The phenotypic myeloma signa-
ture was further underscored by the observation that repeating the 
clinical stratification based on the drug responses of the CD138+/
CD319+ plasma cell-marker-positive cells, which is the plasma cell 
class from the four-class CNN, did not significantly stratify the time 
to next treatment (Extended Data Fig. 9b). Last, we observed that 
the clinical responses to immunotherapy were also stratified by the 
PhenoGroups, with the inflamed PG2 signature indeed associated 
with shorter time to next treatment, as also predicted by their ex vivo 
results (P = 0.0331; HR = 0.233, 0.0291–1.87 CI95) (Figs. 8g and 7c). These 
results support the here developed ex vivo platform and derived func-
tional precision medicine landscape as a tool to personalize complex 
immunotherapy-containing treatments for patients with MM.
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Discussion
We here present a single-cell-resolved functional survey of MM, 
matched to deep molecular and clinical profiling. Our orthogonal 
datasets are clinically predictive, enable biomarker identification and 
mechanistic interrogation of myeloma drug sensitivities and might help 

guide the selection of immunotherapies and combination therapies 
for precision medicine of MM.

The phenotypic single-cell resolution of the platform is critical, as 
it is only the ex vivo drug response of the big plasma cell marker-positive 
cells (the phenotypic myeloma cell signature) that is predictive of clinical 
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concatenated by a + symbol (Supplementary Table 5). b, Box-plots (as in Fig. 2c) 
showing example differences in PCY scores for distinct patient subsets and drugs, 
associated with a. Indicated P values are from an unpaired two-tailed Student’s  
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response. This phenotype enriches for genetically altered cells, associates 
with increased disease burden across the cohort and reflects the charac-
teristically high monoclonal antibody production and metabolic activity 

of myeloma cells. Furthermore, the phenotypic resolution allows in-depth 
characterization of T cell activation and immune cell engagement with 
myeloma cells in response to ex vivo immunotherapy treatment.
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A recurring thread throughout our findings is the dynamic inter-
play between the BM environment and the drug sensitivity of myeloma 
cells, particularly regarding immunotherapy response. The three pre-
dominant cell community modes or PGs that we identify by classifying 
BMNCs across our cohort, are independently supported by orthogonal 
measurement (imaging, drug response profiling, cytokine profiling, 
clinical parameters and pathology). These PGs capture the interplay 
between key myeloma features across our cohort: disease burden 
and treatment stage, disease clonality and BM inflammation. Jointly, 
the PGs are the strongest predictors of ex vivo drug sensitivity that we 
identify. PG1 is characterized by a high cancer burden, high sFLC levels 
and enriched for newly diagnosed and early-stage MM. PG2 and PG3 
enrich for late-stage patients eligible for immunotherapy, yet strongly 
differ with regards to their ex vivo immunotherapy sensitivity. PG2 is 
characterized by high monocyte and T cell infiltration into the myeloma 
niche coinciding with high levels of pro-inflammatory cytokines TNF-α 
and IL-6. We find that PG2 is significantly associated with poor ex vivo 
and clinical response to immunotherapies. In contrast, PG3 is high on 
‘other’ cells, enriched in later-stage Kappa-clonal patients and shows 
relatively good ex vivo and clinical response to immunotherapies. 
Although these patterns are discovered first from real-time drug test-
ing in patient samples, they propose a treatment stratification for 
patients with later-stage MM that might be reproduced in clinical 
routine by quantifying BM composition by flow cytometry (Extended 
Data Fig. 9c,d). Here, of note, ANOVA identified PG2s to be sensitive to 
the DNA-damaging agent bendamustine (Extended Data Fig. 8a) and 
PG2 samples in the non-immunotherapy subcohort showed among 
the best documented clinical responses to standard combinations of 
bortezomib, dexamethasone and cyclophosphamide (‘VCD’) (Extended 
Data Fig. 9a), warranting further investigation. Given the strong role 
of the BM stromal cells (BMSCs) in shaping the microenvironment of 
MM11,70, we expect, but it remains to be shown, that there is an interplay 
between BMSCs and the identified PGs.

The ex vivo immunotherapy responses measured by PCY signifi-
cantly stratified clinical response, offering a unique tool to study their 
molecular and cellular determinants. We find that high expression 
of the MHC-II molecule HLA-DRB5 on myeloma cells strongly associ-
ated with ex vivo elotuzumab response. In the differentiation process 
from B cells, plasma cells typically lose or lower the expression of 
MHC-II molecules71; however, MHC-II expression on myeloma cells 
has already been reported67,72, hinting that the myeloma cells of this 
elotuzumab-sensitive subcohort might contain a more plasmablastic 
phenotype potentially acting as antigen-presenting cells. In line with 
that interpretation, we observe that patient samples with high myeloma 
expression of HLA-DRB5 present with increased cell–cell contacts 
between myeloma cells and activated T cells upon ex vivo elotuzumab 
treatment. While further work is needed to elucidate this association, 
it exemplifies the unique ground provided by our dataset for exploring 
the molecular determinants of immunotherapy response in MM. Going 
forward, the PCY platform is compatible with bispecific antibodies50, 

immunomodulatory proteins and drugs51,52 and CAR-T cell therapy73, 
empowering the further study of recently approved and upcoming 
myeloma therapies.

Our functional proteomic analysis reveals the molecular network 
associated with drug sensitivity across treatment options. This com-
prehensive approach retrieves both well-known associations as well 
as uncovers new ones. For instance, high abundance in ribosomal 
proteins, EIF4F translation initiation complex and spliceosomal pro-
teins associated positively with bortezomib sensitivity. This indicates 
a myeloma cell state engaged in high protein synthesis that is likely 
sensitive to PI-induced ER stress, aligning well with previous find-
ings37,74. DEPTOR, which we identify as top negative association to 
bortezomib sensitivity, could be an upstream master regulator of this 
cellular state in myeloma. DEPTOR is an mTOR-interacting protein63 
that inhibits mTORC1 and mTORC2 pathways that regulate cell growth, 
proliferation and survival75. High DEPTOR expression in MM might thus 
reduce the overall protein synthesis and associated ER stress, thereby 
increasing bortezomib resistance. Targeting DEPTOR, possibly in 
combination with proteasome inhibition, might thus be a promising 
therapeutic strategy for this subset of patients with DEPTOR-high 
bortezomib-resistant myeloma.

Finally, our findings support the clinical utility of PCY for personal-
ized treatment identification in MM. Follow-up clinical trials that pro-
spectively assign patients to treatment arms based on their ex vivo drug 
sensitivity are needed to assess impact on clinical outcome. Altogether, 
we present a rich resource deeply characterizing MM across disease 
stages at the phenotypic, functional and molecular level. Our data can 
be further analyzed for drug target identification, drug mode of action 
analysis, biomarker detection and patient stratification. It provides 
a BM classification scheme with potential treatment relevance and 
supports the future clinical use of our functional precision medicine 
platform for the treatment of MM.

Methods
Obtaining patient bone marrow nuclear cells from iliac crest 
aspirates
This project was conducted as an observational clinical trial by princi-
ples enunciated in the current version of the Declaration of Helsinki and 
the Swiss regulatory authority’s requirements (BASEC no. 2017-00603, 
approved by the Cantonal Ethical Committee of Zurich). A comprehen-
sive list of patients enrolled in the study is in Supplementary Table 1. 
After the patients’ informed consent, BM aspirates were taken, placed 
in heparin-coated tubes (Beckton Dickenson) and processed within 1 h 
after aspiration. Samples consisted of approximately 10 ml BM aspirate 
taken in addition to routine BM biopsy from the iliac crest.

Drug screening library preparation
After consulting with the MM treating physicians, we obtained a set 
of US Food and Drug Administration (FDA)-approved compounds 
and antibodies used in the clinic to design the MM drug-screening 

Fig. 8 | Ex vivo drug sensitivity stratifies clinical responses. a, A schematic 
representation of the iPCY scores: the sum of ex vivo drug responses (1 − relative 
cell fraction) matching the treatments the patient subsequently received in the 
clinic. b, Violin plots with a depicted median and kernel density estimate of the 
data of iPCY scores for the non-immunotherapy subcohort (left; n = 19 patients) 
and immunotherapy subcohort (right; n = 15 patients). Additionally, mean iPCY 
of each subcohort is depicted (horizontal black lines) and used as threshold to 
separate more sensitive (‘PCY-sensitive’) from less sensitive (‘PCY-resistant’) 
patients. Difference was not significant by unpaired two-tailed Student’s t-test. 
c, A graphic representation of the clinical immunotherapy subcohort (n = 15 
patients). Patients are included based on receiving either daratumumab or 
elotuzumab-containing treatment following PCY testing and having evaluable 
response. PG, sample identifier and clinical treatment per patient are reported. 

Heat map shows the individual PCY scores matching to the treatments given, with 
their respective iPCYs on the right. Finally, time to next treatment is reported per 
patient, with blue indicating PCY-sensitive and red PCY-resistant samples as in b. 
d, Kaplan–Meier curve for the probability to stay on treatment for both subcohorts 
combined (n = 34 patients) stratified by PCY sensitivity, using the mean iPCY for 
their matched clinical treatments as a cutoff. P value from log-rank (Mantel–Cox) 
test and HR of the respective groups including the 95% CIs are reported. Ongoing 
responses are indicated as vertical tick marks on the Kaplan–Meier curves. Table 
below reports the number of patients at risk at different time points. e, As in d but 
for the immunotherapy subcohort (n = 15 patients). f, As in d but for the non-
immunotherapy subcohort (n = 19 patients). g, As in e but stratified for the PGs of 
the corresponding patient samples. Stratification is PG2 versus (PG1 and PG3).
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library. The drug-screening plates were prepared by direct dilution 
using acoustic, non-contact transfer with Echo Liquid Handler device 
Echo (Labcyte). Shortly after, the compounds were transferred to 
clear-bottom, 384-well tissue-treated plates (PerkinElmer) with three 
(compounds) or four (antibodies) replicates and three different con-
centrations. The list of used drugs and concentrations, replicates and 
abbreviations is detailed in Supplementary Table 5.

Cell purification, seeding and drug incubation
To isolate BMNCs, 5–10 ml BM aspirate was diluted 1:3 in 2 mM 
PBS-EDTA (Gibco) and BMNCs were isolated with Histopaque-1077 
density gradient (Sigma-Aldrich) according to manufacturer’s instruc-
tions. BMNCs at the interface were collected, washed once in PBS and 
resuspended in RPMI 1640 + GlutaMax medium (Gibco) supplemented 
with 10% fetal bovine serum (FBS; Gibco). Subsequently, cell number 
and viability were determined by Countess II Cell Counter (Thermo 
Fisher) according to the manufacturer’s instructions.

The non-adherent BMNCs were plated at the density of 13,000 
cells per well onto a 384-well drug-coated plate. The cells were incu-
bated at 37 °C with 5% CO2 for 21–24 h. The assays were stopped by 
fixing and permeabilizing the cells for 20 min at room temperature 
(22 °C) with 15 µl fixation solution containing 1% (w/v) formaldehyde 
(Sigma-Aldrich), 0.1% (v/v) Triton X-100 (Sigma-Aldrich) and PBS. 
Fixation solution and media were aspired by HydroSpeed plate washer 
(Tecan) and cells were blocked with 5% FBS–PBS (Gibco) and pho-
tobleached with conventional white light LED panels overnight at 
4 °C (6–12 h).

Immunostaining and imaging
All of the antibodies used in this work are listed in Supplementary 
Table 9. Before immunostaining, the blocking solution was removed 
and a 20 µl antibody cocktail was added onto the cells. The antibody 
cocktail for a multiplexed setting consisted of 1:5,000 dilution of 
DAPI (Sigma-Aldrich) and 1:300 dilution of the following antibodies 
in PBS: anti-CD138, anti-CD319, anti-CD3 and anti-CD14. The cells were 
stained for 1 h in the dark at room temperature and then the staining 
solution was replaced by PBS. For imaging, a PerkinElmer Opera Phe-
nix automated spinning-disk confocal microscope was used. Each 
well of a 348-well plate was imaged at ×20 magnification with 5 × 5 
non-overlapping images, covering the whole-well surface. Imaging 
was completed in the following, sequential order: brightfield (BF) 
(650–760 nm), DAPI/nuclear signal (435–480 nm), GFP/green signal 
(500–550 nm), PE/orange signal (570–630 nm) and APC/red signal 
(650–760 nm) channel. Subsequently, the raw.tiff images were trans-
ferred from the microscope for further analysis. The dataset consists 
of 62 terabyte of images from over 14 million individual.tiff files.

Conventional image analysis and quality filtering
Single-cell detection in images was performed using a pipeline in Cell-
Profiler v.2 (ref.76) and as previously described by Vladimer et al.50. 
Briefly, to detect cells, nuclei were segmented by thresholding on DAPI 
intensity, and the cellular outlines were estimated by a circular expan-
sion from the center of the nucleus. Next, a larger expansion outline was 
added to the nucleus, representing the local cellular area (for example, 
the staining background of the cell). Finally, CellProfiler features (stain-
ing intensity, shape and texture features of the cytoplasm, nucleus and 
local cell proximity) were extracted for the measured channels.

Convolutional neural networks
Four-class CNN architecture, training and data augmentation. A 
four-class 71-layer deep CNN with an adapted ResNet architecture54 was 
implemented using MATLAB’s Neural Network Toolbox, as described 
before52. The CNN network was trained on 46,614 individual 48 × 48 × 5 
images. The final performance was evaluated on an independent valida-
tion dataset of 2,740 images (see below).

Four-class CNN: training data generation and normalization. The 
curated dataset used for the four-class cancer CNN was generated as 
described previously52. In brief, cells used in the CNN training were 
randomly collected across control (DMSO) and drug-treated condi-
tions. First, indexes of marker-positive cells were obtained, which 
were assigned to four exclusive classes: plasma cell, T cell, monocyte 
and other cell. Specifically, a plasma cell was either CD138+, CD319+ or 
double-positive (CD138+ and CD319+). For T cells (CD3+), which were 
multiplexed together with monocytes (CD14+) in the red channel, 
cells from the control single-stained wells were used to determine the 
intensity and morphology of the subset. The same selection criteria 
applied to the monocytes. Other cells stained positive for DAPI but 
were negative for all used subpopulation markers. In total, a dataset of 
49,455 individual hand-curated single-cell images across 71 MM patient 
samples was generated. Before training the CNN, an independent and 
equally balanced validation dataset was generated containing ten cells 
per class per patient sample (total of 2,840 individual cells). Overall 
classification accuracy across the training samples was 95.7%.

Big and small plasma cell classifier. To evaluate size differences 
within the plasma cell population, a manually annotated library of 
labeled big and small plasma cells across the samples was curated. First, 
plasma cells were identified by the above-described CNN-based plasma 
cell identification. Then, plasma cells were randomly selected and 
cropped into 50 × 50-pixel images around the center of each nucleus 
containing BF, DAPI and CD138 and CD319-containing fluorescence 
channels. Finally, cells were manually curated into either ‘big’ or ‘small’ 
class, based on their nuclear and cytoplasmic size. In total, a training 
set of 956 big and small cells was curated from across 55 patients with 
MM. Additionally, a second test set of 200 cells of each subpopulation 
across all 55 samples was created. A simple eight-layer CNN based on the 
Alex-net77 architecture block design was used. Network performance 
was assessed by classifying the test cells belonging to each morpho-
logical cell class, which were not part of either training or validation 
datasets. The final B-Net accuracy was 85%.

T cell activation classifier. An additional CNN was developed to classify 
T cells into two morphologies, conventional T cells (Tconv) and activated 
T cells (Tact), as described before51,52. Briefly, the T-Net was trained with 
many non-MM T cells from different experiments, as described before52, 
with the MM T cells in training consisting of 992 Tact and 4,769 Tconv cells. 
The T-Net was tested across 265 Tact and 593 Tconv cells. The cells in the 
training and testing datasets comprised samples from across 32 patients 
with MM. The network performance was assessed by classifying the test 
cells belonging to each morphological T cell class, which were not part of 
either training or validation datasets. The final T-Net accuracy was 98.6%.

Quality control and cellular cleanup. To evaluate cellular images 
for imaging artifacts, contaminations and correct segmentation, we 
applied a small custom ‘Cleanup CNN’. This two-class CNN (correct cells 
and not-correct cells) was based on an architecture known as Alexnet78 
and was trained as described above for (B-Net). The hand-curated 
training and validation dataset (10% of the data) consisted of 17,259 
individual images, including 25 different patients/experiments ran-
domly sampled across the cohort. After classification of all detected 
cell objects, all not-correct cells and correct cells with classification 
confidence lower than 60% were discarded from further analysis.

Drug response analysis
Measured drug responses were included for 101 MM samples (Sup-
plementary Table 10). Samples not included in this analysis either did 
not pass the quality control filters (including too low tumor content, 
microbial contaminations and too high technical variability in drug 
results) or were initially used for assay setup or eventually used in 
follow-up experiments.
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First, relative cell fractions (RCFs) were calculated as previously 
described40. Briefly, a fraction of cells of population X (as identified 
by the CNN) after drug treatment divided by the average fraction of 
population X cells measured in control wells. The antibody-containing 
treatments were normalized to their respective isotype control. Anti-
body–drug combinations and other drugs were normalized to solvent 
DMSO. For calculating PCY ex vivo drug responses, all RCF values per 
drug were averaged over technical replicates and zero-centered (1–RCF).  
Therefore, a positive score represents a relative reduction of the respec-
tive cell population (on-target effect), whereas a negative score indi-
cates relative ex vivo drug resistance (Supplementary Table 6).

Quantification of cell–cell contacts (interaction score)
Cell–cell contacts were calculated as described previously50–52.  
For analysis of drug-induced changes in cell–cell contacts, scores were 
normalized to respective controls, either DMSO or isotype control 
antibodies.

Time course measurement of γH2AX expression in myeloma cells
BMNCs of six patients (newly diagnosed or at relapse) (Supplemen-
tary Table 10) were isolated as described above and seeded with the 
density of 13,000 cells per well onto a 384-well plate, coated with 
DMSO, bortezomib or bendamustine. The cells were incubated at 
37 °C with 5% CO2 for 1, 6 or 24 h and the incubation was stopped by 
fixation as described above. The cells were blocked for 1 h using 5 % 
FBS. Before immunostaining, the blocking solution was removed 
and a 20 µl antibody cocktail was added onto the cells. The antibody 
cocktail for consisted of 1:5,000 dilution of DAPI (Sigma-Aldrich) 
and 1:300 dilution of the following antibodies in PBS: anti-CD138 and 
anti-phospho-histone H2A.X (Supplementary Table 9). The cells were 
stained for 1 h in the dark at room temperature and then the staining 
solution was replaced by PBS. The imaging and subsequent image 
analysis was conducted as described above. Finally, the percent-
age of γH2AX-marker-positive myeloma cells was calculated in each 
drug condition by setting a staining intensity threshold based on its 
density histograms.

Cytokine measurements on patient sera
The sera of 48 patient samples were collected after BMNC isolation 
using a Ficoll density gradient and stored at −20 °C (Supplementary 
Table 10). Before processing, the selected set of patient sera was thawed 
and centrifuged at 200g for 10 min. The supernatant was collected and 
frozen until processed by Luminex Cytokine measurement, which was 
performed by ProtATonce (Greece).

Cytokine data analysis. The cytokine measurements were reported 
as an average cytokine concentration of three technical replicates. 
If cytokine abundance fell below the limit of detection (as measured 
by the standard calibration curve), the value was set to not a num-
ber (‘NaN’). If the values were above the maximum detectable con-
centration, they were set to the maximum observed value for that 
cytokine in the entire cohort. Next, the cytokine concentrations were 
log10-transformed. Then, each cytokine was z score normalized across 
the 48 samples, to account for cytokine abundance differences. Last, 
the 64 cytokines measured were z score normalized per sample to cor-
rect for sample input abundance differences (Supplementary Table 2 
and Supplementary Table 10).

Subpopulation isolation
MACS sorting. Plasma cells, T cells and monocytes were isolated from 
fresh BMNCs directly after obtaining them via density centrifugation, 
as described above. Isolation was performed following Manufacturers’ 
instructions (Miltenyi Biotec) using a column-based extraction method 
with CD138, CD3 and CD14 microbeads. Immediately after sorting, the 
cells were frozen and stored at –80 °C until processed (proteotyping).

FACS sorting. FACS sorting was conducted on live BMNCs of five 
patient samples (Supplementary Table 10), which were isolated using 
density centrifugation (as described above). Upon isolation, BMNCs 
were split and washed in a 1:1 ratio in ice-cold FACS buffer (2 mM EDTA, 
pH 8.0, 0.5% FBS albumin in PBS) by centrifugation (300g, 10 min). 
Next, the cells were stained with antibodies CD138, CD319, CD3 and 
CD14 (Supplementary Table 9). After 30 min incubation on ice, the cells 
were washed and resuspended in FACS buffer. The cells were filtered 
through a 40-µm strainer and stained with viability dye SYTOX Blue 
(Supplementary Table 9) shortly before commencing sorting.

Single-cell sorting was performed using BD FACSAria Fusion (BD 
Biosciences). The gating was conducted in the following steps: (1) 
exclusion of dead cells and debris; (2) selection of the leukocyte popula-
tion; (3) exclusion of CD14+ and CD3+ cells; (4) selection of any plasma 
cell-marker-positive cells (CD138+ and/or CD319+); and (5) separation by 
size into ‘big’ and ‘small’ plasma-positive cells using FSC and SSC gates. 
Cells were analyzed using BD FACSDIVA software (BD Biosciences) and 
FlowJo software.

Immediately after sorting, the cells were either frozen and stored 
at –80 °C until processed (proteotyping) or kept in FACS buffer for 
Cytospin preparation.

Cytospin preparation and DNA-FISH
Cells from FACS sorting were resuspended to no more than 0.5 × 106 
cells per ml in 5% FBS medium. Then, 200 µl suspension was pipetted 
into the cytofunnel and slides were centrifuged (Thermo Scientific, 
Cytospin 4) at 450 r.p.m. for 5 min. The slides were removed from the 
centrifuge and fixed for 15 min at 4 °C in 70% ethanol (Fisher Scientific).

FISH was performed according to the instructions of the manufac-
turer of the FISH probe (MetaSystems) using the enumeration probe 
XL 5p15/9q22/15q22 Hyperdiploidy (no. D-5095-100-TC). Then, 100 
nuclei were scored for each hybridization.

Proteotype analysis
Sample preparation for mass spectrometry. After MACS or FACS 
sorting, cells were washed twice with PBS before stored as pellets at 
−80 °C. Peptides for mass spectrometry measurements were prepared 
using the PreOmics iST kit (PreOmics). For lysis, the frozen cell pellets 
were resuspended in a lysis buffer and incubated at 95 °C for 10 min. 
Subsequently, the samples were sonicated using three 30-s sonication 
pulses in a VialTweeter (Dr Hielscher). Samples were digested for 2 h 
at 37 °C and peptides were further purified according to the manufac-
turer’s protocol.

Spectral library generation. For spectral library generation, leftover 
patient samples were pooled according to their antibody profile (CD3, 
CD14 and CD138) and fractionated by high pH on an Agilent Infinity 
1260 (HP Degasser, Vial Sampler, Cap Pump) and 1290 (Thermostat, 
FC-µS) system. In short, samples were resuspended in Buffer A (20 mM 
ammonium formate and 0.1% ammonia solution in water, pH 10) and 
100 µg per sample were injected. The peptides were separated on a 
YMC-Triart C18 reversed-phase column (inner diameter (i.d.) 0.5 mm, 
length 250 mm, particle size 3 µm and pore size 12 nm) at 30 °C and 
a flow rate of 8 µl min−1. The gradient was a two-step linear gradient 
with 70 min from 5% to 40% Buffer B (20 mM ammonium formate, 
0.1% ammonia solution and 90% acetonitrile in water, pH 10) against 
Buffer A (20 mM ammonium formate and 0.1% ammonia solution in 
water, pH 10) followed by 15 min from 40% to 85% Buffer B. The result-
ing 48 fractions were pooled by column into 12 samples. Samples 
were analyzed on a Q Exactive HF mass spectrometer (Thermo Fisher 
Scientific) in data-dependent acquisition mode on an Acclaim PepMap 
RSLC C18, 2 µm, 100 Å, 150 µm i.d. × 150 mm, nanoViper EASY-Spray col-
umn (Thermo Fisher Scientific) with the same gradient as for DIA (see 
below). The mass range was set to m/z 375–1,500 at full MS resolution 
of 60,000 and an AGC target value of 3 × 106. MS2 scans were recorded 
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at a resolution of 15,000 with an AGC target of 1 × 105. Loop count was 
set to 10. HCD fragmentation was set to 28 normalized collision energy.

MS/MS spectra assignment was performed with Proteome Discov-
erer 2.1 (Thermo Fisher Scientific) using Sequest HT and MS Amanda 
as search nodes together with Percolator. For spectra annotation, a 
UniProt database filtered for Homo sapiens (downloaded April 2018), 
concatenated with a common contaminant and a standard peptide.
fasta file was used. The following search parameters were used for 
protein identification: (1) peptide mass tolerance set to 10 ppm; (2) 
MS/MS mass tolerance set to 0.02 Da; (3) fully tryptic peptides with 
up to two missed cleavages were allowed; (4) carbamidomethyla-
tion of cysteine was set as fixed modification; STY phosphorylation,  
M oxidation, N deamidation and protein N-term acetylation were set 
as variable modifications. Percolator was set at max delta Cn 0.05, with 
target FDR strict 0.01 and target FDR relaxed 0.05. Proteome discoverer 
result files were imported into Spectronaut Pulsar v.12 (Biognosys) for 
the generation of the spectral library using default parameters.

DIA-mass spectrometry measurement and data analysis. Samples 
were analyzed on a Q Exactive HF mass spectrometer (Thermo Fisher 
Scientific) equipped with an Easy-nLC 1200 (Thermo Fisher Scientific). 
Peptides were separated on an Acclaim PepMap RSLC C18, 2 µm, 100 Å, 
150 µm i.d. × 150 mm, nanoViper EASY-Spray column (Thermo Fisher 
Scientific). Mobile phase A consisted of HPLC-grade water with 0.1% 
formic acid and mobile phase B consisted of HPLC-grade ACN (80%) 
with HPLC-grade water and 0.1% (v/v) formic acid. Peptides were eluted 
at a flow rate of 1,200 nl min−1 using a stepped gradient from 2% to 8% 
mobile phase B in 4 min, 8% to 32% in 49 min and 32% to 60 % in 1 min.

For DIA, the mass range of m/z 400–1,210 was covered and a full 
MS was recorded at a resolution of 120,000 with an AGC target value 
of 3 × 106 and with maximum injection time of 50 ms. The DIA isolation 
window size was set to 15 m/z and a total of 54 DIA scan windows were 
recorded at a resolution of 30,000 with an AGC target value of 1 × 106 
and a loop count of 18 (ref. 53) HCD fragmentation was set to 28 normal-
ized collision and default charge state 3 and with a starting m/z of 200.

DIA data were analyzed using Spectronaut v.14 (Biognosys). MS1 
values were used for the quantification process, peptide quantity was 
set to mean. Data were filtered using Qvalue sparse with a precursor 
and a protein Qvalue cutoff of 0.01 FDR. Interference correction as well 
as local cross-run normalization was performed.

Samples with low-input cell numbers were filtered out from 
the dataset. The data were log10-transformed, summarized and the 
low-abundant proteins were set to NaN. Next, the data was z scored 
across the protein IDs and across the samples. The final dataset con-
sisted of 5,663 unique protein IDs (Supplementary Table 3 and Sup-
plementary Table 10).

Statistical and computational analysis
Statistics and reproducibility. No statistical method was used to 
predetermine sample size. We excluded samples from analyses whose 
diagnosis could not be confirmed. Furthermore, we excluded samples 
that did not meet our quality control standards (too low technical 
reproducibility or too low cell counts for proteotyping). We provide the 
detailed list of samples used in the analyses in Supplementary Table 10.

Unless otherwise stated, significance values were calculated with 
a Student’s t-test. Where significance is not shown, it did not reach 
P < 0.05. Spearman’s rank correlation (RSp) and Pearson correlation 
(RP) are reported for all scatter-plots. For key results, including associa-
tion analysis of Fig. 7a, P values were tested to be consistent between 
parametric (Student’s t-test) and non-parametric (Mann–Whitney 
U-test) significance testing. Multiple testing correction was performed 
using the FDR procedure introduced by Storey79 (implemented under 
mafdr() function in MATLAB) and is included in the Source Data tables 
for analysis in Fig. 4 and Fig. 6. In the Source Data (to Fig. 4c; of which 
Fig. 4d shows individual protein examples) we report both unadjusted 

and adjusted P values for all detected proteins. Unless stated otherwise, 
data distributions were assumed to be normal, but this was not formally 
tested. Where applicable, data distributions are shown. Drug screening 
plate layouts were randomized across the wells of each 384-well plate. 
Otherwise, no randomization was performed as part of this study. Data 
collection and analysis were not performed blind to the conditions of 
the experiments. Further information on research design is available 
in the Nature Research Reporting Summary linked to this article.

CNN latent space feature selection, t-distributed stochastic neigh-
bor embedding and spectral clustering. Cells with a CNN class prob-
ability >0.6 were chosen at random from the control (DMSO) conditions 
of samples from 97 patients with MM (Supplementary Table 10). This 
summed to a total of 489,753 cells, approximating 1,200 cells per sam-
ple, equally balanced among the four cell subpopulations.

To choose a representative set of features from the ResNet CNN 
latent space, PCA of the 512 features across 489,753 cells was performed. 
The top 100 features with the highest contribution in PC1 and PC2, 
explaining >85% variability, were chosen for the t-SNE representation.

For the set of 489,753 cells depicted in the t-SNE embedding, spec-
tral clustering (also called graph clustering) was performed to divide 
the cells into 15 separate clusters. The remainder of the cells (all the 
patient cells that were not sampled for t-SNE) were k-NN-classified 
into respective spectral clusters. Sample composition, based on the 
cells in DMSO controls, was calculated and a sample similarity matrix 
was obtained by correlating cluster abundances per sample. The final 
PG clustering was robust to changing the arbitrary number of spectral 
clusters (k = 15).

Integration of CD138 proteotype data and myeloma abundance by 
PCY. Discovery cohort of 77 patient samples. Upon BMNC isolation, 
cells were split into two parts. The first was used for PCY, including 
immunostaining with the original set of surface markers (anti-CD138, 
anti-CD319, anti-CD3 and anti-CD14), imaging and further analysis 
by deep learning. This resulted in plasma cell classification into big 
(myeloma) and small plasma cell-marker-positive morphology types 
per patient sample. From the second part, plasma cell isolation was 
performed using MACS separation with anti-CD138 microbeads; these 
cells were used for proteotyping by DIA-SWATH mass spectrometry. 
Correlation between protein levels and the abundance of a morphologi-
cal plasma cell subtype was used to identify putative markers for this 
subtype. The abundance of each measured protein per sample could 
be represented and associated with the sample’s respective plasma 
cell morphology abundance (percentage big and percentage small 
plasma cells, respectively).

Molecular validation cohort of four patient samples. Upon BMNC 
isolation, cells were immunostained with the same set of surface mark-
ers as in the discovery cohort and FACS-sorted based on their maker 
expression and size into big and small plasma cells. One part of cells 
was used for single-cell DNA-FISH and the remaining part was ana-
lyzed by MS/DIA-SWATH proteotyping and quantification of protein 
abundances in big and small plasma cells (Supplementary Table 10).

Obtaining molecular signature of myeloma cells. To obtain a 
molecular signature of myeloma cells: (1) The molecular proteotype of 
myeloma cells was computationally inferred by correlation of fraction 
of big cells among plasma cells and plasma cell proteotypes. Spearman 
correlation coefficient was used and the correlation P values were taken 
to calculate the signed log10(P) values; (2) The fold change in protein 
abundance between FACS-sorted big and small plasma cells from four 
samples was calculated. P values were calculated using a paired t-test; 
(3) Fisher’s exact test was used to calculate significance in reproduc-
ibility of proteins, significant in both discovery and validation cohorts 
(P < 5.47 × 10−5); (4) To select a molecular signature of myeloma cells, a 
significance cutoff for the validation cohort was set to P < 0.05 and for 
the validation cohort, an absolute difference in log2(fold change) > 0.3.

http://www.nature.com/natcancer
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The molecular signature was further used in the scRNA-seq analy-
sis (see below). The list of signature proteins is provided in Supple-
mentary Table 4.

Analysis of scRNA-seq dataset. For Fig. 4, scRNA-seq count matri-
ces and associated metadata were obtained from the Gene Expres-
sion Omnibus (accession code GSE161195) on 5 November 2020. The 
scRNA-seq dataset was from Cohen et al.39 Raw count matrices were first 
filtered to remove cells with fewer than 300 unique molecular identi-
fiers (UMIs) (not counting UMIs originating from immunoglobulin 
genes) or more than 50% mitochondrial gene content. Next, cells that 
were likely not plasma cells were identified by calculating a cell type 
score using the SingScore method (v.1.12.0)80 and the following gene 
sets from the molecular signatures database (msigdbr v.7.4.1):

‘CUI_DEVELOPING_HEART_C3_FIBROBLAST_LIKE_CELL’ 
‘HAY_BONE_MARROW_CD8_T_CELL’

‘HAY_BONE_MARROW_IMMATURE_NEUTROPHIL’
‘HAY_BONE_MARROW_MONOCYTE’
‘HAY_BONE_MARROW_NAIVE_T_CELL’
‘HAY_BONE_MARROW_NEUTROPHIL’
‘HAY_BONE_MARROW_NK_CELLS’
‘HAY_BONE_MARROW_PLASMA_CELL’
‘HAY_BONE_MARROW_PLATELET’
‘HAY_BONE_MARROW_STROMAL’
Cells with low plasma cell scores, but high scores for other cell 

types as well as any cell expressing S100A8, CD14, CD3D, CD3E, TRAC, 
COL1A2 or C1QA were excluded.

In addition, the dataset was subset to include only relapsed and 
refractory MM samples (sample_characteristics_ch1.6, disease_state, 
PRMM) at baseline (sample_characteristics_ch1.4, time point, baseline). 
Overall, 31,305 cells from 34 patient samples were retained.

The gene expression was subset to use only genes matching the 
protein IDs with the myeloma and small plasma cell signature, deter-
mined as described above (also, see Supplementary Table 4). Genes 
not detected in any cell as well as immunoglobulin genes were omitted 
from analysis.

Next, each cell was assigned a score indicating similarity to big 
plasma cells in our proteomics dataset. This was calculated as the mean 
expression of big associated genes divided by the mean expression of 
small associated genes (Supplementary Table 4). A cell was assigned to 
belong to a big-like phenotype if its score was higher than the median 
of all scores.

The fraction of big-like cells per patient was calculated and asso-
ciated with the disease state (sample_characteristics_ch1.7, cohort, 
refractory or cohort, relapse) using a two-tailed Student’s t-test.

LASSO regression for inference of missing drug responses. Strictly 
for Fig. 5 visualization purposes, LASSO regression was used to predict 
(infer) myeloma PCY drug responses that were not experimentally 
measured. Predictions were made either based on measured myeloma 
drug responses or on matched proteotype data. Linear LASSO regres-
sion was run including a 100-parameter Lambda scan to minimize the 
deviance in a tenfold cross validation setting, performed using the 
lassoglm() implementation (MATLAB). The model with the best per-
formance was chosen and only models with a 0.8 or higher Pearson’s 
(linear) correlation between predicted and measured (training) values 
were kept and used for inference.

Elastic net regression for identification of protein predictors of drug 
response. Elastic net regression was used to predict (infer) myeloma 
PCY drug responses and top-three positive and negative predictive 
coefficients are listed in Supplementary Table 7. Elastic net regres-
sion was run including a 100-parameter Lambda scan to minimize the 
deviance in a tenfold cross validation setting, performed using the 
lassoglm() implementation (MATLAB), with the α parameter set to 0.5. 

Coefficients are reported for the model corresponding to the Lambda 
value that minimizes the deviance.

Protein–drug associations and STRING-db interaction network. 
For the molecular analyses (Fig. 6), the effect of differential myeloma 
content in the plasma cell samples (MACS-isolated by CD138) was 
regressed out and the residual protein expression was used. Ex vivo 
drug responses were then correlated (Spearman’s rank correlation) 
with the residual protein expression (data that were integrated in 
Supplementary Tables 3 and 6 and samples used in Supplementary 
Table 10).

The STRING-db interaction network for the proteins whose abun-
dance in myeloma cells most strongly correlated with myeloma drug 
responses across all proteins and drugs was used for network repre-
sentation. Proteins were selected for having an absolute (Rsp) > 0.585 
with P < 0.05 (thresholds chosen to generate a reasonable network 
size), as well as the top-two and bottom-two strongest associations per 
tested drug or drug combination. Unconnected nodes in the network 
were omitted from the visualization for simplicity. Node color was 
determined by the Spearman’s rank correlation of a drug response 
across the discovery cohort.

Multiple myeloma cell line analysis through DepMap. For Fig. 6, 
publicly accessible drug response and transcriptomics data from 
myeloma cell lines were obtained through the DepMap portal (https://
www.depmap.org/portal). Cell lines were filtered for being plasma 
or myeloma-derived cell lines analyzed previously66, annotated as 
‘Sanger GDSC1’ in DepMap, in the form of natural log-transformed 
half-maximum inhibitory concentration values in micromolar. Tran-
scriptomics data were log2-transformed(1 + transcript per million) and 
annotated in DepMap as ‘Expression 22Q1 Public’.

One-way ANOVA on drug responses for different features. One-way 
ANOVA was performed (Fig. 7) to evaluate the influence of different clin-
ical and morphological features on the drug responses. Only patients 
with active, clonal disease were selected (n = 67) for the analysis and  
n values differed depending on clinical feature availability (Supplemen-
tary Table 10). The ANOVA F values and the Student’s t-test values were 
used for representing the features associated with drug responses in 
the network, with the F and P values from both tests filtered at signifi-
cance of 0.01 (Supplementary Table 5).

Survival analysis. For both subcohorts combined (n = 34 patients), 
patients were stratified by sensitivity, using the mean iPCY for their 
matched clinical treatments as cutoff. For immunotherapy subco-
hort (n = 15 patients), mean sensitivity of iPCY of 0.21 was used; for 
the non-immunotherapy (n = 19 patients), iPCY of 0.40 was used as a 
cutoff. P values from log-rank (Mantel–Cox) test and HR of the respec-
tive groups including the 95% CIs were calculated and Kaplan–Meier 
curves for the probability to stay on treatment were calculated using 
the MatSurv function in MATLAB. Patient treatment regimes are sum-
marized in Supplementary Table 8.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data are available as supplementary and source data tables and 
are accessible and interrogatable at https://myelomics.com. Mass 
spectrometry raw files have been deposited to MassIVE (https:// 
massive.ucsd.edu/) with dataset identifier MSV000088992, available 
also at https://doi.org/10.25345/C58S4JS3T. Previously published 
scRNA-seq data from the KYDAR study that were re-analyzed here are 
available under accession code GSE161195 (ref. 39). Publicly accessible 
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drug response and transcriptomics data from myeloma cell lines were 
obtained through the DepMap portal (https://www.depmap.org/por-
tal). Additional databases used in the study include: UniProt (https://
uniprot.org, release 2018_1), STRING-db (https://string-db.org, v.11.5) 
and the Molecular Signatures Database (https://www.gsea-msigdb.org/
gsea/msigdb/, v.2021.1.Hs). All other data supporting the findings of 
this study are available from the corresponding author on reasonable 
request. Source data are provided with this paper.

Code availability
Image analysis was performed using the open source CellProfiler pack-
age available at https://www.cellprofiler.org. All other analyses were 
performed using standard MATLAB (R2020a and R2020b) and R code.
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Extended Data Fig. 2 | Single-cell image analysis of primary myeloma 
samples. a, Convolutional neural network architecture (ResNet) of the 
4-class classifier used in the study to classify each imaged cell into either a 
monocyte, plasma cell, T cell, or other cell class. b, Confusion matrix showing 
the ResNet classification accuracy on cells from 71 samples used in the training 
set, calculated on cells that were not part of the CNN training data. Overall 
classification accuracy across the training samples was 95.7%, with the highest 
accuracy for the plasma cell class (98.5% accuracy). c, Overall classification 
accuracy per patient sample, calculated on cells that were not part of the CNN 
training data (n = 71 samples). Red dashed line indicates average accuracy across 
all samples. d, Boxplots of mean marker intensities per sample (n = 97 patient 
samples) of each respective subpopulation marker (n = 1260 cells on average 
per subpopulation and marker and sample). Boxplots as in Fig. 2c. P-values 
calculated by unpaired two-tailed Student’s t-test. d, below, Image examples 
of normal and green monocytes. Scale bar: 10 µm. e, Exemplary FACS-gating 
for sorting of myeloma and small plasma cell-marker-positive cells. First, FSC-A 

and SSC-A gates are used to select the lymphocytes that are further enriched in 
viable cells. CD14 and CD3 cells are excluded, and only plasma cell-marker (CD138 
and/or CD319) positive cells are kept. Finally, plasma cell-marker-positive cells 
are separated based on SSC-A and FSC-A gates into big cells (myeloma cells) 
and small plasma cell-marker-positive cells. Singlets of each subpopulation are 
chosen and sorted out for further downstream processing. f, Example FISH-
image of a small plasma cell-marker-positive cell of MM147 sample, showing 
normal chromosomal copy numbers (diploidy) for the tested probes. Picture is 
representative of 100 cells analyzed for this sample and class, see quantification 
in Fig. 2e. Scale bar: 10 µm. g, Barplots showing fraction of myeloma (big) and 
small FACS-sorted CD138+/CD319+ cells positive by immunofluorescence and 
imaging for either CD38 (plasma cell marker) or CD19 (B-cell marker) (n = 10,000 
cells). h, Scatterplot of the percentage of plasma cells infiltrated into the bone 
marrow measured on matching samples by either clinical pathology (x-axis) 
or clinical cytology (y-axis) (n = 50 samples). Spearman’s rank and Pearson’s 
correlations and p-values are reported.
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Extended Data Fig. 3 | Discovery and robustness of PhenoGroups. a, left t-SNE 
embedding of 489,753 cells (as in Fig. 2a), colored by their respective spectral 
cluster IDs as detected in top-100 activations of the last fully connected layer of 
the CNN architecture (‘activation space’). b, Stacked barplot showing fraction of 
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colors indicate the corresponding PhenoGroups, as identified by hierarchical 
tree-cutting. c, t-SNE embedding of the 15-class abundance correlation matrix 
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Extended Data Fig. 4 | PhenoGroup-associated clinical and cytokine 
parameters. a, Fraction of patient samples per PhenoGroup for not significantly 
associated clinical features. P-values were calculated using a Chi-square test of 
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b, Normalized cytokine levels of additional selected pro-, and anti-inflammatory 
cytokines measured in patient bone marrow sera. Boxplots (as in Fig. 2c) with 
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P-values depicted in the titles are calculated using one-way ANOVA, the asterisks 
indicate p-values from multiple pairwise comparisons of the group means using 
Tukey’s honestly significant difference criterion. c, A principle component 
analysis (PCA) biplot showing scores of samples (colored by their representative 
PhenoGroup) with projected loadings (cytokines). a-b, N listed in each panel 
indicates the number of patient samples.
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Extended Data Fig. 6 | Molecular network underlying the single-cell drug 
response landscape of myeloma. a, left, Scatter plot showing the similarity 
between PCY scores of myeloma cells as used throughout this study (x-axis; 
calculated as (1 - (% of myeloma cells in drug treatment divided by % myeloma 
cells in matched control conditions))) and drug response scores based on the 
number of myeloma cells relative to their number in matched control conditions 
(y-axis; thus independent of the drug response of healthy monocytes, T cells 
and other cells in each sample). The scatter plot shows all measured patient 
samples and drug conditions. Spearman’s rank and Pearson’s correlations and 
p-values are indicated. (N = 6161, that is 61 drug perturbations times 101 patient 
samples). a, right, Volcano plot of all measured myeloma PCY scores and their 
corresponding significance as measured by Student’s t-test against the relevant 
control wells. b, Scatter plot showing the consistency in ex vivo drug responses 
to the lowest (x-axis) and highest (y-axis) concentrations of the triple-drug 
proteasome inhibitor regimes tested across the cohort (N = 6161, that is 61 
drug perturbations times 101 patient samples). Spearman’s rank and Pearson’s 
correlations and p-values are indicated. c, Boxplots showing the distribution 
of Spearman’s rank correlations (RSp) between the activated T cell to myeloma 
cell Interaction score and the myeloma cell drug responses across all measured 
samples (N = 56). RSp values are aggregated across Daratumumab containing 
treatments (n = 10 treatments), Elotuzumab containing treatments (n = 8 

treatments), and the four individually tested immune checkpoint inhibitors 
(n = 4 treatments). Boxplots as in Fig. 2c. d, Example scatter plot of the activated 
T cell to myeloma cell interaction score (y-axis) and the myeloma cell drug 
responses (x-axis) across all measured samples (n = 55) for the combination of 
Elotuzumab and Nivolumab. Spearman’s rank and Pearson’s correlations with 
p-values are indicated. e, as in c, but for monocyte to myeloma cell interactions. 
f, as in d, but for monocyte to myeloma cell interactions for the combination 
of Daratumumab and Dexamethasone (n = 56 patient samples). Spearman’s 
rank and Pearson’s correlations with p-values are indicated. g, as in f, but for 
either Bortezomib and Dexamethasone in combination (left) (n = 47 patient 
samples), or Carfilzomib and Dexamethasone in combination (right) (n = 48 
patient samples). Spearman’s rank and Pearson’s correlations with p-values are 
indicated. h, Examples of four associations between myeloma drug response 
(PCY score; x-axis) and myeloma protein abundance as measured by DIA-
SWATH proteomics (y-axis). Spearman’s rank and Pearson’s correlations with 
p-values are indicated. DARATUM to PDCD2 association: n = 21 patient samples; 
PEMBROLIZ to ITGA2B association: n = 41 patient samples; MEL to STAT6 
association: n = 76 patient samples; DEX + LEN + DARATUM to NARS1 association: 
n = 41 patient samples. i, Clustergram of protein-drug associations (Spearman’s 
rank coefficients across the cohort) for the 150 proteins with most variable 
associations across the drug library. Stars indicate RSp with p < 0.05.
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Extended Data Fig. 7 | Molecular determinants of myeloma drug sensitivity. 
a, Boxplots showing percentage of ɣH2AX-positive myeloma cells, normalized 
to levels in DMSO (by subtraction), after different incubation times with 
1 µM Bortezomib (a, left), or 1 µM Bendamustine (a, right) (n in each panel 
indicates the number of patient samples). Boxplots as in Fig. 2c. P-values of 
paired two-sided t-tests between condition and DMSO are shown. b, Scatter 
plot of Bortezomib sensitivity (ln(IC50)) versus Deptor transcript abundance 
(log2(1+TPM)) for MM cell lines analyzed in66, data accessed through DepMap 
portal (https://depmap.org) (b, left). R_linear is Pearson’s linear, and R_rank is 
Spearman’s rank correlation coefficient, with indicated p-values. MM cell line 
names are labeled (n = 9 cell lines). b, right, Boxplots comparing Bortezomib 
sensitivity for Deptor low and high MM cell lines. P-value by unpaired two-tailed 
Student’s t-test. Boxplots as in Fig. 2c. (n = 4 DEPTOR-low cell lines, n = 5 

DEPTOR-high cell lines). c, Scatterplot comparing Deptor and Rps6 expression 
levels in MM cell lines of b. Spearman’s rank and Pearson’s correlations with 
p-values are indicated. d, As in b, but comparing Bortezomib sensitivity to Eya3 
transcript abundance. Spearman’s rank and Pearson’s correlations with p-values 
are indicated. The p-value on boxplot is by unpaired two-tailed Student’s t-test. 
e, STRING-db network of top drug-associated proteins as in Fig. 4b colored by 
Melphalan drug response association. Color represents the sign and strength of 
association (color code as legend in Fig. 4b). Please see https://myelomics.com 
for more network details. f, Protein abundance of ITGB2 (left) and TRIP12  
(right), positively associated with Melphalan sensitivity, are shown. The depicted 
p-value is by unpaired two-sided Student’s t-test (n = 76 patient samples). 
Boxplots as in Fig. 2c.

http://www.nature.com/natcancer
https://depmap.org
https://myelomics.com


Nature Cancer

Resource https://doi.org/10.1038/s43018-023-00544-9

a

b

C
YT

PO
M

ET
O

TH
A

D
AR

AT
U

M
+I

PI
LI

M
D

AR
AT

U
M

+P
EM

BR
O

LI
Z

D
AR

AT
U

M
O

BI
N

U
TU

Z
AV

EL
+D

AR
AT

U
M

AV
EL

IP
IL

IM
IP

IL
IM

+P
EM

BR
O

LI
Z

N
IV

O
L

PE
M

BR
O

LI
Z

EL
O

TU
Z+

N
IV

O
L

EL
O

TU
Z

EL
O

TU
Z+

IP
IL

IM
EL

O
TU

Z+
PE

M
BR

O
LI

Z
AV

EL
+E

LO
TU

Z
C

AR
D

EX
+C

AR
+P

AN
BO

R
D

EX
+B

O
R

+L
EN

D
EX

+C
AR

+C
YC

D
EX

+C
AR

+L
EN

D
EX

+C
AR

+P
O

M
D

EX
+B

O
R

+P
O

M
D

EX
+B

O
R

+T
H

A
D

EX
+B

O
R

+C
YC

D
EX

+I
XA

+L
EN

D
EX

+I
XA

+C
YC IX

A
BO

R
+M

EL
+P

R
E+

D
AR

AT
U

M
D

EX
+B

O
R

+E
LO

TU
Z

BO
R

+M
EL

+P
R

E
D

EX
+B

O
R

+L
EN

+D
AR

AT
U

M
D

EX
+I

XA
D

EX
+B

O
R

+P
EM

BR
O

LI
Z

D
EX

+B
O

R
+D

AR
AT

U
M

D
EX

+B
O

R
D

EX
+C

AR
D

EX
+L

EN
+E

LO
TU

Z
D

EX
+L

EN
+P

EM
BR

O
LI

Z
D

EX
+P

O
M

+E
LO

TU
Z

D
EX

+L
EN

D
EX

+P
O

M
D

EX
+D

AR
AT

U
M

D
EX

+P
O

M
+D

AR
AT

U
M

D
EX

+L
EN

+D
AR

AT
U

M
D

EX
+T

H
A

LE
N

C
IS

M
EL

D
EX

BE
N

C
YC PR

E
PA

N
EL

ES
C

LO
M

O
L

VI
N

O
VI

N
C

Del1p - SNX7del
Del17 - TP53del
Hypodiploidy
IGH rearrang
t(11;14) - IGH CCND1
Older Than 65
PhenoGroup2
NewlyDiagnosed
Kappa
Hyperdiploidy
Deceased
Del16q - CYLD del
PhenoGroup1
Female
Del13
Relapsed
Gain1q
t(4;14) IGH-FGFR3
PhenoGroup3

*
* * * * * * *

* * * * * * *
* * * * * * * * * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * *

* * * * * *
* * * * * * * *

* *
* *

* * * * *
* *

* *
* *

* *
* * * * * * * * * * *

* * * * * * * * * * * * * * *

Drug Class

Corticosteroid

Corticosteroid +/ IMID

DNA-alkylating agent

HDACi

Immunotherapy

Immunotherapy combination

Nucleoitide analog

Oxidative stress inducer

Platinum-containing

Proteasome Inhibitor regime

Topoisomerase inhibitor

Tubulin inhibitor

Drug Class

-5

0

5

si
gn

ed
 F

-v
al

ue
s 

(A
N

O
VA

)

PhenoGroup2

no (n=17) yes (n=7)

-0.2

0

0.2

0.4

N
IV

O
L

c

del17 - TP53del

no (n=21) yes (n=2)

0

0.2

0.4

0.6

EL
O

TU
Z+

tN
IV

O
L

PhenoGroup3

no (n=36) yes (n=21)

0

0.2

0.4

0.6

BO
R

t(4;14) IGH FGFR3

no (n=19) yes (n=2)

0

0.2

0.4

D
EX

+L
EN

+E
LO

TU
Z

Female

no (n=25) yes (n=9)

0

0.2

0.4

0.6

BO
R

+M
EL

+P
R

E+
D

AR
AT

U
MPhenoGroup2

no (n=17) yes (n=7)

0

0.2

0.4

0.6

0.8

D
EX

+B
O

R
+E

LO
TU

Zp=2.11e-02

AU
C

 (1
 - 

R
BF

)

Ph
ar

m
ac

os
co

py
 s

co
re

on target

off target

* p < 0.05

PhenoGroup Sizes: 
PG1 (n=8)
PG2 (n=7)
PG3 (n=9)

PG1 PG2 PG3 PG1 PG2 PG3

PG1 PG2 PG3 PG1 PG2 PG3

0
0.2
0.4
0.6

DEX+BOR+DARATUM, p=0.01

0

0.2

0.4

DEX+LEN+DARATUM, p=0.06

0

0.2

0.4

DEX+DARATUM, p=0.1

0.2

0.4

DEX+POM+ELOTUZ, p=0.01

M
ye

lo
m

a 
dr

ug
 re

sp
on

se
(P

CY
 s

co
re

s)

p=8.40e-03

p=1.16e-02

p=1.93e-02 p=1.97e-03
p=4.24e-02

p=4.68e-02 p=1.50e-02

p=5.10e-02

Extended Data Fig. 8 | Clinical parameters associated with drug sensitivity. 
a, Heatmap showing signed F-values from one-way ANOVAs on drug responses 
for different clinical and morphological features across the cohort, calculated on 
clonal patient samples (n = 67). Positive values indicate a feature contributing to 
a better PCY outcome (sensitivity), whereas negative values indicate association 
with worse PCY score (resistance). * indicate p-values lower than 0.05. Drug 
classes are annotated by color above the heatmap, see legend. b, Boxplots 

showing differences in Pharmacoscopy scores in patients with a selected clinical 
or morphological feature. P-values indicate significances out of unpaired 
two-sided Student’s t-tests. No adjustments for multiple comparisons were 
made. Boxplots as in Fig. 2c. See figure for numbers of patient samples used.  
c, Selected Pharmacoscopy scores for immunotherapy combinations frequently 
given in the clinic, shown per PhenoGroup. Numbers of patient samples included 
in each test are reported. Boxplots as in Fig. 2c.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Clinical utility of pharmacoscopy for multiple 
myeloma. a, Graphic representation of the non-immunotherapy subcohort 
(n = 19 patients), similar to Fig. 8c. Patients with their respective PhenoGroups 
are reported, followed by the sample IDs, and treatments given in the clinic. 
A heatmap reports individual PCY scores for the treatments given, with their 
respective integrated PCY (iPCY) scores on the right. Finally, each patient’s time 
to the next treatment is reported, with blue indicating PCY-sensitive and red PCY-
resistant samples. Ongoing treatments are indicated. b, Kaplan-Meier curves 
showing the time to next treatments in days for all 34 patients (combining both 
the non-immunotherapy and immunotherapy subcohorts). Thick lines represent 
cohort stratification by PCY-sensitivity (determined as in Fig. 8b) of myeloma 
cells. In comparison, dashed lines represent equivalently-calculated cohort 
stratification by PCY-sensitivity of all plasma cells (as detected by the 4-class 

CNN classifier). Plasma cell drug responses do not stratify clinical responses. 
Relevant p-values from the log-rank (Mantel-Cox) test are indicated on the right, 
with a table reporting the number of patients at risk at different time points 
below the plot. c, Scatter plot showing similarity in subpopulation abundances 
identified across MM samples by PCY (x-axis) and flow cytometry (y-axis) (n = 5 
patient samples across n = 4 subpopulations). Spearman’s rank and Pearson’s 
correlations and p-values are indicated. d, ROC curve on the false (x-axis) and 
true (y-axis) positive rate of inference of samples belonging to PG1 based on 
the clinical flow-based abundance of plasma cells in each sample. PG1 inference 
was performed by thresholding on the plasma cell abundances. Area under the 
characteristic curve is indicated. ROC curve includes data on 67 patient samples 
for which the clinical flow data was available.
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