Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ZFP281 drives a mesenchymal-like dormancy program in early disseminated breast cancer cells that prevents metastatic outgrowth in the lung

Abstract

Increasing evidence shows that cancer cells can disseminate from early evolved primary lesions much earlier than the classical metastasis models predicted. Here, we reveal at a single-cell resolution that mesenchymal-like (M-like) and pluripotency-like programs coordinate dissemination and a long-lived dormancy program of early disseminated cancer cells (DCCs). The transcription factor ZFP281 induces a permissive state for heterogeneous M-like transcriptional programs, which associate with a dormancy signature and phenotype in vivo. Downregulation of ZFP281 leads to a loss of an invasive, M-like dormancy phenotype and a switch to lung metastatic outgrowth. We also show that FGF2 and TWIST1 induce ZFP281 expression to induce the M-like state, which is linked to CDH1 downregulation and upregulation of CDH11. We found that ZFP281 not only controls the early dissemination of cancer cells but also locks early DCCs in a dormant state by preventing the acquisition of an epithelial-like proliferative program and consequent metastases outgrowth.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Early DCCs maintain a global M-like phenotype.
Fig. 2: Early DCCs turn on M-like and pluripotency-like programs that associate with dormancy gene signatures.
Fig. 3: Identification of the TF ZFP281 as upregulated in ELs and early DCCs.
Fig. 4: ZFP281 regulates EMT, Wnt, FGF and cell cycle programs in both primed mEpiSCs and early DCCs.
Fig. 5: ZFP281 induces an M-like invasive and slow-cycling phenotype in vitro.
Fig. 6: ZFP281 favors dissemination but serves as a barrier to metastasis initiation by maintaining an M-like dormancy program in early DCCs in vivo.
Fig. 7: Role of FGF2, TWIST1 and CDH11 in ZFP281-mediated regulation of early DCC fate.

Data availability

Source data are provided with this paper. All sequencing data are available in a public data repository (GSE165431, RNAseq of MMTV-Neu EL and PT spheres; GSE165444, ZFP281 ChIPseq of MMTV-Neu EL and PT spheres; GSE165456, scRNAseq of MMTV-Neu primary site and lung cancer cells in early and late stage; GSE165459, scRNAseq of MMTV-Neu lung cancer cells in early and late stage). All other data supporting the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Klein, K. C. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer 20, 681–694 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Sanger, N. et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int. J. Cancer 129, 2522–2526 (2011).

    Article  PubMed  Google Scholar 

  7. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ullah, I. et al. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J. Clin. Invest. 128, 1355–1370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205–217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, Z. et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rhim, A. D. et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146, 647–651 (2014).

    Article  PubMed  Google Scholar 

  12. Makohon-Moore, A. P. et al. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 561, 201–205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muzumdar, M. D. et al. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat. Commun. 7, 12685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shain, A. H. et al. The genetic evolution of metastatic uveal melanoma. Nat. Genet. 51, 1123–1130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, C. et al. Mutational landscape of primary, metastatic, and recurrent ovarian cancer reveals c-MYC gains as potential target for BET inhibitors. Proc. Natl Acad. Sci. USA 116, 619–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Dorssers, L. C. J. et al. Molecular heterogeneity and early metastatic clone selection in testicular germ cell cancer development. Br. J. Cancer 120, 444–452 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, D. et al. Multiregion sequencing reveals the genetic heterogeneity and evolutionary history of osteosarcoma and matched pulmonary metastases. Cancer Res. 79, 7–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell https://doi.org/10.1016/j.cell.2011.11.025 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Werner-Klein, M. et al. Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nat. Commun. 9, 595 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linde, N. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guy, C. T. et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA 89, 10578–10582 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nieto, M. A., Huang, R. Y. Y. J., Jackson, R. A. A. & Thiery, J. P. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lim, E. et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 12, R21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barbara, N. P., Wrana, J. L. & Letarte, M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily. J. Biol. Chem. https://doi.org/10.1074/jbc.274.2.584 (1999).

    Article  PubMed  Google Scholar 

  33. Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fidalgo, M. et al. Zfp281 Coordinates opposing functions of Tet1 and Tet2 in pluripotent states. Cell Stem Cell 19, 355–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hahn, S., Jackstadt, R., Siemens, H., Hünten, S. & Hermeking, H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 32, 3079–3095 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Micalizzi, D. S. et al. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia 15, 117–134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim, D. et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J. Clin. Med. 7, 1 (2017).

    Article  PubMed Central  Google Scholar 

  39. Gu, P. et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol. Cell. Biol. 25, 3492–3505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, L. et al. Nr5a2 promotes tumor growth and metastasis of gastric cancer AGS cells by Wnt/beta-catenin signaling. Onco. Targets Ther. 12, 2891–2902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo, Z. et al. Effect of NR5A2 inhibition on pancreatic cancer stem cell (CSC) properties and epithelial-mesenchymal transition (EMT) markers. Mol. Carcinog. 56, 1438–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sosa, M. S. et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Commun. 6, 1–14 (2015).

    Article  Google Scholar 

  43. Acloque, H. et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438–1439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson, D. G. & Walker, C. L. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39, 295–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeisberg, M. & Neilson, E. G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson, C. L. et al. Impaired macrophage trafficking and increased helper T-cell recruitment with loss of cadherin-11 in atherosclerotic immune response. Am. J. Physiol. Heart Circ. Physiol. 321, H756–H769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schneider, D. J. et al. Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-production and epithelial to mesenchymal transition. FASEB J. 26, 503–512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vega, S. et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18, 1131–1143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mejlvang, J. et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol. Biol. Cell 18, 4615–4624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stylianou, N. et al. A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene 38, 913–934 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Lawson, D. A. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526, 131–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adam, A. P. et al. Computational identification of a p38 SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res. 69, 5664–5672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodriguez-Tirado, C. et al. NR2F1 is a barrier to dissemination of early stage breast cancer cells. Cancer Res. 82, 2313–2326 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Borgen, E. et al. NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res. 20, 120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tan, G. & Lenhard, B. TFBSTools: an R/bioconductor package for transcription factor binding site analysis. Bioinformatics 32, 1555–1556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robinson, J. T., Thorvaldsdóttir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. Variant review with the integrative genomics viewer. Cancer Res. 77, e31–e34 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings Bioinform. 14, 178–192 (2013).

    Article  Google Scholar 

  67. Fidalgo, M. et al. Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proc. Natl Acad. Sci. USA 109, 16202–16207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, X. et al. Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling. Elife 6, e33333 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Aguirre-Ghiso lab for helpful discussions and thank the expertise and assistance of the Dean’s Flow Cytometry CoRE and Microscope CoRE, Icahn School of Medicine at Mount Sinai. We thank J.K. Gregory, medical illustrator at Mount Sinai, for the graphical abstract. This work was supported by the National Institutes of Health/National Cancer Institute (CA109182, CA216248, CA218024 and CA196521) and the Samuel Waxman Cancer Research Foundation Tumor Dormancy Program. A.R.N. was funded by the Portuguese Foundation for Science and Technology (SFRH/BD/100380/2014). E.D. was funded by the National Institutes of Health/National Cancer Institute (T32 CA078207). L.W. was funded by the Federal Ministry of Education and Research (DFG project number 431474090). Research in the laboratory of J.W. was supported by grants from NYSTEM (C32569GG and C32583GG) and the National Institutes of Health (R01GM129157, R01HD095938, R01HD097268 and R01HL146664).

Author information

Authors and Affiliations

Authors

Contributions

A.R.N. designed, planned and conducted experiments, analyzed data and wrote the manuscript; E.D., J.Y., X.H., L.W., E.R., P.R., M.L.A. and W.Z. conducted experiments; J.Y. and E.K. did the bioinformatics analysis; J.A.S. did the bioinformatics analysis in human datasets; CC provided expertise on analysis of human datasets; J.W. provided necessary reagents and developmental biology expertise; and J.A.A.-G. designed experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Ana Rita Nobre or Julio A. Aguirre-Ghiso.

Ethics declarations

Competing interests

J.A.A.-G. is a scientific co-founder of scientific advisory board member and equity owner in HiberCell and receives financial compensation as a consultant for HiberCell, a Mount Sinai spin-off company focused on the research and development of therapeutics that prevent or delay the recurrence of cancer. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Model description, Enrichr analysis, FACS controls and MMTV-HER2 scRNASeq data distribution.

(a) Experimental design of MMTV-HER2 bulk and single-cell RNA sequencing experiments. (b) Enrichr analysis30,31 of differentially expressed genes (DEG) in MMTV-HER2 early lesion (EL) and primary tumor (PT) 7-day spheres bulk RNAseq. Full table in Supplementary Table 2. Orange, terms mentioned in the text. (c) Biological negative controls used for FACS gating strategy. FvB mammary gland (MG) was used to set the MMTV-HER2 EL and PT gate and FvB lungs for MMTV-HER2 eL and LL DCCs (see Fig. 1f). (d) Number of cells per cluster analyzed in the single-cell RNAseq of MMTV-HER2 EL (teal), PT (red), eL (early lungs, blue) and LL (late lungs, orange) DCCs (see Fig. 1d, e). (e) Number of UMIs per cluster (left) and per sample (right) analyzed in the single-cell RNAseq (see Fig. 1d, e). (f) Percentage of epithelial (EpCAM+Eng), hybrid (EpCAM+Eng+) and mesenchymal (EpCAMEng+) populations in CD45HER2+ MMTV-HER2 EL, PT and eL (early lungs) and LL (late lungs) DCCs after tissue dissociation (representative FACS plots in Fig. 1f). Graph shows n = 5 mice/condition, median, SEM and 2tailed multiple t-tests.

Source data

Extended Data Fig. 2 MMTV-HER2 scRNASeq data distribution of phenotypes across clusters.

(a) Number of cells per cluster analyzed in the single-cell RNAseq of HER2-, HER2+ eL (early lungs) and LL (late lungs) DCCs (see Fig. 2b, c). (b) Number of UMIs per cluster (left) and per sample (right) analyzed in the single-cell RNAseq (see Fig. 2b, c). (c) Scatterplots of single-cell RNAseq datasets (see Fig. 2b, c) using UMAP projections, color coded by per cluster (left) and per sample (right). (d) Distribution of Epithelial (Ep) and Mesenchymal (M) scores (gene lists in Supplementary Table 4, showed in Fig. 2a) in MMTV-HER2 lung DCC clusters. Cell clusters were subgrouped as M-like (1−4, higher M-like score), Hybrid (5−8) and Ep-like (9–15). (e) Distribution of gene modules B and D (M-like) in all DCC clusters. Dots represent single cells color-coded by cluster (left), sample origin (eL or LL, middle) and sub-group (Ep-like, hybrid, M-like, right). Gene module lists in Supplementary Table 4. (f) Distribution of gene modules I (Ep-like) and B (M-like) in all DCC clusters. Dots represent single cells color-coded by cluster (left), sample origin (eL or LL, middle) and sub-group (Ep-like, hybrid, M-like, right). Gene module lists in Supplementary Table 4.

Extended Data Fig. 3 High resolution plots for scRNASeq clusters and projections on to M-like signatures.

(a) Heatmap of UMI counts of selected genes (gene lists in Supplementary Table 4) in MMTV-HER2 eL (early lungs,) and LL (late lungs) DCCs single-cell RNAseq after unsupervised clustering on the DEGs and down-sampling to 500 UMI per cell. ‘Per cell’ representation of Fig. 2b heatmap, which shows UMI averages. (b)Single cells color-coded by gene expression and distributed by gene modules B and D (M-like). Examples of EMT- and dormancy-associated genes were selected.

Extended Data Fig. 4 Functional readouts of ZFP281 gain and loss of function, ZFP281 basal expression in FvB, EL and PT tissues and DCC location in lungs.

(a) mRNA expression of ZFP281, its predicted targets (Fig. 3a) and EMT genes in MMTV-HER2 EL versus PT cells, EL shCt, EL shZFP281 and PT ZFP281-OE. Red, upregulated genes; Blue, downregulated genes; two-tailed Mann–Whitney test, *p-value <0.05. (b) Representative images of ZFP281 (1st column, green), E-cadherin (2nd column, green) and Twist1 (3rd column, green) protein expression in consecutive sections of FvB mammary gland (biological negative control) and MMTV-HER2 EL and PT tissues. HER2 expression in red. Arrows point to ZFP281+EcadlowTwist1+ cells in EL. Dashed arrow points to ZFP281+ adipocytes (internal control). As previously described, stromal adipocytes express high levels of ZFP281. Scales, 20 μm. (c) ZFP281 expression in MMTV-PyMT EL and PT tissues. Graph shows n = 9 slides from 5 mice per group, median and two-tailed Mann–Whitney test. (d) Representative images of the location of lung DCCs in relation to alveolar type II (AT2) cells and CD31+ vessels. Scales, 25 μm. (e) Quantification of lung DCCs in contact with alveolar type II (AT2) cells in MMTV-HER2 eL and LL. Graph shows n = 3 mice per group, median and two-tailed Mann–Whitney test.

Source data

Extended Data Fig. 5 RNAseq and ChIP-seq analysis for ZFP281 targets and projection of ZFP281 binding score on to M-, H- and Ep-like clusters.

(a) Volcano plot from RNAseq data on MMTV-HER2 siZFP281 cells. 436 downregulated genes (green), p-value<0.05 & log2F < −0.5); 493 upregulated genes (red), p-value<0.05 & log2FC > 0.5. Gene lists in Supplementary Table 10. (b) Distribution of ZFP281 binding peaks localization in both MMTV-HER2 EL (top) and PT (bottom) cells. Graph shows n = 3 and mean. (c) Global analysis on ZFP281 targets in MMTV-HER2 EL versus PT cells. Dotted line, p-value=0.05. (d) Volcano plot of combined RNAseq (x) and ChIPseq (y) from MMTV-HER2 EL versus PT cells. 143 genes show lower ZFP281 binding and higher expression in EL versus PT cells (DW_UP); 759 genes show higher ZFP281 binding and higher expression (UP_UP); 177 genes show lower ZFP281 binding and lower expression (DW_DW); 121 genes show higher ZFP281 binding and lower expression (UP_DW). Gene lists in Supplementary Table 11. (e) Global analysis on genes with high ZFP281 binding and high expression (red, UP_UP) and low ZFP281 binding and low expression (green, DW_DW) in MMTV-HER2 EL vs PT cells (identified in C). (f) Venn diagram of MMTV-HER2 EL versus PT RNAseq (Fig. 1a), ZFP281 node (Fig. 3a) and ChIPseq (Fig. 4b) data. Targets of ZFP281 in EL cells and EpiSCs were identified from ChIP-seq data and further used to compare with EMT, Wnt, FGFR, and cell cycle arrest genes. (g) Representative tracks of MMTV-HER2 EL/PT ChIPseq (Fig. 4b, c). EMT genes: Snai1, Vim, Zeb1, Cdh11, Twist1; Cell cycle associated genes: Cdkn2d, Cdkn1a; Dormancy-associated genes: Tgfbr1, NR2f1. (h) Frequency of ZFP281 target (ChIP) score, summarizing the averaged expression of ZFP281 targets, in all cells analyzed by scRNAseq (Fig. 2). (i, j) Distribution of ZFP281 target scores and modules D and B (M-like) (I) or modules I (Ep-like) and B (M-like) (J) in all DCC clusters. Dots represent single cells color-coded by ZFP281 target scores (low, red to high, green).

Extended Data Fig. 6 Modulation of M-, Hybrid and Ep-like phenotypes upon ZFP281 gain and loss of function in 3D cultures and mammospheres.

(a) Representative images of the mammosphere phenotype of MMTV-HER2 EL, PT and EL shControl±DOX cells. Scale 50 μm. (b) Quantification of mammosphere (MS) frequency of MMTV-HER2 EL, PT and EL shControl±DOX cells. Graph shows n = 3, median and two-tailed Mann–Whitney test. (c) Quantification of mammosphere (MS) size, as number of cells per sphere after dissociation of MMTV-HER2 EL, PT and EL shControl±DOX spheres. Graph shows n = 3, median and two-tailed Mann–Whitney test. (d) EpCAM (epithelial marker) and Eng/CD105 (mesenchymal marker) expression in MMTV-HER2 EL, PT and EL shControl±DOX cells. Representative experiment. (e) Fold change of Ep-like (EpCAM + Eng-), hybrid (EpCAM + Eng + ) and M-like (EpCAM-Eng + ) populations in EL over PT and EL shControl±DOX spheres. Graph shows n = 4, mean, SEM and two-tailed Mann–Whitney test. (f, g) Representative images and quantification of 3D-Matrigel invasive phenotype of MMTV-HER2 EL, PT and EL shControl±DOX organoids. Scale 50 μm. Graph shows n = 4, median and two-tailed Mann–Whitney test. (h) mRNA expression of ZFP281 in MMTV-Neu EL siControl and siZFP281. Graph shows n = 2, and median. (i) Quantification of 3D-Matrigel invasive phenotype of MMTV-HER2 siControl and siZFP281. Graph shows n = 4, median and two-tailed Mann–Whitney test. (j, k) Quantification of mammosphere (MS) frequency (J) and size (as number of cells per sphere after dissociation, K) of MMTV-PyMT EL and PT spheres. Graph shows n = 5 experiments for MMTV-PyMT EL conditions and n = 3 for MMTV-PyMT PT conditions, median and two-tailed Mann–Whitney test. (l) mRNA expression of ZFP281 in MMTV-PyMT EL and PT spheres. Graph shows n = 3, median and two-tailed Mann–Whitney test.

Source data

Extended Data Fig. 7 Dormant versus metastatic fate and M- versus Ep-like phenotypes of DCCs in target organs.

(a) ZFP281 expression of MMTV-HER2 EL-shZFP281 –DOX, + DOX and -DOX + DOX cells in the mammary fat pad, 5 month after injection. Graph shows n = 4 mice per condition, median and two-tailed Mann–Whitney test. (b) Frequency of lung metastasis and area, 3 month after MMTV-HER2 EL-shZFP281 sphere injections. Graph shows n = 5 per condition, median and two-tailed Mann–Whitney test. (c) Quantification of Ki67+ cells in lung metastasis 5 months after MMTV-HER2 EL shZFP281 sphere injections. Graph shows n = 5 mice per condition, median and two-tailed Mann–Whitney test. (d, e) Quantification and representative images of Twist1+ and Ecad+ cells in lung metastasis 3 months after MMTV-HER2 EL shZFP281 sphere injections. Graph shows n = 3 mice per condition for Twist quantifications and n = 5 mice per condition for Ecad quantifications, median and two-tailed Mann–Whitney test. Scales 25 μm. (f) ZFP281 expression of MMTV-HER2 PT Control or PT ZFP281-OE primary tumors. Graph shows n = 4 mice per condition, median and two-tailed Mann–Whitney test. (g) Quantification of Ki67+ cells in lung metastasis 5 months after MMTV-HER2 PT Control or PT ZFP281-OE sphere injections. Graph shows n = 5 mice per condition, median and two-tailed Mann–Whitney test. (h, i) Quantification and representative images of Twist1+ and Ecad+ cells in lung metastasis 5 months after MMTV-HER2 PT Control or PT ZFP281-OE sphere injections. Graph shows n = 3 mice per condition for Twist quantifications and n = 5 mice per condition for Ecad quantifications, median and two-tailed Mann–Whitney test. Scales 25 μm.

Source data

Extended Data Fig. 8 Characterization and functional analysis of CDH11 expression in EL and PT lesions.

(a, b) CDH11 (green) protein expression in MMTV- HER2 (HER2, red) EL and PT cells. Scales, 25 μm. Graph shows n = 3 mice per group, median and two-tailed Mann–Whitney test. (c) CDH11 mRNA expression in MMTV- HER2 EL and PT spheres. Graph shows n = 3, median and two-tailed Mann–Whitney test. (d, e) mRNA expression of CDH11 (D) and 3D-Matrigel invasive phenotype (E) of MMTV-HER2 EL organoids transfected with siControl or siCDH11. Graphs show n = 2 (D) and n = 4 (E), median and two-tailed Mann–Whitney test. (f, g) mRNA expression of CDH11 (F) and 3D-Matrigel invasive phenotype (G) of MMTV-HER2 PT organoids 7 days after CDH11-OE. Graphs show n = 3 (F) and n = 4 (G), median and two-tailed Mann–Whitney test. (h) Representative images of CDH11 (red or gray) protein expression in primary tumors and lung metastasis of mice injected with PT Control and PT CDH11-OE spheres. Scales 20 μm. (i) Tumor volume over time of PT Control and PT CDH11-OE mice, until the primary tumor reached size for surgery. Graph shows n = 6 PT Control and 8 PT CDH11-OE mice, median, interquartile range and two-tailed multiple t-tests.

Source data

Supplementary information

Reporting Summary.

Supplementary Tables

Supplementary Tables 1–13.

Source data

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Source Data Fig. 7

Source data for Fig. 7.

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1f.

Source Data Extended Data Fig. 4

Source data for Extended Data Fig. 4.

Source Data Extended Data Fig. 6

Source data for Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Source data for Extended Data Fig. 7.

Source Data Extended Data Fig. 8

Source data for Extended Data Fig. 8.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nobre, A.R., Dalla, E., Yang, J. et al. ZFP281 drives a mesenchymal-like dormancy program in early disseminated breast cancer cells that prevents metastatic outgrowth in the lung. Nat Cancer 3, 1165–1180 (2022). https://doi.org/10.1038/s43018-022-00424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-022-00424-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer