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Immunotherapies blocking programmed cell death protein 1  
(PD-1) and its ligand (PD-L1)1 to activate and reinvigorate cyto-
toxic antitumor T cells2 have rapidly altered the treatment land-

scape of NSCLC3–8. In just 4 years, PD-1/PD-L1 pathway blockade 
(abbreviated as PD-(L)1) therapy has become a routine component 
of treatment for nearly all patients and is now being tested in earlier 
stages of lung cancer and in combination with other therapies9,10. 
These treatments represent a potential for long-term, durable 
benefit for a subset of individuals with advanced lung cancer11,12. 
Consequently, there is a need to develop predictive biomarkers.

Multiple independent analyses have pinpointed individual 
baseline clinical features as potential independent predictors 
of response (such as antibiotic use13, systemic steroid use14 and 
neutrophil-to-lymphocyte ratio at diagnosis15), individual genomic 
alterations (including mutations in EGFR16 and STK11 (ref. 17)) 
and densities of intratumoral cytotoxic T-cell populations18–20. 
Currently there are only two US Food and Drug Administration 
(FDA)-approved predictive biomarkers for immunotherapy in 

NSCLC: tumor PD-L1 expression assessed by immunohistochem-
istry (IHC)21 and tumor mutation burden (TMB)22–24; however, they 
are only modestly helpful. For example, PD-L1 expression only 
modestly distinguished long-term response in the 5-year overall 
survival (OS) report of Keynote-001 (ref. 12).

In contrast to previous approaches25, we sought to develop a model 
that integrates and synthesizes multimodal data routinely obtained 
during clinical care to predict response to immunotherapy. Patients 
diagnosed with advanced NSCLC undergo standard-of-care tests, 
which generate valuable data such as PD-L1 expression patterns in 
diagnostic tumor biopsies26 and radiological computed tomogra-
phy (CT) images used in the staging of lung cancer27. The raw data 
from these modalities are amenable to automated feature extrac-
tion with machine learning and image analysis tools. Accordingly, 
machine-learning-based integration of these modalities represents 
an opportunity to advance precision oncology for PD-(L)1 block-
ade by computing patient specific risk scores28. Previous work on 
automated deep-learning methods to predict immunotherapy  
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outcomes from CT scans has shown predictive capacity from spe-
cific lesion types29. One previous study uses CT scans, laboratory 
data and clinical data to predict NSCLC immunotherapy out-
comes, but incorporates only EGFR and KRAS mutational status30. 
However, in general, the relative predictive capacity of unimodal 
histology, radiology, genomic and clinical features compared to an 
integrated model remains poorly understood. This is in part due to 
a lack of datasets with multiple modalities available from the same 
set of patients from which systematic evaluation can be under-
taken. Here, we present a multidisciplinary study on a rigorously 
curated multimodal cohort of 247 patients with NSCLC treated 
with PD-(L)1 blockade to develop a dynamic deep attention-based 
multiple-instance learning model with masking (DyAM), to predict 
immunotherapy response. We present a quantitative evaluation and 
predictive capacity of an adaptively weighted multimodal approach 
relative to the unimodal features derived from histology, radiology, 
genomics and standard-of-care approved biomarkers.

Results
Clinical characteristics of patients with NSCLC who received 
PD-(L)1 blockade. We identified 247 patients at Memorial Sloan 
Kettering (MSK) Cancer Center with advanced NSCLC who 
received PD-(L)1-blockade-based therapy with baseline data and 
known outcomes between 2014 and 2019 (cohort characteristics 
are shown in Table 1 and Fig. 1a–c), referred to as the multimodal 
cohort. As only 25% of the cohort responded to immunotherapy 
(consistent with real-world proportions), we consistently use 
class-balancing in our predictive models.

Best overall response to PD-(L)1 blockade was retrospectively 
assessed by thoracic radiologists with RECIST (v.1.1) criteria result-
ing in 137 (55%) patients with progressive disease (PD), 48 (20%) 
with stable disease (SD), 56 (23%) with partial response (PR) and 
6 (2%) with complete response (CR). In this analysis, the cohort 
was binarized as responders (CR/PR) and nonresponders (SD/PD), 
resulting in median progression-free survival (PFS) and OS of 2.7 
months (95% CI 2.5–3.0) and 11.4 months (95% CI 10.3–12.8), 
respectively.

Two additional cohorts were assembled to validate unimodal 
features extracted from radiological and histological data, referred 
to as the radiology (n = 50) and pathology (n = 52) cohorts, respec-
tively (Table 1). Patients in these two cohorts did not meet the inclu-
sion criteria for the multimodal cohort due to missing data from 
one of the other modalities.

Establishing an NSCLC multimodal cohort to predict response. 
Standard clinical biomarkers, including PD-L1 tumor proportion 
score (TPS) and TMB were significantly different between respond-
ers and nonresponders in the multimodal cohort; however, clas-
sification models using these features were unable to completely 
separate the two groups (TPS, AUC = 0.73, 95% CI 0.65–0.81; TMB, 
AUC = 0.61, 95% CI 0.52–0.69; Fig. 1d). Thus, we assembled rou-
tinely collected clinical information, CT scans, digitized PD-L1 
IHC in tissue containing NSCLC and genomic features from the 
MSK-IMPACT clinical sequencing platform31 for the multimodal 
cohort. We used these data to establish a multimodal biomarker. We 
first quantified the predictive capacity of each modality individually, 
before assembling all available data into a multimodal biomarker to 
build an algorithm predictive of response (Fig. 1e). We performed 
tenfold cross-validation to obtain model predictions for the entire 
multimodal cohort by merging results from the test sets (Fig. 1f).

CT features only modestly separate responders. Of 247 patients, 
187 (76%) had disease that was clearly delineated and separable 
from adjacent organs. These 187 patients included 163 (87%) 
with lung parenchymal lesions, 21 (11%) with pleural lesions and 
67 (36%) with pathologically enlarged lymph nodes. For each 

patient, up to six lesions were segmented and site-annotated by 
three board-certified thoracic radiologists (N.H., A.P. and J.A-F.). 
To ensure consistency in CT protocols, our analysis was limited 
to chest imaging with contrast. The mean segmented volume for 

Table 1 | Patient characteristics of the three orthogonal cohorts 
used in this study: multimodal, radiology and pathology

Characteristics Multimodal Radiology Pathology

(n = 247) (n = 50) (n = 52)

n (%) n (%) n (%)

Age, median (range) 68 (38–93) 67 (45–86) 71 (30–89)

Sex

Male 113 (46) 24 (48) 23 (44)

Female 134 (54) 26 (52) 29 (56)

Performance status

ECOG 0/1 222 (90) 25 (50) 49 (94)

ECOG ≥2 25 (10) 25 (50) 3 (6)

Smoking status

Current/former 218 (88) 38 (76) 47 (90)

Never 29 (12) 12 (24) 5 (10)

Histology

Adenocarcinoma 195 (79) 39 (78) 32 (62)

Squamous 37 (15) 8 (16) 11 (21)

Large cell 7 (3) 2 (4) 0 (0)

NSCLC, NOS 8 (3) 1 (2) 9 (17)

Line of therapy

1 78 (32) 5 (10) 35 (67)

2 136 (55) 24 (48) 11 (21)

≥3 33 (13) 21 (42) 6 (12)

Therapy type

Anti-PD-(L)1 monotherapy 235 (95) 48 (96) 52 (100)

Anti-PD-(L)1 + CTLA-4 
combination

12 (5) 2 (4) 0 (0)

PD-L1 expression

0 114 (46) – 0 (0)

1–49% 51 (21) – 13 (25)

≥50% 82 (33) – 39 (75)

Tissue site –

Lung 109 (44) – 25 (48)

Pleura/pleural fluid 19 (8) – 1 (2)

Lymph node 45 (18) – 10 (19)

Liver 11 (4) – 2 (4)

Bone 16 (7) – 3 (6)

Adrenal 11 (4) – 1 (2)

Other 36 (15) 10 (19)

TMB

≥10 mutations per Mb 155 (63) 9 (29) 22 (58)

<10 mutations per Mb 92 (37) 22 (71) 16 (42)

Best overall response

CR/PR 62 (25) 11 (22) 14 (27)

SD/PD 185 (75) 39 (78) 38 (73)

ECOG, Eastern Cooperative Oncology Group; NOS, not otherwise specified.
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Fig. 1 | Multimodal cohort characteristics and schema outlining the project. a, Multimodal cohort heat map listing clinical, pathological, radiomic and 
genomic characteristics for n = 247 patients. The stacked bar plot shows the number of patients with a genomic alteration, where the colors correspond 
to alteration types. b, Cohort modality overview Venn diagram, with the number of patients exclusively in each category. c, Lung cancer histology 
breakdown. d, Distribution of PD-L1 TPS (n = 201 patients), TMB (n = 247 patients) and number of annotated lesions (n = 187 patients) between 
responders (PR/CR) and nonresponders (SD/PD). The interior box-and-whisker bars show the mean as a white dot, the IQR (25–75%) as a black bar and 
the minimum and maximum as whiskers up to 1.5 × IQR. P values were obtained from a two-sided Mann–Whitney–Wilcoxon test. e, Analysis overview 
using DyAM to integrate multiple modalities to predict immunotherapy response. f, Train–test–validate, breakdown and optimization scheme.  
CV, cross-validation.
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Fig. 2 | Extraction of CT radiomics features and association with response. a, Radiomics feature extraction pipeline using expert segmented thoracic 
CT scans. Superpixel-based perturbations on original segmentations used for feature selection. b, Three expert CT segmentation examples including 
lung parenchymal (PC) (top), pleural (PL) (middle) and lymph node (LN) lesions (bottom) representative of n = 187 patients, with the original image, 
segmentation and randomized contour example. c, Principal-component decomposition distribution of radiomics features for superpixel-based 
perturbations across tissue sites. The interior box-and-whisker bars show the mean as a white dot, the IQR (25–75%) as a black bar and the minimum 
and maximum as whiskers up to 1.5 × IQR. P values were obtained from the two-sided Mann–Whitney–Wilcoxon test for n = 2,040 PC perturbations with 
n = 540 in the responding group and n = 1,500 in the nonresponding group; n = 330 PL perturbations with n = 130 in the responding group and n = 200 in the 
nonresponding group; and n = 960 LN perturbations with n = 360 in the responding group and n = 600 in the nonresponding group. d, Response prediction 
performance using LR classifiers for each type of lesion as well as averaging-based patient-level prediction aggregation by averaging (LR Rad-Average) 
outcomes across all lesions and the multiple-instance learning model. Results with AUC < 0.5 are not shown. The bar height and error bar represent the 
AUC and associated 95% CI based on DeLong’s method51 for n = 187 and n = 46 patients in the multimodal and validation cohorts, respectively.
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lung parenchymal, pleural and nodal lesions was 24 (range 0.14–
50, interquartile range (IQR) 15–48), 12 (range 0.31–209, IQR 
16–26) and 9.4 (range 0.82–42, IQR 37–67) cm3, respectively. We 
extracted robust features from the original radiologist segmenta-
tions that were augmented by superpixel-based perturbations (Fig. 
2a,b). Principal-component analysis (PCA) of all radiomics fea-
tures of the original and perturbed segmentations (Fig. 2c) showed 
lesion-wise similarity, indicating broad preservation of the underly-
ing texture and significant differences in the principal component 
by lesion type. The similarity of radiomics features by lesion type 
across patients motivated building site-specific classification mod-
els. L1-regularized logistic regression (LR) models selected an aver-
age of 35, 10 and 25 features from lung parenchymal, pleural and 
nodal lesions, respectively, which we used for downstream predic-
tion of immunotherapy response (Fig. 2d). The logistic model built 
from features derived from pleural nodules alone was unsuccessful 
outside of training data (AUC = 0.28, 95% CI 0.04–0.52) compared 
to lung parenchymal nodules (AUC = 0.64, 95% CI 0.54–0.74) and 
pathologically enlarged lymph nodes (AUC = 0.63, 95% CI 0.49–
0.77). The model based on enlarged lymph nodes did not consis-
tently converge, with over 20% of models performing worse than 
random chance with repeated subsampling. We aggregated the aver-
age individual lesion predictions to construct patient-level response 
predictions, which resulted in an overall AUC = 0.65 and 95% CI 
0.57–0.73. We also developed an alternative model that analyzed all 
lesions from each patient without separation into categories using 
multiple-instance learning, which resulted in similar, albeit lower, 
performance (AUC = 0.61, 95% CI 0.52–0.70).

CT-based predictions of response were validated in the radiol-
ogy cohort, consisting of 50 patients (Table 1) with expert segmen-
tation, resulting in 40 lung parenchymal lesions, 8 pleural lesions 
and 22 enlarged lymph nodes. The predictive ability from features 
extracted from the lung parenchymal lesions (AUC = 0.66, 95% CI 
0.48–0.84) was consistent with the multimodal cohort (AUC = 0.64, 
95% CI 0.54–0.74), as were the averaging (AUC = 0.55, 95% CI 
0.37–0.73) and multiple-instance learning-based aggregation mod-
els (AUC = 0.65, 95% CI 0.44–0.87). Taken together, discriminat-
ing clinical end points by CT-derived features was modest and 
primarily driven by texture in the lung parenchymal lesions; how-
ever, lesion-specific feature extractions were propagated for use in 
the multimodal model, where relative contributions to predictive 
capacity were evaluated.

PD-L1 texture features approximate pathologist assessments. 
We next studied digitized pre-treatment PD-L1 IHC performed 
on tumor specimens meeting quality control standards (n = 201 
patients (81%)). A total of 105 (52%) tumor slides showed posi-
tive PD-L1 IHC staining (TPS ≥ 1%) and were used to extract IHC 
texture, a characterization of PD-L1 IHC based on the spatial dis-
tribution of expression (Fig. 3a). IHC texture was composed of fea-
tures with a wide range of statistical association to immunotherapy 
response (Fig. 3b). The most predictive feature, skewness of the 
gray-level co-occurrence matrix (GLCM) autocorrelation matrix, 

correlated with both TPS and PFS (AUC = 0.68, r2
TPS = −0.38, 

r2
PFS = 0.17, n = 105). The maximum, median and minimum of auto-

correlation (a measure of the coarseness of the texture of an image) 
skewness corresponded broadly with PD-L1 IHC stain intensity as 
well as with contrast and edges in PD-L1 intensity between cells 
(Fig. 3c). Additional significant features from the LR fit included 
cluster shade skewness and Imc2 kurtosis, which were less sensitive 
to the overall PD-L1 stain intensity (Fig. 3c). Furthermore, distri-
butions of GLCM autocorrelation were significantly and inversely 
associated with pathologist-assessed PD-L1 TPS (Fig. 3d) indicat-
ing automated feature extraction with IHC texture could approxi-
mate expert thoracic pathologist assessment. LR modeling using 
18 features based on the autocorrelation matrix and statistics of the 
pixel intensity distribution (IHC-A) resulted in prediction accu-
racy of AUC = 0.62 (95% CI 0.51–0.73), which was comparable to 
lesion-wide radiological averaging (AUC = 0.65, 95% CI 0.57–0.73), 
but inferior to the pathologist-assessed PD-L1 TPS (AUC = 0.73, 
95% CI 0.65–0.81) (Fig. 3e). While including TPS and IHC-A fea-
tures reduced the AUC (Fig. 3e), other classifier performance met-
rics including accuracy, recall and F1-score increased (Extended 
Data Fig. 1 and Supplementary Table 1). Including all 150 GLCM 
features (IHC-G) resulted in a prediction accuracy of AUC = 0.63 
(95% CI 0.52–0.74).

Using IHC-A features, we validated our findings in the pathol-
ogy cohort, which consisted of 52 patients with positive PD-L1 
expression. The result was consistent with the multimodal cohort 
(multimodal cohort, AUC = 0.61, 95% CI 0.46–0.76; versus pathol-
ogy cohort, AUC = 0.62, 95% CI 0.51–0.73). GLCM autocorrelation 
(Fig. 3c) mean (multimodal cohort, AUC = 0.67, 95% CI 0.56–0.78; 
versus pathology cohort, AUC = 0.72, 95% CI 0.58–0.86) and skew-
ness (multimodal cohort, AUC = 0.69, 95% CI 0.58–0.80; versus 
pathology cohort, AUC = 0.74, 95% CI 0.60–0.88) were also con-
sistent with the multimodal cohort. IHC-G features had higher 
performance in the pathology cohort with AUC = 0.74 (95% CI 
0.67–0.81).

Genomic predictors of response from clinical sequencing data. 
We then assessed features derived from clinical sequencing data 
from MSK IMPACT35, a 341–468 gene targeted next-generation 
sequencing assay performed on formalin-fixed paraffin-embedded 
(FFPE) tumor tissue along with matched healthy specimens (blood) 
from each patient to detect somatic gene alterations with a broad 
panel. Using multivariate analysis on PFS in the multimodal 
cohort, alterations of EGFR (n = 22/247, 8.9%; adjusted hazard 
ratio (aHR) = 2.14, 95% CI 1.06–4.31, P = 0.03), STK11 (n = 44/247, 
17.8%; aHR = 2.53, 95% CI 1.71–3.74, P < 0.005) and tumor muta-
tion burden (TMB) (median 7 mt per mb, range 0–90; aHR = 0.14, 
95% CI 0.02–0.88, P = 0.04) exhibited significant aHR in a multi-
variable analysis of mutated oncogenes (EGFR, ALK, ROS1, RET, 
MET, ERBB2 and BRAF), tumor suppressor genes (STK11), tran-
scription regulator (ARID1A) and TMB (Fig. 4a). LR was used to 
determine the association between TMB and response (AUC = 0.61, 
95% CI 0.52–0.70). The predictive ability of genomic alterations 

Fig. 3 | PD-L1 immunohistochemistry feature derivation and prediction of response. a, Analysis pipeline to extract image-based IHC texture starting  
from scanned PD-L1 IHC slides. b, Normalized-value distributions of GLCM and pixel intensity-derived image features stratified by response for the  
best performing summary statistic in each GLCM class. Features indicated by the red asterisk emerged as salient features in the LR fit with n = 42 
responders and n = 63 nonresponders. c, Three representative PD-L1 IHC slides from n = 105 samples corresponding to the maximum (top), median 
(middle) and minimum (bottom) of the GLCM autocorrelation distribution, with low power, high power, stain intensity and pixel-wise GLCM sample 
patches. d, Correspondence of the example GLCM features in c between low, medium and high bins of TPS. The interior box-and-whisker bars show 
the mean as a white dot, the IQR (25–75%) as a black bar and the minimum and maximum as whiskers up to 1.5 × IQR for n = 105 samples. e, Response 
prediction performance using LR classifiers with PD-L1 features including TPS (LR PD-L1-TPS), pixel and GLCM autocorrelation image features (LR IHC-A), 
only the complete GLCM features (LR IHC-G) and the result of aggregating patient-level predictions by averaging classifier outcomes from LR IHC-A, 
IHC-G and LR PD-L1-TPS (LR Path-Average). The bar height and error bar represent the merged AUC and associated 95% CI based on DeLong’s method51 
for n = 105 and n = 52 patients in the multimodal and validation cohorts, respectively.
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commonly studied in NSCLC excluding TMB (AUC = 0.61, 95% 
CI 0.53–0.69) was inferior to the model trained using TMB and 
genomic alterations (AUC = 0.65, 95% CI 0.60–0.80); however, the 
model performed similarly using the average of TMB and genomic 

alterations (AUC = 0.65) (Fig. 4c). These features were independent 
predictors; EGFR and TMB were uncorrelated (r = −0.03, 95% CI 
−0.15–0.09) as well as STK11 and TMB (r = −0.01, 95% CI −0.14–
0.11) and inclusion of TMB had no impact on the coefficients of 
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EGFR and STK11 in the fit (Fig. 4b). These results were broadly con-
sistent with previous reports25, establishing their suitability in this 
cohort for multimodal data integration.

Multimodal integration via deep-learning improves prediction. 
Having evaluated predictive capacity of unimodal features, we next 
implemented the DyAM model to evaluate the impact of combin-
ing features from radiology, histology and genomics in predicting 
response to PD-(L)1 blockade (Fig. 5a). The DyAM model outputs 
include risk attributed to each modality (partial risk score), atten-
tion the modality receives (attention weight and share) and the over-
all score. DyAM has the practical quality of masking modalities in a 
given patient with no characterization, such as a tumor with negative 
PD-L1 expression or no segmentable disease in their CT scan. The 
performance of multimodal integration was assessed using Kaplan–
Meier analysis whereby stratification based on multimodal DyAM 
was more effective at separating high- and low-risk patients than 
the standard clinical biomarkers of PD-L1 TPS and TMB (Fig. 5b). 
Using this framework, we then systematically compared unimodal 
features and various combinations of bimodal and multimodal fea-
tures (Fig. 5c, F1, precision and recall scores shown in Extended Data 
Fig. 1, model coefficients are shown in Extended Data Figs. 2–8).  

In general, layering complementary feature sets improved perfor-
mance both within and between modalities. For example, DyAM 
integration of site-specific radiologic features improved prediction 
from AUC = 0.65, 95% CI 0.57–0.73 to AUC = 0.70, 95% CI 0.62–
0.78. Furthermore, a bimodal DyAM model integrating radiologi-
cal data and PD-L1-derived features (both TPS and IHC texture) 
resulted in AUC = 0.68 and 95% CI 0.61–0.75, whereas the com-
bination of PD-L1 and genomic features resulted in AUC = 0.72 
and 95% CI 0.65–0.79. Combining radiologic and genomic features 
resulted in the highest bimodal performance (AUC = 0.76, 95% 
CI 0.69–0.83). Each of these bimodal features improved on either 
unimodal feature set alone. The best performing, fully automated 
approach, using three modes of data included IHC-G features, with 
an AUC = 0.78 (95% CI 0.72–0.85). Finally, using three modes of 
data with the PD-L1 TPS score resulted in the highest accuracy with 
AUC = 0.80, 95% CI 0.74–0.86. This was in contrast with averaging 
the LR scores from all modalities (AUC = 0.72, 95% CI 0.65–0.79). 
All multimodal DyAM results were significantly higher than null 
hypothesis AUCs obtained via permutation testing.

We then compared the DyAM model to established biomark-
ers of immunotherapy response as well as clinical confounders 
using multivariable Cox regression (Fig. 6a). The resulting overall 
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score, DyAM risk, was used as input to a multivariable Cox propor-
tional hazards model with derived neutrophil-to lymphocyte ratio 
(dNLR), pack-years smoking history, age, albumin, tumor burden, 
presence of brain and liver metastases, tumor histology and scan-
ner parameters. The resulting c-index was 0.74 with several signifi-
cant features: dNLR (hazard ratio (HR) = 6.87, 95% CI 1.76–26.77, 

P < 0.005), DyAM risk (HR = 13.65, 95% CI 6.97–26.77, P < 0.005), 
albumin (HR = 0.06, 95% CI 0.02–0.14, P < 0.005), brain metastasis 
(HR = 1.51, 95% CI 1.09–2.09 P = 0.01) and receiving combination 
therapy (HR = 2.23 95% CI 1.16–4.29, P = 0.02). When compar-
ing the classifier performance against the LR risk scores, only the 
integrated model was significant (Fig. 6a). We divided the cohort 
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into quartiles using the DyAM score and performed corresponding 
Kaplan–Meier analysis, focusing on PFS in the first 12 months to 
highlight the potential of DyAM to separate response groups early 
after treatment. Progression at 4 months was 21% for the lowest 
(protective) quartile and 79% for highest (risk) quartile (Fig. 6b),  
compared to 30% and 60% for the averaging method. Finally, we 
assessed the effect of reweighting individual data modalities (atten-
tion analysis, alpine plots) on the overall model performance  
(Fig. 6c). In patient subsets with the data modality present, we 
observed that the removal of lung parenchymal nodule CT texture 

and genomic alterations had the greatest effect on AUC, whereas 
the model was robust to the removal of IHC texture and PD-L1 
TPS. Non-linear relationships between data modalities indicate an 
effect of the weighting scheme used within DyAM. At 4 months, the 
ratio of progression events between the lower and higher quartiles 
was 3.8 (95% CI 3.7–4.0), which decreases sharply when remov-
ing either the CT texture (decreasing to 3.2 (95% CI 3.1–3.3)) or 
genomic alterations (decreasing to 2.3 (95% CI 2.2–2.4)); how-
ever, this early separation did not manifest from either modal-
ity in isolation. Model performance decreases for all modes as  

a
DyAM model score P = 2.68 × 10–14

P = 1.22 × 10–6

P = 0.42

P = 0.67

P = 0.39

P = 0.70

P = 0.64

P = 0.27

P = 5.48 × 10–3

P = 0.02
P = 0.01
P = 0.46
P = 0.61
P = 0.26
P = 0.81
P = 0.85
P = 0.85
P = 0.87
P = 0.88
P = 0.71
P = 0.11
P = 0.07
P = 2.41 × 10–10

dNLR
Recieves combination therapy

Brain mets
Lines of therapy

Overall tumor burden
Liver mets

Recieves PD-L1 therapy
GE lightspeed
GE revolution

Adenocarcinoma
Pack-years

CT X-ray mA range
Diagnostic site (lung)

Age
Albumin

–4 –3 –2 –1 0
log(HR) (95% CI)

0.6 0.8
AUC

1 2 3
–2 –1 0

log(HR) (95% CI)
1 2 3

Overall score

LN lesion risk

Genomic risk

PD-L1-TPS risk

PC lesion risk

IHC-A risk

PL lesion risk

b

c

0.6 0.8
AUC

1.0 Q1 versus Q4 log10(P) = –3.33
Q1 versus Q2 log10(P) = –0.23
Q2 versus Q3 log10(P) = –0.62
Q3 versus Q4 log10(P) = –0.85

Q1 versus Q4 log10(P) = –2.61
Q1 versus Q2 log10(P) = –3.34
Q2 versus Q3 log10(P) = –0.92
Q3 versus Q4 log10(P) = –1.19

Q1 versus Q4 log10(P) = –4.99
Q1 versus Q2 log10(P) = –1.29
Q2 versus Q3 log10(P) = –0.91
Q3 versus Q4 log10(P) = –0.41

Q1 versus Q4 log10(P) = –11.16
Q1 versus Q2 log10(P) = –3.88
Q2 versus Q3 log10(P) = –0.68
Q3 versus Q4 log10(P) = –1.350.8

0.6

0.4

0.2

0 TPS

0 2 4 6
PFS (months)

PC attention

0.80

10

8

6

4

2

0

0.75

0.70

0.65

0.60

0.55

0.50
–2 –1 0

Attention multiplier (log10)

1 2 –2 –1 0

Attention multiplier (log10)

1 2 –2 –1 0

Attention multiplier (log10)

1 2

AU
C

 a
fte

r r
ew

ei
gh

tin
g

H
az

ar
d 

ra
tio

 a
fte

r r
ew

ei
gh

tin
g

4

3

2

1

0

PF
S 

ra
tio

 (Q
1 

ve
rs

us
 Q

4)
 a

fte
r r

ew
ei

gh
tin

g

LN attention PL attention IHC-A attention Genomic attention TPS attention

8 10 12

1.0

0.8

0.6

0.4

0.2

0 TMB LR-average DyAM

0 2 4 6
PFS (months)

8 10 12

1.0

0.8

0.6

0.4

0.2

0

0 2 4 6
PFS (months)

8 10 12

1.0

0.8

0.6

0.4

0.2

0

0 2 4 6
PFS (months)

8 10 12

At risk 44
Q1

31
Censored 0 0

Events 0 13

26
0

18

23
0

21

20
1

23

17
2

25

11
4

29

68
0
0

52
0

16

43
0

25

36
1

31

33
1

34

24
4

40

19
6

43

62
0
0

46
0

16

37
0

25

33
0

29

30
1 3

31

24

35
5

19

38
0

62

0
0

53

9
0

46

16
0

40

22
1

36

25
3

29

30
5

24

33

At risk 97
Q4

48
Censored 0 1

Events 0 48

29
1

67

20
1

76

16
1

80

13
2

82

9
3

85

60
0
0

35
1

24

28
1

31

19
1

40

13
2

45

12
2

46

11
2

47

62
0
0

30
1

31

19
1

42

12
1

49

8
2 3

52

4

55
5
2

55
0

62

0
1

23

38
1

12

49
1
7

54
1
4

57
1
3

58
2
2

58

Fig. 6 | DyAM-based multimodal analysis. a, HRs and single feature AUCs of covariates. Overall risk score analysis: forest plot of the DyAM model score 
with respect to other clinical variables (left). Partial risk score analysis: forest plot of the modality specific risk scores from LR compared to DyAM (right). 
The vertical dashed lines represent a null HR. P values were obtained from the likelihood-ratio test. The bar height and error bar represent the AUC and 
associated 95% CI based on DeLong’s method51 for n = 247 patients. b, A zoom in of the first 12 months separated by quartile showing separation of early 
progression events. P values were obtained from the log-rank test. c, Alpine plots comparing the overall model score after reweighting the input modalities 
as a function of a multiplier to a single modality’s attention, for the model’s AUC (left), HR (middle) and PFS ratio at 4 months in the lower and higher 
quartiles (right). For the reweighted AUCs, HRs and PFS ratios, the error bar represents the 68% or 1-sigma CIs based on DeLong’s method51, the HR 
covariance matrix and Poisson standard error on the number of progression events, respectively.

Nature Cancer | VOL 3 | October 2022 | 1151–1164 | www.nature.com/natcancer 1159

http://www.nature.com/natcancer


Articles Nature Cancer

unimodal attention increases and the DyAM model outperformed 
simple averaging.

Discussion
The integration of biomedical imaging, histopathology and genomic 
assays to guide oncologic decision-making is still in a preliminary 
phase28. Herein, we show that machine-learning approaches that 
automatically extract discriminative features from disparate modal-
ities result in complementary and combinatorial power to identify 
high- and low-risk patients with NSCLC who received immuno-
therapy. Our study represents a proof of principle that information 
content present in routine diagnostic data, including baseline CT 
scans, histopathology slides and clinical next-generation sequenc-
ing can be combined to improve prognostication for response to 
PD-(L)1 blockade over any one modality alone and over standard 
clinical approaches. Integration of these data presents technical 
difficulty and infrastructure cost; however, our results indicate the 
potential of integrative approaches. To enable growing interest in 
deploying data infrastructure to automate the collection, organiza-
tion and featurization of the data included in this study, the work-
flows and software are provided for use by the broader community 
in other cohorts and can be applied beyond NSCLC to other can-
cers and diseases.

To enable the study, we consulted domain-specific experts to 
curate features in our dataset. Curation involved segmentation of 
malignant lesions within CT scans by thoracic radiologists (such 
as those shown in Fig. 2b) and annotation of digitized PD-L1 IHC 
slides (such as those used to train the machine-learning classifier 
to compute the tumor segmentation mask in Fig. 3a) and adju-
dication of PD-L1 expression by a thoracic pathologist. We also 
limited genomic and clinical features to those with known associa-
tions with NSCLC and immunotherapy outcomes. Heterogeneity 
of the disparate data modalities presented a unique challenge in 
their integration, such as, patients with non-segmentable disease 
or PD-L1-negative tumors, for which PD-L1 expression patterns 
are not defined. Finally, the most optimal combination of these 
features is not known and post-fit linear combination or averag-
ing techniques could ignore interactions and correlations between 
these modalities. The attention gate of DyAM allows for non-linear 
behavior across the input modalities. The use of attention gating 
and the generation of partial risk scores has added benefit; it allows 
for higher-level analysis of multimodal data, such as automatically 
identifying regions of feature space where certain modalities are 
more or less predictive. The result was an interpretable, data-driven 
multimodal prediction model that was also robust to missing 
data. Reassuringly, the multimodal DyAM model that we derived 
was not only able to predict short term objective responses better 
than any modality separately or linearly combined, but also led 
to enhanced separation of the Kaplan–Meier survival curves that 
reflected discriminative power within the first few months. This is 
further evidence that our model could achieve early stratification 
of true responders from nonresponders, an important criterion for 
predictive biomarkers and future clinical management decisions. 
Furthermore, our attention analysis of the DyAM model revealed 
that all data modalities (radiomics, genomics and pathology) are 
drivers of this early stratification.

A limitation of our analysis was the size of the multimodal cohort 
assembled and the restriction to a single center. To ensure consis-
tent training data quality, we chose to include only CT scans that 
were performed within one institution32. Inclusion of CT scans from 
external institutes warrants further study to investigate the effect of 
various CT imaging protocols and machine-acquisition parameters 
on model sensitivity. Digitized PD-L1 IHC slides were similarly 
chosen from a single center, given differences in staining quality 
among different laboratories and the use of several different anti-
bodies in clinical practice among institutions33,34. Similarly, existing  

commercial and institution-specific targeted next-generation 
sequencing panels differ in breadth of coverage and germline fil-
tering techniques, which can introduce challenges for data inte-
gration and not all institutions sequence patient-matched healthy 
specimens to identify germline mutations. These challenges can be 
mitigated by training models with data from multiple sites to either 
predict clinical outcomes directly or to perform segmentation in 
pathological or radiological imaging for downstream analysis; how-
ever, a multisite training strategy requires comparable dataset sizes 
across sites with consistent and rigorous annotations to properly 
normalize models for heterogeneity and extract robust features. The 
inclusion of multiple malignancies and imaging modalities could 
also improve model generalizability, as shown in a multi-institution 
study involving 1,682 patients by Wu et al. in which robust radiomic 
signatures were found across three malignancies and two imag-
ing modalities, including one associated with improved survival in 
immunotherapy-treated NSCLC35. Federated learning may provide 
a principled solution to this challenge; however, its practical use is at 
very early stages of adoption36. Although we were unable to obtain 
an external validation cohort given the complexity of the data 
modalities, internal single modality validation cohorts for CT scans 
and histopathology slides were used as full hold-out sets to vali-
date the findings from the multimodal cohort. Indeed, the models 
with significant and robust performance in the multimodal cohort 
showed stable performance in the radiology and pathology cohorts. 
Despite our best efforts, underperforming models encounter statis-
tical limitations that can be best minimized with further data collec-
tion. In addition, we have released all code as open-source software 
and provide our research-ready datasets for others to reproduce our 
results, validate the findings at other institutions and ideally extend 
and further refine our methods.

Incorporation of external data would have also required sub-
stantial data assembly, including identification of a cohort of 
immunotherapy-treated patients with NSCLC with associated 
RECIST outcomes, CT scans, digitized PD-L1 IHC slides and 
genomic alterations. Once assembled, scaling and extending our 
model to incorporate external data would require annotation algo-
rithms to segment CT scan lesions or distinguish tumor from healthy 
tissue in PD-L1 IHC slides to reduce expert burden. Alternatively, 
large de-identified datasets from many sites may overcome the need 
for manual annotation by developing reliable deep-learning mod-
els on unannotated data, which can be directly included as part of 
the DyAM model. In the future, assembly of large well-annotated 
multi-institutional training datasets will lead to development of robust 
multimodal classifiers that serve as powerful biomarkers. These deci-
sion aids could be integrated into routine clinical care and used to 
quickly and precisely distinguish responders and nonresponders.

A deeper understanding of features extracted from the data 
modalities and their relationships to known functional cancer path-
ways could also aid in feature selection. For example, radiomics 
characterizations involve the extraction of thousands of features 
that can be used together to broadly encapsulate intratumoral 
heterogeneity, but there have been few studies using correlative 
molecular data to infer functional relationships. This task is fur-
ther complicated by the fact that many radiomics features are cor-
related to each other. One study used gene set expression analysis 
and found an association between radiomics and cell-cycle progres-
sion and mitosis29. Similarly, correlative molecular data could aid 
in a more principled selection of features that comprise our PD-L1 
IHC texture characterization. Even without molecular data, robust 
associations between radiological and histological phenotypes, such 
as those found by Jiang et al., could be a step toward more efficient 
feature selection37.

Other limitations of our analysis include the use of 
RECIST-derived response end points and the date of the tissue used 
to assess PD-L1 expression. RECIST outcomes were used instead 
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of directly predicting survival metrics because RECIST criteria are 
standardized and represent the best proxy in quantifying early treat-
ment response. Additionally, using RECIST outcomes minimize 
effects from confounders such as indolent disease, future lines of 
therapy and death unrelated to NSCLC; however, RECIST responses 
are characterized via measuring tumor size changes on CT scans, 
which do not fully encompass biological treatment response. With 
improved biological insight leading to better response metrics, 
future studies will be needed to refine predictive models. While 
CT scans are proximal to immunotherapy, PD-L1 expression is 
often assessed on tissue from the initial diagnosis. This is not ideal 
as previous treatments can modify the tumor microenvironment, 
including PD-L1 expression. Our cohort consisted mostly (68%) of 
patients who received one or more previous lines. While we con-
sider the number of lines of therapy before immunotherapy as a 
covariate, changes in PD-L1 expression due to previous treatments 
are not explicitly taken into account.

Our results serve as a proof of principle for the value of mul-
timodal integration. We show that existing data from multiple 
cancer diagnostic modalities can be annotated, abstracted and 
combined using computational and machine-learning methods for 
next-generation biomarker development in NSCLC immunother-
apy response prediction. Our DyAM model is a promising approach 
to integrate multimodal data and future models using larger data-
sets will make it possible to augment current precision oncology 
practices in treatment decision-making.

Methods
This study complies with all relevant ethical regulations and was approved by 
the institutional review board at MSK Cancer Center (nos. 12-245, 16-1144 and 
16-1566). Informed consent was waived as our study was retrospective. Participants 
were not compensated.

Data infrastructure to support multimodal data integration. The computational 
and data infrastructure to support the ingestion, integration and analysis of the 
multimodal dataset was built through the MSK MIND (Multimodal Integration 
of Data) initiative. Data pipelines were built to extract and de-identify clinical, 
radiology, pathology and genomics data from institutional databases. A data lake 
was built to ingest and manage all data with an on-premise cluster. Workflows 
were implemented to source the data lake to facilitate analyses using radiology and 
pathology annotations. All data, metadata and annotation described below were 
integrated for multimodal analysis.

Clinical cohorts. The multimodal cohort was formed using the following inclusion 
criteria: patients with stage IV NSCLC who initiated treatment with anti-PD-(L)1 
blockade therapy between 2014 and 2019 at the study institution who had a baseline 
CT scan, baseline PD-L1 IHC assessment and next-generation sequencing by MSK 
IMPACT38. Patients who received chemotherapy concurrently with immunotherapy 
were not included. Overall, 247 patients met the inclusion criteria for the training 
cohort. The multimodal cohort (Table 1) was 54% female with a median age of 68 
years (range 38–93 years). Overall, 218 (88%) patients had a history of smoking 
cigarettes (median 30 pack-years, range 0.25–165). Histological subtypes of NSCLC 
included 195 (79%) adenocarcinomas, 37 (15%) squamous cell carcinomas, 7 (3%) 
large cell carcinomas and 8 (3%) NSCLC, NOS (Fig. 1c). Collectively, 169 (68%) 
patients received one or more lines of therapy before starting PD-(L)1 blockade and 
78 (32%) patients received PD-(L)1 blockade as first-line therapy, of which 14 (6%) 
received therapy in the context of a clinical trial.

The radiology (n = 50) validation cohort included patients with a baseline 
CT which included the chest (± abdomen/pelvis) containing lung lesions 
>1 cm. The pathology (n = 52) validation cohort included patients with a biopsy 
showing PD-L1-positive (TPS ≥ 1%) NSCLC that was digitized at MSK. Baseline 
characteristics of the multimodal, radiology and pathology cohorts are shown in 
Table 1. Best overall response was assessed via RECIST v.1.1 by thoracic radiologists 
trained in RECIST assessment. Patients who did not progress were censored at 
the date of last follow-up. PFS was determined from the date of initiating PD-(L)1 
blockade therapy until the date of progression or death. OS was determined from 
the date of initiating PD-(L)1 blockade therapy until the date of death. Those 
who were still alive were censored at their last date of contact. Clinical, radiologic, 
pathologic and genomic data were housed in a secure Redcap database.

CT scans. The baseline CT scan was defined as the closest contrasted scan, 
including the chest performed within 30 d of starting PD-(L)1 blockade therapy 
at MSK. Scans were anonymized and quality control was performed to ensure 

de-identification. Scans were separated into the DICOM format and metadata. All 
patients underwent multisection CT performed as part of standard clinical care 
for clinical staging of pulmonary malignancy. CT studies were all performed at 
our institution (Lightspeed VCT, Discovery CT 750HD; GE Healthcare) and were 
submitted and uploaded to our picture archiving and communication system.

Radiological segmentation. Our study was limited to chest imaging to ensure 
homogeneity of the imaging protocol used. As a result, we only considered chest 
lesions. Lesion segmentation of primary lung cancers and thoracic metastases 
was performed manually by three radiologists (N.H. and J.A-F. with 8 years of 
post-fellowship experience and A.P. with 1 year of post-fellowship experience). 
Each lesion was segmented by a single radiologist, reviewed by a second and 
disagreements were resolved with a third. While all radiologists were aware that 
the patients had lung cancer, they were blinded to patients’ previous treatments 
and outcomes.

Target lesions were selected in accordance with RECIST v.1.1 criteria 
(maximum of five target lesions and up to two target lesions per organ). Lesions 
that were segmented included lung parenchymal, pleural and pathologically 
enlarged thoracic lymph nodes. Lung and pleural lesions were included when 
measured as >1.0 cm in the long axis dimension and lymph nodes >1.5 cm in the 
short axis dimension.

Segmentations were performed on contrast enhanced CTs with 5-mm slices 
and soft tissue algorithm reconstructions. The segmenting radiologist had access 
to the clinical text report and positron emission tomography (PET) scan images 
during segmentation as guides. Lung and soft tissue windows (window level, 
−600 HU and width, 1,500 HU and window level, 50 HU and width, 350 HU, 
respectively) were used when appropriate to visually delineate volumes of interest 
from lung tissue, large vessels, bronchi and atelectasis. Cavitary lesions, lung lesions 
indistinguishable from surrounding atelectasis and streak artifacts were excluded. 
Segmented target lesions were categorized and labeled separately by location for 
textural feature analysis. All segmentations were completed using ITK-SNAP, 
v.3.4.0 (http://itksnap.org)39.

Radiomics feature analysis. Three thoracic radiologists (N.H., A.P. and J.A-F.) 
used dictated radiology text reports, PET scan images and RECIST40 criteria to 
guide segmentation. Areas of ambiguity, such as image artifacts from surgical 
staples, were excluded. A total of 337 lesions from 187 patients, classified into lung 
parenchymal, pleural and lymph nodes were segmented. The predictive capacity 
of features extracted from lesions segmented CT scans were analyzed. A variety 
of radiomics features were computed using all filters available in the pyradiomics 
Python package v.3.0.1 (ref. 41), resulting in 1,688 features. To ease the training of 
the predictive model, the number of features were reduced by requiring stability 
with respect to small perturbations of the original segmentation using the method 
previously used by Zwanenburg et al. to assess robustness of radiomics features42. 
In this method, the original segmentation is perturbed ten times, then radiomic 
features are computed from each perturbation. We defined a robustness z score, 
which is the ratio of the average inter-lesion variance across the ten perturbations 
and the feature intra-lesion variance average across the entire multimodal cohort. 
This value ranges 0–1 and we considered only features with z scores less than 0.15. 
This ensured that, on average, selected features only vary slightly (~15%) across 
the perturbations with respect to its total dynamic range. The same procedure was 
implemented in the analysis of the radiology cohort. Investigators were blinded to 
patient response in the segmentation of the CT scans.

PD-L1 immunohistochemistry. IHC was performed on 4-μm FFPE tumor tissue 
sections using a standard PD-L1 antibody (E1L3N; dilution 1:100, Cell Signaling 
Technologies) validated in the clinical laboratory at the study institution. Staining 
was performed using an automated immunostaining platform (Bond III, Leica) 
using heat-based antigen retrieval employing a high pH buffer (epitope retrieval 
solution-2, Leica) for 30 min. A polymeric secondary kit (Refine, Leica) was used 
for detection of the primary antibody. Placental tissue served as positive control 
tissue. Interpretation was performed on all cases by a thoracic pathologist (J.L.S.) 
trained in the assessment of PD-L1 IHC43. Positive staining for PD-L1 in tumor 
cells was defined as the percent of partial or complete membranous staining 
among viable tumor cells, known as the TPS. A negative score was defined as 
staining in <1% of tumor cells or the absence of staining in tumor cells. Slides 
that did not meet the minimum number of tumor cells for PD-L1 TPS assessment 
(<100 tumor cells) were not included. The same procedure was implemented to 
characterize the pathology cohort. Investigators were blinded to patient response 
in the PD-L1 TPS assessment.

PD-L1 tissue analysis. PD-L1 IHC-stained diagnostic slides were digitally scanned 
at a minimum of ×20 magnification for 201 patients using an Aperio Leica 
Biosystems GT450 v.1.0.0. A deep-learning classifier implemented in the HALO AI 
software (Indica Labs) was trained to recognize areas of tumor in PD-L1-stained 
tissue. The training involved annotations across multiple tissue slides to 
subsequently train the DenseNet AI V2 classifier. The following annotation classes 
were included: tumor, stroma, lymphocytes, necrosis, fibroelastic scar, muscle, 
benign lung tissue and glass (absence of tissue). Multiple slides were used to train 
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the classifier to account for site heterogeneity. The trained classifier was then 
employed across all PD-L1 IHC slides available for the multimodal cohort. Each 
slide was subsequently manually assessed for tumor segmentation by a thoracic 
pathologist (J.L.S.) and assigned a specificity score. This score was defined as the 
proportion of tissue being identified as tumor being correct. Slides with scores 
below 95% were then manually annotated. Investigators were blinded to patient 
response in the PD-L1 tissue analysis.

PD-L1 staining pattern quantification. Once analyzed in the HALO AI software, 
tumor masks were exported and applied to the original PD-L1 tissue image. 
The masked tissue image was de-convoluted to separate the PD-L1 IHC from 
the hematoxylin blue counterstain. GLCMs were used to characterize PD-L1 
expression; GLCMs are commonly used in image processing to quantify the 
similarity of neighboring pixels. Pixel-wise GLCM features were extracted using 
the pyradiomics Python package. This is performed within pyradiomics by 
computing GLCM features within a 3 × 3 kernel around each pixel in the image. 
Summary statistics including mean, s.d. and autocorrelation were computed from 
the pixel-wise GLCM map for use in downstream analysis.

Genomics analysis. All patients had panel next-generation sequencing performed 
on their tumor before the start of treatment. The platform used was the US 
FDA-authorized MSK-IMPACT platform, which includes somatic mutations, 
copy number alterations and fusions in 341–468 genes most commonly associated 
with cancer31. Genomic alterations in genes commonly associated with NSCLC 
and thought to associate with anti-PD-L1 therapy response were extracted 
from cBioPortal44,45. This included altered oncogenes (EGFR, ALK, ROS1, RET, 
HER2/ERBB2, BRAF and MET), altered tumor suppressors (STK11) and altered 
transcription regulators (ARID1A). All alterations were annotated by OncoKB46 to 
determine whether they are potentially oncogenic/driver events. TMB, a measure 
of the number of somatic mutations per megabase of the interrogated genome, is a 
US FDA-approved predictive biomarker of immunotherapy response in NSCLC47. 
TMB was calculated based on all identified mutations divided by the coding region 
captured in the MSK-IMPACT panels. Multivariable analysis was conducted using 
Cox proportional hazards modeling adjusting for the genes described as well as TMB.

Logistic regression. LR with elasticnet penalty was used to predict binary 
outcomes given feature vectors. We used the implementation provided in  
sklearn v.0.24.0 using the saga optimizer, C = 0.1, a l1-ratio of 0.5 and balanced 
class weights.

Multiple-instance logistic regression. Multiple-instance learning is a class of 
machine learning where sets of training data (bags) share a common label48. 
Attention-based pooling as developed by Ilse et al.49 extended the multiple-instance 
learning paradigm to assign attention-based weights to each instance, which are 
a function of the instance features and optimized for prediction of an outcome. 
This technique is designed for an unfixed number of input instances with fixed 
feature size, such as the 1–5 texture feature vectors for each lesion encountered in 
the radiology analysis. The final output score is a weighted sum of the same LR 
model applied for each lesion, where the weights are dynamically determined. In 
the single-lesion case, we were able to recover similar results as compared to the 
standard LR. This technique treats each instance equally as there is a single set of 
parameters shared across all instances.

The model was developed and fit using pytorch v.1.8.0, with a hidden size of 
32, balanced class weights, binary cross-entropy loss, 0.005 learning rate, 250 steps 
and L2 regularization of 0.005 using the Adam optimizer.

Multimodal dynamic attention with masking. Multiple-instance learning 
typically involves a single group or bag, of homogenous instances; however, in the 
multimodal case we encounter heterogenous instances. Furthermore, even though 
the textures derived from each lesion are the same shape, lesions in different sites 
may map to the predictor in different ways, such that a shared set of parameters 
may not be optimal. We thus encounter a MIL paradigm where we have a 
fixed-sized bag of heterogeneous instances or modes. For this study, the modes 
of data utilized were one-dimensional feature vectors derived from PD-L1 IHC 
performed on diagnostic tissue, segmented radiological CT scans delineated by 
lesion site and genomic alterations. We utilized the same dynamic pooling scheme 
in our model. Each input mode has its own set of trainable parameters: one to 
map the input vector to the label (risk parameters) and one to map the input 
vector to an attention score (attention parameters), which competes with the other 
input modes in a similar way to the standard multiple-instance learning model. 
As attention-based weights are trainable, the model learns which input modes are 
most relevant to treatment response. In contrast to multiple-instance learning, 
the final output score is a weighted sum of individually optimized LR models 
applied for each modality; this technique treats each mode specifically, while still 
optimizing all parameters in concert. Finally, as zero attention corresponds to a 
modality having no correspondence to the predictor, this model was expanded 
by adding a masking function that sets any missing mode’s attention to zero to 
address missing data (such as non-segmentable disease in CT). We call this the 
DyAM model.

The model was developed and fit using pytorch v.1.8.0, with balanced 
class weights, binary cross-entropy loss, 0.01 learning rate, 125 steps and L2 
regularization strength of 0.001 using the Adam optimizer. When only one input 
modality was present, the attention gate was disabled to reduce complexity.

Attention analysis. Given the normalized attention weights and risk scores 
per modality, one can reweight the attention layer to assess how an increase or 
decrease in a modality’s attention impacts the model’s performance. This can 
be performed schematically by multiplying the attention vector ā by a multiple 
of the kth unit vector mêk, taking the dot product with the risk vector r̄  and 
re-normalizing the score.

score = (mêk ◦ ā) · r̄/Σ (mêk ◦ ā)

The new weights can be determined as follows:

ai=k = mak/(1 + (m − 1)ak), ai ̸=k = ai/(1 + (m − 1)ak)

If ak = 0.5 and m = 10, the new attention of the kth modality increases to 0.91 
and the other modalities’ attention weights decrease by a factor of 0.18. Conversely, 
at m = 0.01, the attention of the kth modality decreases to 0.01 and the other 
modalities’ attention weights increase by a factor of 2. At high multiples, the model 
approaches a unimodal model dominated by that modality. At low multiples, the 
model approaches a N-1 model with that modality dropped out. We scanned m in 
the log10 scale from −2 to 2 and recomputed performance metrics (AUC, HR and 
PFS ratio) at each step.

Statistical analysis. There were no formal sample size calculations performed 
in advance. The multimodal cohort was selected based on the existing number 
of patients at MSK who met all inclusion criteria. Group comparisons were 
performed using two-sided Mann–Whitney U-tests. AUC was used as a measure 
of performance of a biomarker on predicting response versus nonresponse. We 
performed tenfold cross-validation where scores from the validation folds were 
combined to form predictions across the entire multimodal cohort. Patients were 
randomly sorted into the folds. All feature selection and feature rescaling was 
performed on the training fold in each iteration of the cross-validation analysis. 
The binary cutoff used to determine the predicted response was determined for 
each patient using only training data. Hyperparameters were established from 
the first fold and applied consistently for each model. To explicitly evaluate the 
sensitivity of model fitting to the data used for training, we also performed a 
subsampling analysis where the data was randomly sampled 100 times using 
90% for training and the remaining 10% for testing. All models were trained 
in an end-to-end manner with corresponding cross-validation across folds 
(Extended Data Fig. 9) and subsampling (Extended Data Fig. 10). We also report 
the F1-score, precision and recall for all models in Supplementary Table 1 and 
Extended Data Fig. 1. Model coefficients are shown in Extended Data Figs. 2–8. 
A multivariable Cox proportional hazards model was developed with the Lifelines 
Python package v.0.25.7 (ref. 50) to compare the performance of this model to 
existing biomarkers and calculate adjusted HRs. The Lifelines package was used to 
compute survival curves estimated using the Kaplan–Meier method. All statistical 
tests were two-sided with a significance level of 2.5% for each tail. Assessment 
of classifier performance was performed consistently for each analysis, using 
AUCs computed across the entire multimodal cohort by merging classifier scores 
obtained in the validation folds of tenfold cross-validation. Model outputs were 
calibrated to an optimal threshold using the Youden index and rescaled to a unit 
variance. The 95% CIs on these AUCs were calculated using DeLong’s methods 
for computing the covariance of unadjusted AUCs51. Violins were smoothed using 
the default Gaussian kernel density estimation in seaborn v.0.11.1. Significance 
of the AUCs were obtained against the hypothesis of meaningless class labels 
using perturbation testing with 20 iterations with the covariance error and s.e.m. 
propagated in quadrature.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are publicly available at synapse: https://www.synapse.org/#!Synapse: 
syn26642505. The genomic features of the cohort can be explored on cbioportal: 
https://www.cbioportal.org/study/summary?id=lung_msk_mind_2020. Source 
data have been provided as Source Data files. Source data are provided with this 
paper.

Code availability
Feature processing and engineering code is available as part of Luna: https://github.
com/msk-mind/luna/
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Extended Data Fig. 1 | F1, precision and recall score summary plot. The F1-score (top), precision score (middle) and recall score (bottom) for all models 
tested. The bar heigh represents the metric calculated on the merged classifier results across the entire cohort with N = 247 patients.
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Extended Data Fig. 2 | Weights for the LR Clinical model. Coefficient results for clinical features from the 10-fold train–test scheme for the LR Clinical 
model. The box-and-whisker plots show the mean and the interquartile range (25–75%) as boxes, the minimum and maximum as whiskers up to 1.5 
times the IQR and datapoints outside the IQR range as diamonds, for N = 10 fits. The adjoined bar plot shows the number of times, for a given feature, 
the following criteria were satisfied: (1) if applicable, the feature was selected as part of the radiomics filtering process, (2) the magnitude of the feature’s 
weight was at least 1 standard deviation from zero and (3) the magnitude of the feature’s weight was greater than 0.01. Only coefficients selected more 
than once are shown, up to 100.
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Extended Data Fig. 3 | Weights for the LR Rad-PC model. Coefficient results for the parenchymal radiomics features from the 10-fold train–test scheme 
for the LR Rad-PC model. The box-and-whisker plots show the mean and the interquartile range (25–75%) as boxes, the minimum and maximum as 
whiskers up to 1.5 times the IQR and datapoints outside the IQR range as diamonds, for N = 10 fits. The adjoined bar plot shows the number of times, for 
a given feature, the following criteria were satisfied: (1) if applicable, the feature was selected as part of the radiomics filtering process, (2) the magnitude 
of the feature’s weight was at least 1 standard deviation from zero and (3) the magnitude of the feature’s weight was greater than 0.01. Only coefficients 
selected more than once are shown, up to 100.
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Extended Data Fig. 4 | Weights for the LR Rad-LN model. Coefficient results for the lymph node radiomics features from the 10-fold train–test scheme for 
the LR Rad-LN model. The box-and-whisker plots show the mean and the interquartile range (25–75%) as boxes, the minimum and maximum as whiskers 
up to 1.5 times the IQR and datapoints outside the IQR range as diamonds, for N = 10 fits. The adjoined bar plot shows the number of times, for a given 
feature, the following criteria were satisfied: (1) if applicable, the feature was selected as part of the radiomics filtering process, (2) the magnitude of the 
feature’s weight was at least 1 standard deviation from zero and (3) the magnitude of the feature’s weight was greater than 0.01. Only coefficients selected 
more than once are shown, up to 100.
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Extended Data Fig. 5 | Weights for the LR IHC-A model. Coefficient results for the intensity-based PD-L1 intensity features from the 10-fold train–test 
scheme for the LR IHC-A model. The box-and-whisker plots show the mean and the interquartile range (25–75%) as boxes, the minimum and maximum 
as whiskers up to 1.5 times the IQR and datapoints outside the IQR range as diamonds, for N = 10 fits. The adjoined bar plot shows the number of times, for 
a given feature, the following criteria were satisfied: (1) if applicable, the feature was selected as part of the radiomics filtering process, (2) the magnitude 
of the feature’s weight was at least 1 standard deviation from zero and (3) the magnitude of the feature’s weight was greater than 0.01. Only coefficients 
selected more than once are shown, up to 100.

Nature Cancer | www.nature.com/natcancer

http://www.nature.com/natcancer


Articles Nature CancerArticles Nature Cancer

Extended Data Fig. 6 | Weights for the LR IHC-G model. Coefficient results for all GLCM-based PD-L1 texture features from the 10-fold train–test scheme 
for the LR IHC-G model. The box-and-whisker plots show the mean and the interquartile range (25–75%) as boxes, the minimum and maximum as 
whiskers up to 1.5 times the IQR and datapoints outside the IQR range as diamonds, for N = 10 fits. The adjoined bar plot shows the number of times, for 
a given feature, the following criteria were satisfied: (1) if applicable, the feature was selected as part of the radiomics filtering process, (2) the magnitude 
of the feature’s weight was at least 1 standard deviation from zero and (3) the magnitude of the feature’s weight was greater than 0.01. Only coefficients 
selected more than once are shown, up to 100.
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Extended Data Fig. 7 | Weights for DyAM Rad+IHC-G + Gen model. Parameter weight results for combined radiomic, GLCM-based PD-L1 texture and 
genomic features for the DyAM Rad+IHC-G + Gen model. The box-and-whisker plots show the mean and the interquartile range (25–75%) as boxes, 
the minimum and maximum as whiskers up to 1.5 times the IQR and datapoints outside the IQR range as diamonds, for N = 10 fits. The adjoined bar plot 
shows the number of times, for a given feature, the following criteria were satisfied: (1) if applicable, the feature was selected as part of the radiomics 
filtering process, (2) the magnitude of the feature’s weight was at least 1 standard deviation from zero and (3) the magnitude of the feature’s weight was 
greater than 0.01. Only coefficients selected more than once are shown, up to 100.
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Extended Data Fig. 8 | Weights for the DyAM Rad+IHC-A + Gen+PD-L1 model. Parameter weight results for combined radiomic, intensity-based PD-L1 
texture, genomic and TPS features for the DyAM Rad+IHC-G + Gen model. The box-and-whisker plots show the mean and the interquartile range (25–
75%) as boxes, the minimum and maximum as whiskers up to 1.5 times the IQR and datapoints outside the IQR range as diamonds, for N = 10 fits. The 
adjoined bar plot shows the number of times, for a given feature, the following criteria were satisfied: (1) if applicable, the feature was selected as part of 
the radiomics filtering process, (2) the magnitude of the feature’s weight was at least 1 standard deviation from zero and (3) the magnitude of the feature’s 
weight was greater than 0.01. Only coefficients selected more than once are shown, up to 100.
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Extended Data Fig. 9 | Receiver operating characteristics for all models using the 10-fold train–test breakdown. ROC curves showing the results from 
individual folds as thin colored lines, the averaged and ±1 standard deviation ROC curve calculated from the distribution of the true positive rate in bins of 
the false positive rate across all folds as a blue curve surrounded by a gray band and the merged AUC as a black curve. For each model and fold result, the 
subset of N = 247 patients included depending on the available modalities and train–test split is indicated.
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Extended Data Fig. 10 | Receiver operating characteristics for all models using repeated subsampling. ROC curves showing the results from the first 10 
subsamples as thin colored lines and the averaged and ±1 standard deviation ROC curve calculated from the distribution of the true positive rate in bins 
of the false positive rate across all subsamples as a blue curve surrounded by a gray band. For each model and fold result, the subset of N = 247 patients 
included depending on the available modalities and train–test split is indicated.
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