Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer-associated fibroblasts in the single-cell era

Abstract

Cancer-associated fibroblasts (CAFs) are central players in the microenvironment of solid tumors, affecting cancer progression and metastasis. CAFs have diverse phenotypes, origins and functions and consist of distinct subpopulations. Recent progress in single-cell RNA-sequencing technologies has enabled detailed characterization of the complexity and heterogeneity of CAF subpopulations in multiple tumor types. In this Review, we discuss the current understanding of CAF subsets and functions as elucidated by single-cell technologies, their functional plasticity, and their emergent shared and organ-specific features that could potentially be harnessed to design better therapeutic strategies for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Primary CAF subsets and their potential origins.
Fig. 2: Identification of discrete CAF subsets achieved through different experimental systems.
Fig. 3: scRNA-seq reveals multiple tasks undertaken by discrete CAF subtypes.
Fig. 4: scRNA-seq analyses reveal universal as well as organ-specific CAF subsets.
Fig. 5: Examples of potential CAF targeting.

Similar content being viewed by others

References

  1. Liu, L. et al. Stromal myofibroblasts are associated with poor prognosis in solid cancers: a meta-analysis of published studies. PLoS ONE 11, e0159947 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharon, Y. et al. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res. 75, 963–973 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raz, Y. et al. Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J. Exp. Med. 215, 3075–3093 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kidd, S. et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE 7, e30563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123–10128 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Rynne-Vidal, A., Jimenez-Heffernan, J. A., Fernandez-Chacon, C., Lopez-Cabrera, M. & Sandoval, P. The mesothelial origin of carcinoma associated-fibroblasts in peritoneal metastasis. Cancers 7, 1994–2011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandoval, P. et al. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J. Pathol. 231, 517–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, H., Wang, Z., Zhang, Y. & Brekken, R. A. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673 (2022).

    Article  PubMed  CAS  Google Scholar 

  12. Murgai, M. et al. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med. 23, 1176–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Friedman, G. et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs to clinical outcome. Nat. Cancer 1, 692–708 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Gascard, P. & Tlsty, T. D. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 30, 1002–1019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levi-Galibov, O. et al. Heat shock factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat. Commun. 11, 6245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alexander, J. & Cukierman, E. Stromal dynamic reciprocity in cancer: intricacies of fibroblastic–ECM interactions. Curr. Opin. Cell Biol. 42, 80–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monteran, L. & Erez, N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol. 10, 1835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sugimoto, H., Mundel, T. M., Kieran, M. W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Neuzillet, C. et al. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J. Pathol. 248, 51–65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waghray, M. et al. GM-CSF mediates mesenchymal–epithelial cross-talk in pancreatic cancer. Cancer Discov. 6, 886–899 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonneau, C. et al. A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res. 22, 76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Pelon, F. et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 11, 404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su, S. et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172, 841–856 (2018).

    Article  Google Scholar 

  29. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Waise, S. et al. An optimised tissue disaggregation and data processing pipeline for characterising fibroblast phenotypes using single-cell RNA sequencing. Sci. Rep. 9, 9580 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Deasy, S. K. & Erez, N. A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol. 32, 110–123 (2021).

    Article  PubMed  CAS  Google Scholar 

  35. Darby, I. A., Zakuan, N., Billet, F. & Desmouliere, A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell. Mol. Life Sci. 73, 1145–1157 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, S. et al. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat. Cell Biol. 23, 87–98 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, Y. et al. Author Correction: Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 12, 2567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Guerrero-Juarez, C. F. et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat. Commun. 10, 650 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cannon, A. et al. Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes Cancer 9, 78–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyazaki, Y. et al. Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci. Rep. 11, 4690 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y. et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 7, 36 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bernard, V. et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin. Cancer Res. 25, 2194–2205 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Hosein, A. N. et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 5, e129212 (2019).

    Article  Google Scholar 

  50. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Sebastian, A. et al. Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers 12, 1307 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  52. Peng, S., Hebert, L. L., Eschbacher, J. M. & Kim, S. Single-cell RNA sequencing of a postmenopausal normal breast tissue identifies multiple cell types that contribute to breast cancer. Cancers 12, 3639 (2020).

  53. Lu, T. et al. Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules. Cell Discov. 6, 69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, M. et al. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J. Hepatol. 73, 1118–1130 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Bhattacharjee, S. et al. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J. Clin. Invest. 131, e146987 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  56. Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 39, 928–944 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Shih, A. J. et al. Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. PLoS ONE 13, e0206785 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen, Z. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun. 11, 5077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar, V. et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov 12, 670–691 (2021).

    Article  Google Scholar 

  60. Grunberg, N. et al. Cancer-associated fibroblasts promote aggressive gastric cancer phenotypes via heat shock factor 1-mediated secretion of extracellular vesicles. Cancer Res. 81, 1639–1653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Phan, Q. M., Sinha, S., Biernaskie, J. & Driskell, R. R. Single-cell transcriptomic analysis of small and large wounds reveals the distinct spatial organization of regenerative fibroblasts. Exp. Dermatol. 30, 92–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Deng, C.-C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 12, 3709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krenkel, O., Hundertmark, J., Ritz, T. P., Weiskirchen, R. & Tacke, F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 8, 503 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  66. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Biffi, G. & Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 101, 147–176 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Schlesinger, Y. et al. Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat. Commun. 11, 4516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, W. et al. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 12, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, K. et al. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine 66, 103315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Afshar-Kharghan, V. The role of the complement system in cancer. J. Clin. Invest. 127, 780–789 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  76. Steele, N. G. et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hutton, C. et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 39, 1244 (2021).

    Article  CAS  Google Scholar 

  78. Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39, e104063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Valdes-Mora, F. et al. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep. 35, 108945 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Givel, A. M. et al. miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat. Commun. 9, 1056 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 1271–1279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bota-Rabassedas, N. et al. Contextual cues from cancer cells govern cancer-associated fibroblast heterogeneity. Cell Rep. 35, 109009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xing, X. et al. Decoding the multicellular ecosystem of lung adenocarcinoma manifested as pulmonary subsolid nodules by single-cell RNA sequencing. Sci. Adv. 7, eabd9738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kwon, O. J. et al. Functional heterogeneity of mouse prostate stromal cells revealed by single-cell RNA-seq. iScience 13, 328–338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vickman, R. E. et al. Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate 80, 173–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Banales, J. M. et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 17, 557–588 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Massalha, H. et al. A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 16, e9682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Affo, S. et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 39, 866–882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat. Rev. Immunol. 14, 719–730 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Kerdidani, D. et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 219, e20210815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. LeBleu, V. S. & Kalluri, R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis. Model. Mech. 11, dmm029447 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Aoki, S. et al. Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut 71, 185–193 (2021).

    Article  PubMed  CAS  Google Scholar 

  94. Gao, Y. et al. CD63+ cancer-associated fibroblasts confer tamoxifen resistance to breast cancer cells through exosomal miR-22. Adv. Sci. 7, 2002518 (2020).

    Article  CAS  Google Scholar 

  95. Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brugger, M. D., Valenta, T., Fazilaty, H., Hausmann, G. & Basler, K. Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biol. 18, e3001032 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Purcell, J. W. et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody–drug conjugates. Cancer Res. 78, 4059–4072 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Lim, Y. W. et al. Single-cell transcriptomics reveals the effect of PD-L1/TGF-β blockade on the tumor microenvironment. BMC Biol. 19, 107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Helms, E. J. et al. Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. 12, 484–501 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Karakasheva, T. A. et al. IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res. 78, 4957–4970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, W. et al. Stromal induction of BRD4 phosphorylation results in chromatin remodeling and BET inhibitor resistance in colorectal cancer. Nat. Commun. 12, 4441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Herting, C. J., Karpovsky, I. & Lesinski, G. B. The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer Metastasis Rev. 40, 675–689 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Gorchs, L. & Kaipe, H. Interactions between cancer-associated fibroblasts and T cells in the pancreatic tumor microenvironment and the role of chemokines. Cancers 13, 2995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Norton, J., Foster, D., Chinta, M., Titan, A. & Longaker, M. Pancreatic cancer associated fibroblasts (CAF): under-explored target for pancreatic cancer treatment. Cancers 12, 1347 (2020).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.B.-S. is supported by the Israel Cancer Research Fund (ICRF). N.E. is supported by the Department of Defense, Worldwide Cancer Research, the Israel Science Foundation and the ICRF. R.S.-S. is supported by the Israel Science Foundation, ERC starting grant 754320, the ICRF, the Laura Gurwin Flug Family Fund and the estate of David Levinson. R.S.-S. is the incumbent of the Ernst and Kaethe Ascher Career Development Chair in Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neta Erez or Ruth Scherz-Shouval.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Cancer thanks Diether Lambrechts, Mara Sherman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavie, D., Ben-Shmuel, A., Erez, N. et al. Cancer-associated fibroblasts in the single-cell era. Nat Cancer 3, 793–807 (2022). https://doi.org/10.1038/s43018-022-00411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-022-00411-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer