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High-grade serous ovarian cancer (HGSOC) is the most com-
mon cause of death from gynecologic malignancies, with a 
5-year survival rate of less than 30% for metastatic disease1. 

Initial clinical management relies on either primary debulking 
surgery (PDS) or neoadjuvant chemotherapy followed by interval 
debulking surgery (NACT-IDS). Endogenous mutational processes 
are an established determinant of clinical course, with improved 
response of homologous recombination-deficient (HRD) disease 
to platinum-based chemotherapy and poly-ADP ribose polymerase 
(PARP) inhibitors2–4. More nuanced genomic analyses integrat-
ing point mutation and structural variation patterns further refine 
this stratification into four biologically and prognostically mean-
ingful subtypes5,6 including distinct subgroups of HRD, foldback 
inversion-enriched tumors and those with distinctive accrual of 
large tandem duplications. Beyond genomic factors, clinical indi-
cators such as patient age, pathological stage and residual disease 
(RD) status after debulking surgery are also prognostic7. However, 
these clinicogenomic factors alone fail to adequately account for 

the heterogeneity of clinical outcomes. Identifying patients at risk 
of poor response to standard treatment remains a critical unmet 
need. Improved risk stratification models would aid gynecologic 
oncologists in selecting primary treatment, planning surveillance 
frequency, making decisions about maintenance therapy and coun-
seling patients about clinical trials of investigative agents.

Beyond clinicogenomic features, multiscale clinical imag-
ing is routinely acquired during the course of care, including 
contrast-enhanced computed tomography (CE-CT) at the meso-
scopic scale and hematoxylin and eosin (H&E)-stained slides at 
the microscopic scale. Digital forms of these diagnostics present 
opportunities to develop computational models and test whether 
integrating these data modalities improves identification of risk 
groups for HGSOC8. At the mesoscopic scale, recent radiologic 
studies have uncovered quantitative CE-CT features that are  
predictive of early progression, time to recurrence and overall sur-
vival in HGSOC9–11. Most studies to date have analyzed the prognos-
tic information captured within adnexal lesions9,12,13 or the whole 
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burden of disease14–16 and variably use either deep learning or empir-
ically reproducible radiomic features from the Imaging Biomarker 
Standardization Initiative17; however, a radiomic prognostic model 
based on omental lesions has not yet been developed even though 
omental implants are ubiquitous in advanced-stage disease. Such a 
model would be advantageous because it is possible, even for less 
experienced observers, to delineate omental implants and it would 
alleviate the need for highly challenging and time-consuming seg-
mentation of the total burden of disease.

At the microscopic scale, H&E-stained tissue biopsies enable 
pathological diagnosis and are routinely acquired before the start 
of therapy. A quantitative histopathological study of HGSOC 
identified patterns of immune infiltration on H&E slides that cor-
relate with mutational subtypes5. In other cancer types, studies of 
whole-slide images (WSIs) have advanced our ability to quantify 
the histopathological architecture of tumors using deep18,19 and 
interpretable20,21 features. Apart from stage, HGSOC lacks inde-
pendent pre-treatment pathological factors by which to stratify 
patients7 and quantitative approaches thus present an opportunity 
to systematically develop scaled models that are beyond qualita-
tive human interpretation. Interpretable features are less prone to 
overfitting in small cohorts and can be more easily interrogated by 
human pathologists20,22.

Conceptually, genomic sequencing does not account for spa-
tial context and we thus hypothesize that multiscale imaging 
contains complementary information8, rather than merely reca-
pitulating genomic prognostication. We are further motivated by 
the potential for clinical multimodal machine learning to outper-
form unimodal systems by combining information from multiple 
routine data sources. In this work, we set out to study the comple-
mentary prognostic information of multimodal features derived  
from clinical, genomic, histopathological and radiologic data 
obtained during the routine diagnostic workup of patients with 
HGSOC (Fig. 1a). We tested the prognostic relevance of ovarian 
and omental radiomic features derived from CE-CT and devel-
oped a model based on omental features (Fig. 1b) and a histo-
pathological model based on pre-treatment tissue samples to 
risk stratify patients (Fig. 1c). The models were validated on a 
test cohort and integrated with clinical and genomic information  

(Fig. 1d) using a late-fusion multimodal statistical framework 
(Fig. 1e). Our results revealed the empirical advantages of cross-
modal integration and demonstrated the ability of multimodal 
machine-learning models to improve risk stratification of patients 
with HGSOC.

Results
Cohort and clinical characteristics. We analyzed 444 patients 
with HGSOC, including 296 patients treated at the Memorial 
Sloan Kettering Cancer Center (MSKCC) and 148 patients from 
The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data. 
The 40 test cases were randomly sampled from the entire pool of 
patients with all data modalities available for analysis; data from 
the remaining 404 patients were used for training. The training set 
contained 160 patients with stage IV disease, 225 with stage III,  
10 with stage II, 8 with stage I and 1 with an unknown stage 
(Supplementary Table 1). The test cohort contained 31 patients 
with stage IV and 9 with stage III disease23. Median age at diag-
nosis was 63 (interquartile range (IQR) 55–71) years for the train-
ing set and 66 (IQR 59–70) years for the test set. In the training 
cohort, 175 patients received NACT-IDS and the remaining 82 
underwent PDS. In the test cohort, 31 received NACT-IDS and 8 
underwent PDS. Overall, 61 patients from MSKCC were known to 
have received PARP inhibitors (Supplementary Table 1). Treatment 
regimens are not annotated for 148 TCGA patients. Median overall 
survival (OS) was 38.7 (IQR 25–55) months for training patients 
and 37.6 (IQR 26–49) months for testing patients. There were 132 
training patients and 17 testing patients with censored OS out-
comes (Supplementary Table 2).

Among 404 patients in the training cohort, 243 patients had H&E 
WSIs, 245 patients had adnexal lesions on pre-treatment CE-CT 
and 251 patients had omental implants on pre-treatment CE-CT 
(Fig. 2a). All 40 patients in the test cohort had omental lesions on 
CE-CT, H&E WSIs and available sequencing by construction; 29 
patients had ovarian lesions on CE-CT. Three gynecologic radiolo-
gists volumetrically segmented adnexal lesions and representative 
omental lesions on all sections containing these lesions (Extended 
Data Fig. 1a). The training and testing data were acquired with  
similar CT scanners (Extended Data Fig. 1b).

Disease management

Patient presentation
Acquire CT

Diagnostic biopsy Scan H&E slide Infer tissue types and
detect cells

Perform targeted NGS
Detect HRD-DDR
variants and sig. 3

Determine HRD
status (k = 1)

Extract histologic
features (k = 216)

Segment omental and
adnexal disease

Extract radiologic
features (k = 444)

Entropy
sphericity

GLSZM-SAE
GLRLM-GLV

...

...

Mean (Nuc. area)
Var (Nuc. eosin)

% necrotic

HRD/HRP

Feature selection and late fusion
to stratify by OS

Fit on training set

1.0 Train (n = 404)

Test (n = 40)

0.5

0

0 50

Time (m)

Time (m)

100

P
ro

po
rt

io
n 

(O
S

)

1.0

0.5

0

0 20 40 60

P
ro

po
rt

io
n 

(O
S

)

Evaluate on test set

a b

c

d

e

Fig. 1 | Schematic outline of the study. a–d, Multiple data modalities were acquired through routine diagnostics to inform clinical decision making (a): 
pre-treatment CE-CT scans of the abdomen and pelvis (b), pre-treatment H&E-stained diagnostic biopsies (c) and HRD status inferred from hybridization 
capture-based targeted sequencing or clinical HRD-DDR gene panels (d). e, Integrated multimodal analyses by late fusion to stratify patients by overall 
survival. Created with BioRender.com. GLSZM-SAE, gray level size zone matrix small area emphasis; GLRLM-GLV, gray level run length matrix gray level 
variance; Var, variance; Nuc, nuclear; NGS, next-generation sequencing; LSTs, large-scale state transitions; NtAI, number of subchromosomal regions with 
allelic imbalance extending to the telomere; LOH, loss of heterozygosity.
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We used clinical sequencing24 to infer HRD status, in particu-
lar variants in genes associated with HRD DNA damage response 
(DDR)25,26 such as BRCA1 and BRCA2 and those specific to disjoint 
tandem duplicator- and foldback inversion-enriched mutational 
subtypes (CDK12 and CCNE1 (refs. 5,27), respectively; Figs. 1d  
and 2b,c). We also examined the genomes of 130 patients with appro-
priate consent for direct evidence of homologous recombination 
deficiency, namely COSMIC single-base substitution signature 3,  
which is associated with defective HRD-DDR. In this subset of 
MSKCC patients, signature 3 was detected by SigMA28 with high 
confidence in 48 cases, detected with low confidence in 30 cases 
and found not to be the dominant signature in 52 cases (Extended 
Data Fig. 2b). In the TCGA, signature 3 was high in 6 cases and 
low in 51 cases (Extended Data Fig. 2c). Patients with available 
sequencing and without evidence for HRD or homologous recom-
bination proficiency (HRP; n = 126) were treated as HRP. Patients 
with conflicting evidence (n = 6) or without sequencing (n = 61) 
were assigned a label of ‘ambiguous’ and excluded from all analyses 
involving HRD status. In total, the training cohort contained 218 
HRP and 119 HRD cases (Fig. 2c). The test set contained 12 HRD 
and 28 HRP cases. HRD status alone (excluding ambiguous) strati-
fied patients by OS with a c-Index of 0.55 in the training cohort and 
0.52 in the test set (without fitting any model parameters; Extended 
Data Fig. 2d,e). Aberrations specific to distinct endogenous muta-
tional processes also stratified patients as expected: patients with 
HRP disease had worse outcomes than those with HRD disease 
(P = 7 × 10−3; Extended Data Fig. 2g,i).

CE-CT imaging feature selection and stratification. We began  
by studying the prognostic relevance of features derived from  

radiology scans either obtained at our institution (91; 27%) using 
GE Medical Systems CT scanners or acquired at outside institutions 
(247; 73%) from a variety of CT scanners (Extended Data Fig. 1 and 
Supplementary Table 3). The majority of CE-CT scans were acquired 
with a peak kilovoltage of 120 (median 120 kVp, range: 90–140; 
Supplementary Table 3) and reconstructed with the standard con-
volutional kernel using 5-mm slice thickness (median 5 mm; range 
2.5–7.5; Supplementary Table 3). Three fellowship-trained radiolo-
gists with expertise in gynecologic oncologic imaging manually seg-
mented all adnexal masses and representative omental implants on 
each pre-treatment CE-CT scan (Figs. 1b and 3a).

We extracted radiomic features from Coif wavelet-transformed 
images, yielding a 444-dimensional radiomic vector per site per 
patient after filtering by interquartile range. Using the training 
cohort, we calculated the hazard ratios (HRs) and prognostic sig-
nificance of omental and ovarian radiomic features using univariate 
Cox proportional hazards models (Supplementary Table 4)9. After 
correction for multiple hypothesis testing, nine omental features 
(Fig. 3b) and none of the ovarian features exhibited statistically 
significant HRs (Fig. 3c). Hence, going forward, we only consid-
ered the omental implants. We iteratively fitted and pruned Cox 
models for multivariable significance on the nine omental features 
(Algorithm 1), yielding a univariate model based on the autocor-
relation of the gray level co-occurrence matrix derived from the 
high–low–low (HLL) Coif wavelet-transformed29 images (Fig. 3d). 
This feature exhibited a log(HR) of 1.68 (corrected P < 0.01; Fig. 3e) 
and was invariant to CT scanner manufacturers and segmenting 
radiologists (Extended Data Fig. 3). The model stratified patients  
in the training and the test sets with concordance indices of 0.55 
(95% CI 0.549–0.554) and 0.53 (95% CI 0.517–0.547), respectively 
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(Fig. 3f). Kaplan–Meier analysis of the high- and low-risk groups 
(as determined by inferred risk) showed statistically different 
overall survival by the log-rank test (P < 0.01) in the training set  
(Fig. 3g), with median survival of 44 and 57 months, respectively 
but not in the test set, with median survival of 38 and 47 months, 
respectively (Fig. 3h).

Histopathological tissue-type classifier for interpretable features. We 
next trained a tissue-type classifier from histology images using 
a weakly supervised approach. We annotated tissue types on 60 
H&E WSIs, yielding more than 1.4 million partially overlapping 
tiles, each measuring 128 × 128 pixels (64 × 64 µm) and containing 
4,096 µm2 of tissue (Fig. 4a). A ResNet-18 convolutional neural net-
work pretrained on ImageNet (Fig. 4b) classified tissue types with 

an accuracy of 0.88 (range 0.77–0.95) on pathologist-annotated 
areas labeled as fat, stroma, necrosis and tumor (Fig. 4c) by fourfold 
slide-wise cross-validation. Notably, the model correctly identified 
small regions of fat within stromal annotations and necrotic regions 
within the tumor, supporting the suitability of weakly supervised 
deep learning for this task and refining annotations into more  
granular classifications.

The cross-validation confusion matrix aggregated across folds 
showed good performance overall (Fig. 4d), with the most sig-
nificant confusion being necrotic tiles predicted to be tumor and 
stroma. However, one disadvantage of weakly supervised learning 
is that neither the training data nor the validation data are exactly 
labeled. Hence, the cross-validation metrics are not computed 
against the exact truth. Visual inspection of the predictions were 
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qualitatively concordant with only moderate confusion of necrosis 
with tumor and stroma (Extended Data Fig. 4).

Histopathological stratification. We applied the tissue-type classi-
fier to the 243 training H&E WSIs of lesions from pre-treatment 
specimens (Fig. 1c). We combined these inferred tissue-type maps 
with detected cellular nuclei, yielding labeled nuclei (Fig. 5a). 
Subsequently, we extracted cell-type features from these nuclei and 
tissue-type features from the tissue-type maps based on the meth-
ods of Diao et al.20. This yielded a histopathological vector of 216 
features. We next identified the HRs of features using univariate Cox 
models fitted on slides in the training cohort. Several tissue-type 
features, such as overall tumoral area, were partially determined by 
specimen sizes and we thus controlled for this during selection. Of 
the 24 features with a log(HR) found to be significantly different 
from 0 with 95% confidence, 20 related to tumor nuclear diame-
ter or size, with larger being associated with shorter OS (Extended 
Data Fig. 5 and Supplementary Table 5). We again iteratively fit-
ted and pruned Cox models as per Algorithm 1, yielding a mul-
tivariable model with two features: the mean tumor nuclear area 
and the major axis length of the stroma (Fig. 5b). This histopatho-
logical signature was not confounded by specimen size (Extended 
Data Fig. 6). This model stratified the training and test sets, 
with concordance indices of 0.56 (95% CI 0.559–0.564) and 0.54  
(95% CI 0.527–0.560), respectively (Fig. 5c). High- and low-risk 
groups established based on the inferred risk scores separated well 
for the training set with a median survival of 34 and 49 months, 

respectively (Fig. 5d; P < 0.01). For the test set, the risk groups 
trended toward (but did not attain) significantly different separa-
tion, with median survival of 37 and 50 months (Fig. 5e; P = 0.076). 
To probe the interpretability of the histopathological features, we 
investigated the mean tumor nuclear area; we show examples of low 
(Fig. 5f) and high (Fig. 5g) values, which were associated with better 
and worse prognosis, respectively.

Multimodal prognostication. We tested the prognostic significance 
of patient age, pathological stage, RD status after debulking surgery, 
NACT-IDS versus PDS treatment paradigm, receipt of PARP inhib-
itors in the first 2 years after diagnosis and the presence or absence 
of adnexal lesions (Supplementary Table 6), ultimately training a 
model on RD status and PARP inhibitor administration. This model 
stratified the test set with Harrell’s concordance index, c = 0.51 (95% 
CI 0.493–0.528). We then implemented a late-fusion8 approach to 
integrate histopathological, radiomic, genomic and clinical data 
into multimodal models (Fig. 1e). Specifically, we predicted each 
patient’s log partial hazard using the Cox model trained using the 
respective modality, then trained a final Cox model to integrate 
them (Methods). In the test set, the model combining both imaging 
modalities (radiomic–histopathological (RH) model) significantly 
outperformed the HRD status-based model, clinical model and 
individual imaging models, with a test concordance index of 0.62 
(95% CI 0.604–0.638) (Fig. 6a). The model with genomic, radiomic 
and histopathological (GRH) modalities performed compara-
bly, with a test concordance index of 0.61 (95% CI 0.594–0.625).  
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The histopathological submodel score remained significant upon 
addition of HRD status (Fig. 6b). The high- and low-risk groups 
established by the GRH model were significantly different by 
log-rank test in the training set (median survival of 34 and 50 
months, respectively; P = 0.026; Fig. 6c). In the test set, the GRH risk 
groups also showed significantly different OS, with median survival 
of 30 months for the high-risk group and 50 months for the low-risk 
group (P = 0.023; Fig. 6d). At 36 months, 68% and 34% survived for 
low- and high-risk groups, respectively, in the test set. The sepa-
ration of the RH model’s risk groups was inferior (Extended Data 
Fig. 7). Notably, analysis of only training cases with full informa-
tion (n = 114) resulted in poor performance (Extended Data Fig. 8), 
reinforcing the ability of late-fusion models to learn in the setting of 
missing data. No robust association was found between modalities 
to enable interpolation of missing values (Extended Data Fig. 9).

The c-Indices for individual imaging modalities were simi-
lar, but identified distinct patient subgroups with good progno-
sis (Fig. 6e). This is consistent with radiological and histological  

features containing complementary information content, whereby 
some patients with good outcomes were identified as high risk by 
the radiomic submodel but correctly assigned a lower risk score  
by the histopathological submodel and vice versa. Patients with 
HRD and HRP disease were distributed relatively evenly, agnostic 
to unimodal imaging risk scores.

Corroborating this, absolute Kendall rank correlation coefficient 
values were low between individual modalities (<0.14; Fig. 6f),  
demonstrating that the radiomic and histopathological models 
ordered patients differently as compared to the genomic model and 
to one another. The same two risk groups identified by the model in 
the test set also showed significantly different progression-free sur-
vival (PFS) (P = 0.040; Fig. 6g). Finally, as an orthogonal validation, 
the inferred risk of all models except the genomic and genomic–
histopathological models associated with pathological chemother-
apy response score (CRS) in the training set, including the GRH 
model (Fig. 6h). The test set had only 21 patients with known CRS 
and only HRD status exhibited statistically significantly different 
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distributions of CRS by the Mann–Whitney U-test in the test set 
(Extended Data Fig. 10).

Discussion
Machine learning in cancer prognostics is a growing field with great 
potential, but the contribution of common diagnostic modalities  
to multimodal risk stratification remains poorly understood. Here, 

we show that integrating multiscale clinical imaging and genomic 
data increases predictive capacity. These results, in addition to 
the low correlation between risk scores derived from individual 
modalities, support the hypothesis that clinical imaging contains 
complementary prognostic information that is independent of 
clinicogenomic information. Histopathological and radiological 
imaging characterize the tumor architecture at microscopic and 
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mesoscopic scales, respectively. Therefore, it stands to reason that 
these data channels complement one another and HRD status, 
which is derived from spatially agnostic sequencing. The full com-
bined genomic, histopathological, radiological and clinical (GHRC) 
model did not perform as well as the RH and GRH models, sug-
gesting that multimodality is not a universal guarantee of improved 
performance30. In this case, the most likely reason is that the clini-
cal model (based on history of PARP inhibitor administration and 
RD status after debulking surgery) does not stratify the test cohort, 
likely due to its small size. Furthermore, the TCGA cohort did not 
have these informative clinical variables available. Our late-fusion 
architecture benefits from few parameters to fit—which reduces 
overfitting8—and the ability to learn from partial information cases, 
but it cannot gate information from noisy modalities. With larger 
datasets enabling more parameter fitting without overfitting, mech-
anisms such as attention can be explored to adaptively adjust uni-
modal contributions.

In addition to multimodal integration, we presented two uni-
modal models to stratify patients with late-stage HGSOC using rou-
tine clinical imaging, validated these models on a test set and studied 
the relative contributions of each modality to risk stratifying patients 
with HGSOC. For radiological imaging, we discovered that omen-
tal autocorrelation computed from the gray level co-occurrence 
matrix derived from the HLL Coif wavelet-filtered image was 
a prognostic feature. This Imaging Biomarker Standardization 
Initiative-defined feature17,31 has been found to be strongly or very 
strongly reproducible in multiple studies32. It describes the coarse-
ness of the lesion texture and also depends on tissue density. Seven 
of the other nine omental features with significant log(HR) values 
were explicitly designed to measure high-density zones and these 
features did not exhibit log(HR) values significantly different from 
zero on multivariable regression with the autocorrelation. Hence, 
the most parsimonious explanation is that higher-density—rather 
than coarser—omental implants are an adverse prognostic factor, 
which could be due to more solid tumors with reduced cystic or 
fatty components. Omental textures captured by autocorrelation 
may also reflect differing intratumoral heterogeneity.

To our knowledge, previous HGSOC radiomic models have 
not explored the prognostic information captured within omen-
tal implants, relying instead on more demanding segmentations 
of adnexal lesions or the entire tumor burden. Notably, we found 
that none of the radiomic features derived from adnexal masses had 
log(HR) values significantly different from zero after correction for 
multiple hypothesis testing, which is possibly due to the late stage 
of this cohort: the omentum is the most common site of metastasis 
in HGSOC33 and may drive further peritoneal seeding. An omen-
tal model is advantageous over an adnexal model because omental 
implants are ubiquitous in advanced-stage disease, even in patients 
with primary peritoneal high-grade serous cancer that lack adnexal 
mass(es). Furthermore, an omental implant can be readily seg-
mented even by less experienced observers, whereas adnexal masses 
can be challenging to distinguish from adjacent loculated ascites, 
serosal and pouch of Douglas implants and adjacent anatomic 
structures such as the uterus, especially in the presence of leio-
myomas. An omental model is also more practical than a radiomic 
model based on the whole tumor burden; routine segmentation of 
the whole tumor volume is impractical in daily practice using cur-
rent tools due to prohibitively high demand for time and expertise.

For histopathological imaging, we developed an H&E WSI-based 
model to stratify patients with HGSOC. Although none of the fea-
tures exhibited log(HR) values significantly different from zero 
after correction for multiple hypothesis testing, the presence of 20  
features highly related to mean tumor nuclear size (such as 60th  
percentile of tumor nuclear size and 50th percentile of tumor 
nuclear diameter) with similar HRs in the 24 features with uncor-
rected significant P values for univariate log(HR) values supports 

the prognostic relevance of tumor nuclear size. This is further sup-
ported by the good stratification of the test set. The larger nuclear 
size may be associated with events such as whole-genome doubling 
or cellular fusion and warrants direct study of matched genomes 
and histopathological sections. The major axis length of stroma is 
difficult to interpret for a two-dimensional slice of tissue but may 
reflect distinct patterns of disease infiltration into surrounding 
stroma. We included the trained weights for our HGSOC model and 
the source code for extension to other cancer types.

This lack of usable large datasets is one of the main challenges 
for multimodal machine learning in oncology8. We have made 
data from the 296 MSKCC patients with HGSOC available to 
enable future work toward improving upon the models presented 
here. Our results demonstrate the benefit of learning from cases 
with only partial information in multimodal studies: the smaller, 
full-information subcohort yielded a significantly less-generalizable 
risk stratification model. Our dataset also offers the advantage of 
comprising H&E images and CE-CT scans originally acquired at 
multiple institutions: this improves confidence in the generaliz-
ability of the results. Furthermore, we intentionally mined data 
generated during the standard of care. Using these data instead 
of specialty research data drastically reduces adoption costs in 
the clinical workflow for resultant models, but the data were not 
collected specifically with computational modeling in mind. For 
example, we included some patients with only germline sequenc-
ing of HRD-DDR genes, a clinically relevant but biologically imper-
fect measure of HRD status: each risk group is enriched for—but 
not exclusively composed of—the genomic subtype of interest. We 
expect that clinical whole-genome sequencing will enable more 
robust genomic analyses.

The improved risk stratification models developed herein show 
the promise of extracting and integrating quantitative clinical imag-
ing features toward aiding gynecological oncologists in selecting 
primary treatment, planning surveillance frequency, making deci-
sions about maintenance therapy and counseling patients about 
clinical trials of investigative agents. The statistical robustness and 
clinical relevance of the risk groups by both PFS and OS in the test 
set substantiate the utility of this multimodal machine-learning 
approach, establishing a proof of principle. Next steps along this line 
of work include scaled and inter-institutional retrospective cohort 
assembly for further model training and refinement before prospec-
tive validation of clinical benefit in randomized controlled trials8.

In summary, we have assembled a multimodal dataset of patients 
with HGSOC and used this to develop and integrate radiologi-
cal, histopathological and clinicogenomic models to risk stratify 
patients. We discovered that the autocorrelation of omental implants 
on CE-CT and average tumor nuclear size on H&E are prognos-
tic factors, that these modalities are demonstrably orthogonal and 
that their computational integration improves stratification beyond 
previously known clinicogenomic factors in a test set. Our results 
motivate further large-scale studies driven by multimodal machine 
learning to stratify patients with cancer, both in HGSOC and other 
cancer subtypes.

Methods
This study complies with all relevant ethical regulations and its protocols were 
approved by MSKCC’s Institutional Review Board. Informed consent was waived 
for this retrospective study and participants were not compensated. Further 
information on research design is available in the Nature Research Reporting 
Summary linked to this article.

MSKCC cohort curation. Patients were eligible for this retrospective study if they 
had biopsy-proven newly diagnosed HGSOC and at least one of (1) pre-treatment 
WSIs of H&E depicting high-grade serous carcinoma or (2) pre-treatment 
contrast-enhanced abdominal/pelvic computed tomography (CE-CT). Most of 
the MSKCC cohort was sourced from a retrospective clinical database of patients 
who underwent diagnostic workup and NACT-IDS at our institution. This 
database also contained information on the RD status after debulking surgery, 

Nature Cancer | VOL 3 | June 2022 | 723–733 | www.nature.com/natcancer730

http://www.nature.com/natcancer


ArticlesNatuRE CancER

pathological stage, administration of neoadjuvant chemotherapy and patient 
age at diagnosis from the electronic medical record. To expand the cohort, we 
also searched the institutional data warehouse for patients with MSK-IMPACT 
sequencing and available pre-treatment CT studies or H&E images. In addition 
to this retrospective curation, 36 patients were also included from the prospective 
MSK-SPECTRUM project34. Pathological stage was unavailable for 14 patients and 
we instead recorded the clinical stage as recorded in the institutional database for 
these patients. We also collected the race for all patients from the institutional data 
warehouse. OS and PFS were calculated using the date of CT as a start date, when 
available, or the date of pathological diagnosis otherwise.

To collect H&E imaging, we reviewed the electronic health record to find 
associated pathology cases with peritoneal lesions (primarily omental) and expert 
pathologists reviewed the slides to select high-quality specimens for digitization. 
We also reviewed the institutional data repository for scanned slides associated 
with the diagnostic biopsy and included those containing tumors. All H&E 
imaging was carried out before treatment.

We subsequently reviewed the associated CE-CT scans for the following 
the inclusion criteria: (1) intravenous contrast-enhanced images acquired 
in the portal venous phase, (2) absence of streak artifacts or motion-related 
image blur obscuring lesion(s) of interest and (3) adequate signal to noise ratio 
(Supplementary Table 7). All CE-CT imaging was carried out before treatment.  
All CT scans were available in the digital imaging and communications in 
medicine (DICOM) format through our institutional picture archiving and 
communication system (PACS, Centricity, GE Medical Systems v.7.0).

TCGA cohort selection. From the TCGA-OV project35, we selected patients with 
clinical data annotated in the TCGA Clinical Data Resource23, pathological grade 
3 and at least one of a diagnostic FFPE H&E WSIs or abdominal/pelvic CE-CT 
scan in the TCIA36. All clinical and demographic information were extracted from 
the TCGA CDR. Only diagnostic WSIs of formalin-fixed, paraffin-embedded 
H&E-stained specimens from the TCGA-OV project were included. All H&E 
imaging was carried out before treatment.

All CT scans met the following the inclusion criteria: (1) intravenous 
contrast-enhanced images acquired in the portal venous phase, (2) absence of 
streak artifacts or motion-related image blur obscuring lesion(s) of interest and  
(3) adequate signal to noise ratio (Supplementary Table 7). All CE-CT imaging  
was carried out before treatment.

Inferring HRD status. In the MSKCC cohort, we used MSK-IMPACT 
clinical sequencing37, when available, to infer HRD status. Variant calling 
for these genes and copy number analysis of CCNE1 was performed using 
the standard MSK-IMPACT clinical pipeline (https://github.com/mskcc/
Innovation-IMPACT-Pipeline). For patients with appropriate consent for further 
genomic re-analysis, we also inferred COSMIC SBS3 activity using SigMA (for 
cases with at least five mutations across all 505 genes)28 and searched for large-scale 
state transitions38 using our own pipeline (https://github.com/jrflab/modules/)39. 
We used OncoKB and Hotspot annotations for variant significance40–42 in genes 
involved in HRD-DDR to assign patients to the HRD subtype. Patients with 
high-confidence dominant signature 3 or at least one significant variant or deep 
deletion in the HRD-DDR genes25 were assigned to the HRD subtype, except 
when there was evidence that patients belonged to the foldback inversion- or 
tandem duplicator-enriched subgroups (via CCNE1 amplification or CDK12 SNVs, 
specifically)5,27. Patients with conflicting evidence were assigned to the ambiguous 
subtype and excluded from analysis. Low-confidence signature 3 results were not 
used for HRD status definition. Incorporating LST thresholding to define HRD 
status was found to diminish the separation of the HRD and HRP-defined groups in 
the training set (Extended Data Fig. 2a,f) and thus it was not used in our final HRD 
status definition. Patients with available results from clinical HRD-DDR panels or 
BRCA1/2 sendout panels were assigned HRP unless there were variants of known 
significance (as determined by the test provider) in at least one reported gene.

In the TCGA cohort, we downloaded copy number alteration (CNA) and SNV 
data from the TCGA-OV project on cBioPortal for the same set of genes implicated 
in HRD-DDR25, CDK12 and CCNE1, again filtering to variants deemed significant 
by OncoKB. Using these criteria, patients with at least one SNV or deep deletion in 
HRD-DDR genes were assigned the HRD subtype. Patients without aberrations in 
these HRD-DDR-associated genes were assigned the HRP subtype. Patients with 
an SNV in CDK12 or amplification in CCNE1 and also with an SNV in at least one 
of the HRD-DDR genes were assigned the ambiguous subtype and excluded from 
analysis. Patients without available SNV and CNA data in cBioPortal were assigned 
to the ambiguous subtype and excluded. We also downloaded COSMIC SBS3 
frequencies43 from Synapse (syn11801889), which is clearly bimodal (Extended 
Data Fig. 3c) and patients with SBS3 frequency greater than 15% and without 
conflicting evidence of HRP were assigned to the HRD subtype.

Adnexal and omental lesions segmentation. Three fellowship-trained radiologists 
manually segmented ovarian lesions and representative omental implants on 
each pre-treatment CE-CT scan for all patients (MSKCC and TCGA-OV/TCIA). 
Using the Insight Segmentation and Registration Toolkit–SNAP v.3.8.0 software, 
each radiologist traced the outer contour of ovarian and omental lesions on every 

tumor-containing axial section. All questions that arose during segmentation were 
resolved via joint review and consensus.

Train–test split. Overall, 40 testing cases were sampled randomly before analysis 
from the patients with available H&E WSI, unambiguous HRD status, known stage 
and omental lesion on CE-CT. We used this strategy to enable fair comparisons 
across unimodal and multimodal models, preventing spurious differences in test 
concordance indices due to patient exclusion for some models but not for others. 
We included both TCGA-OV and MSKCC cases in the training and test sets; this is 
because only four TCGA cases had complete information from all modalities and 
thus could not support a fully external test set.

Radiological feature extraction. We converted all DICOM series to volumetric 
images in Hounsfield Units (HU) and applied an abdominal window (level 50 and 
width 400). Using PyRadiomics44, we resampled images to isotropic 1-mm3 voxels 
using the Simple ITK B-spline interpolator and binned images with bin size of 
25 HU. We extracted features in three-dimensions from Coif wavelet-transformed 
images. We extracted features from the gray level size zone45, neighboring gray 
tone difference46, gray level run length47, gray level dependence48 and gray level 
co-occurrence49 matrices, yielding a representation of each study’s representative 
omental lesion(s) or individual adnexal lesion(s).

Histopathological annotation. Two expert pathologists partially annotated 
60 H&E WSIs using the MSK Slide Viewer50. The approach was to label 
example regions of necrosis, lymphocyte-rich tumor, lymphocyte-poor tumor, 
lymphocyte-rich stroma, lymphocyte-poor stroma, veins, arteries and fat with 
reasonable but imperfect accuracy. We exported these annotations as bitmaps and 
converted them to GeoJSON objects. We amalgamated lymphocyte-rich/poor 
tumor labels and lymphocyte-rich/poor stroma labels for training and omitted 
vessels from the training data for the models presented in this work. We next used 
these annotations to generate tissue-type tiles.

Training the histopathological tissue-type classifier. We generated tiles 
measuring 64 µm × 64 µm (128 × 128 pixels) with 50% overlap, using the above 
annotations to delineate regions to be tiled. No other tile sizes were explored; 
this size was chosen because it offered good resolution while still depicting 
multiple cells in each tile. Putative tile squares within an annotation but with 
<20% foreground as assessed by Otsu’s method were not tiled. Macenko stain 
normalization was used. We trained a ResNet-18 model (pretrained on ImageNet) 
for 30 epochs with a learning rate of 5 × 10−4, 1 × 10−4 L2 regularization and the 
Adam optimizer. The objective function was class-balanced cross entropy and 
we used mini batches of 96 tiles on a single NVIDIA Tesla V100 GPU. We used 
fourfold, slide-wise cross-validation for model evaluation and hyperparameter 
tuning. We selected the number of epochs to train the final model using the  
epoch with the highest lower 95% CI bound estimated using the mean and s.d.  
of the cross-validation F1 scores. We trained the model on tiles from all 60 slides 
for 21 epochs.

Histopathological feature extraction and selection. We tiled the WSIs associated 
with the patients in this cohort without overlap, performing inference using 
mini batches of 800 across four NVIDIA Tesla V100 GPUs. We used Macenko 
stain normalization for all slides because staining intensity differences from 
our predominantly MSKCC-based training cohort confounded inference. We 
assembled tile predictions into downscaled bitmaps, which were then used 
to calculate tissue-type features in an approach based on previous work20. We 
included the region properties from scikit-image51 for both the largest connected 
component and the entirety of each tissue type. We also calculated features such as 
the area ratio of one tissue type to another and the entropy of tumor and stroma. 
Using the StarDist method52 for QuPath53, we segmented and characterized 
individual nuclei, using nuclei with a detection probability greater than 0.5. We 
used a lymphocyte classifier trained iteratively using manual annotations to 
distinguish lymphocytes from other cells. We assigned a tissue parent type to each 
nucleus using the inferred tissue-type maps and calculated aggregative statistics 
by tissue type and cell type of the QuPath-extracted nuclear morphological and 
staining features, such as variance in eosin staining or circularity. Together, these 
cell type features and tissue-type features based on tumor, stroma and necrosis 
constituted the histopathological embedding for each slide.

Clinical data encoding. RD status after debulking surgery was encoded as a binary 
variable, where patients with ≤1 cm RD (including complete gross resection) were 
assigned a value of 1 and patients with >1 cm RD were assigned a value of 0. The 
presence of adnexal lesions on CE-CT was also included as a binary variable. Age 
at diagnosis was modeled as a continuous variable scaled by the training set range. 
Tumor stage was encoded as one-hot categorical variables for I, II, III, IV and 
unknown. Similarly, the primary treatment approach was encoded as a one-hot 
categorical variable with values NACT-IDS, PDS and unknown.

Feature selection. The same strategy was used to select radiomic, histopathological 
and clinical features. For each feature, we fitted a univariate Cox proportional 
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hazards model to the full training set using the Python Lifelines package 
without regularization and we plotted the univariate coefficient and significance 
confidence. For features whose model failed to converge, we re-attempted fitting 
with L2 regularization c = 0.2 and any model still failing to converge was assigned 
a log(HR) of 0 and P value of 1. For histopathology, we controlled for relative 
specimen size by including it in each Cox model. We next removed features with 
scaled IQR below 0.1. Subsequently, for radiomics, which is the largest feature 
space, we used the Benjamini–Hochberg method to correct for multiple hypothesis 
testing54. Taking the ordered list of features significant with 95% confidence, we 
next applied Algorithm 1 to select features, yielding modality signatures with low 
multicollinearity.

Algorithm 1. Multivariable model selection procedure. 
Input: A list of unique candidate features ordered by P value fi where i ∈ [1,k].
Output: A list of features significant with confidence α on multivariable regression 
gj where j ∈ [1,l] and l≤k.

Require: k≥1 i←1 j←1
    while i≤k do
    gj←fi

      P←significance(g) ▷ significance assessed by Cox regression
    if Pj<α then j←j+1
    end if
    i←i+1
  end while

The only modification to this procedure occurred for the ablation experiment 
to test the importance of learning from the partial information cases: we used a 
threshold of 0.31 for clinical features as none was significant with P < 0.05 and we 
did not correct for multiple hypothesis testing in the omental radiomic features 
during the ablation experiment as none would be significant by this metric.

Survival modeling. We used linear Cox proportional hazards models with L2 
regularization (c = 0.5) and no L1 regularization for all multimodal and unimodal 
models. No submodel was fitted for the genomic modality; patients assigned to 
the HRP subtype were designated high risk (risk score 1.0) and patients assigned 
to the HRD subtype were designated low risk (risk score 0). No interaction terms 
were used.

We used Kaplan–Meier analysis to determine whether each model stratified 
patients into clinically significant groups. To delineate group membership, we 
tested percentile thresholds in {0.33, 0.34, …, 0.64, 0.65 0.66}, choosing the value 
that maximized significance of the separation in the training set by the log-rank 
test. This was performed individually for OS and PFS, where relevant. P values for 
concordance indices were calculated using 1000-fold permutation tests. The 95% 
CI for c-Indices were calculated using 100-fold leave-one-out bootstrapping. All 
P values for Kaplan–Meier analysis were calculated by the multivariate log-rank 
test. P values for covariate significance in Cox proportional hazards models are 
reported for models fitted with c = 0.5. The fraction surviving was estimated using 
linear interpolation.

Multimodal integration. We chose a late-fusion approach to increase unimodal 
sample sizes available for parameter estimation8. Parameters for unimodal submodels 
were estimated using all available unimodal data (radiomic parameters were 
estimated across the 251 training CT cases with omental lesions and histopathological 
parameters were estimated across the 243 training H&E cases), where each submodel 
inferred a partial hazard for each patient. The negative partial hazard was used to 
enable compatibility with the concordance index as implemented in the lifelines 
Python package55. For the second-stage late-fusion model, we estimated parameters 
for a multivariate Cox model integrating the negative log partial hazards inferred by 
each modality using only the intersection set of patients.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. Data were excluded from the analyses only for the reasons detailed 
above and before any machine-learning modeling. The training and test sets were 
chosen at random from the patients with all four data modalities available. The 
investigators were not blinded to allocation during outcome assessment. Data 
distributions were not assumed to be normal for any tests. The hazards were 
assumed to be proportional for survival modeling, but this was not formally tested.

Analysis was conducted in QuPath v.0.2.3 (with the StarDist extension), ITK 
SNAP v.3.8.0 and custom code written in Python v.3.9.4 (using Pandas v.1.2.4, 
NumPy v.1.20.2, PyTorch v.1.5.1, TorchVision v.0.6, OpenSlide v.1.1.1, Seaborn 
v.0.11.1, Matplotlib v.3.4.2, SciPy v.1.6.3, scikit-learn v.0.24.0, PyRadiomics v.3.0 
and Lifelines v.0.25.7).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
DNA sequencing, H&E WSI and CT data that support the findings of this study have 
been deposited at Synapse (Sage Bionetworks) under accession code syn25946117.

Additional H&E WSI, CT imaging and genomic data were derived from the 
TCGA Research Network: http://cancergenome.nih.gov/ and The Cancer Imaging 
Archive: https://www.cancerimagingarchive.net/. Raw data from MSK-IMPACT 
performed in the CLIA laboratory in the Department of Pathology is not currently 
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Extended Data Fig. 1 | Segmenting radiologist and CT vendor in training and test sets. a, Three fellowship-trained radiologists segmented the training 
(N = 298 patients) and test cases (N = 40 patients). b, Scanner vendors (same number as in preceding panel).
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Extended Data Fig. 2 | Genomic features of the training and test sets. a, Distribution of large-scale state transitions and threshold. b, Signature 3 
detections by SigMA with high confidence (HC; N = 48 patients) and low confidence (LC; N = 30 patients), Clock signature (N = 50 patients), Signature 18 
(N = 1 patient), and MSI (N = 1 patient). (c) Signature 3 frequencies for all TCGA-OV cases with sequencing from43 are shown. 338 patients with low Sig. 3 
and 47 with high Sig. 3. d,e Kaplan–Meier analyses of patients by genomic subtype in the training and test sets (p-value by log-rank test). f, Incorporating 
thresholded LST counts as indicators of HRD status did not increase the difference in OS of the HRD and HRP curves (p-value by log-rank test). g, 
Stratification by PFS using specific mutational subtypes: HRD-Deletion (HRD-DEL), HRD-Duplication (HRD-DUP), Foldback Inversion (FBI), and Tandem 
Duplications (TD) (p-value by multivariate log-rank test). h, Stratification by OS using the same mutational subtypes (p-value by log-rank test). i, Kaplan–
Meier analysis by OS for only patients with explicit evidence of HRD or HRP, excluding presumed HRP (p-value by multivariate log-rank test).
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Extended Data Fig. 3 | Radiomic feature values by segmenting radiologist, CT scanner, and site. The radiomic feature chosen for the model by a 
segmenting radiologist, b CT vendor, and c whether the scan was acquired at our institution (MSKCC) or elsewhere.
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Extended Data Fig. 4 | Example cross-validation histopathologic tissue-type classifications. Three samples (a–c) chosen at random from all slides used 
for cross-validation.
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Extended Data Fig. 5 | Histopathologic feature discovery. The logarithm of the univariate hazard ratio is depicted for each histopathologic feature 
(N = 281 features) before interquartile range-based filtering, with the cluster in the upper right quadrant comprising primarily features describing tumor 
nuclear diameter and size.
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Extended Data Fig. 6 | Histopathologic embeddings by specimen size. UMAP embeddings of the two-feature histopathologic signature (for N = 283 
patients), with each slide’s point colorized by the relative specimen size (here, the quantile of the number of foreground tiles detected).
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Extended Data Fig. 7 | Test performance of histopathologic-radiomic model. a, Kaplan–Meier analysis of OS for the RH model’s risk scores (p-value by 
log-rank test). b, Kaplan–Meier analysis of PFS for the RH model’s risk scores (p-value by log-rank test).
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Extended Data Fig. 8 | Learning only from cases with full information (N = 114) worsens performance. Log hazard ratios for radiomic features 
derived from a omental implants (N = 600 features) and b adnexal masses (N = 600 features; uncorrected p-values shown). c, Log hazard ratios for 
histopathologic features (N = 281 features; uncorrected p-values shown). d, Concordance indices for the test set by overall survival. The height of each bar 
shows the c-Index, and the lower and upper points of the respective error bars depict the 95% C.I. by leave-one-out bootstrapping. Asterisks denote 95% 
confidence of significant ordering of the test set by 1000-fold permutation test. e, KM analysis of OS for the GRH model in the test set. P-value calculated 
using the log-rank test. f, KM analysis of PFS for the GRH model in the test set. P-value calculated using the log-rank test.
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Extended Data Fig. 9 | No robust association exists between individual modalities in the training set. a, The maximal magnitude of the Pearson 
correlation between individual modalities is 0.191. b, The maximal magnitude of the Spearman correlation between individual modalities is 0.192.
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Extended Data Fig. 10 | Chemotherapy response scores for all models on the test set. a–o, for C, G, GC, GH, GHC, GR, GRC, GRH, GRHC, H, HC, R, RC, 
RH, and RHC models, respectively. The box of each plot depicts the 25th, 50th, and 75th percentiles, and the whiskers depict the entire range except for 
outlier points beyond 1.5 times the interquartile range past from the median 50% of data. Significance was assessed by a one-sided Mann-Whitney U test 
without correction for multiple tests. * denotes p < 0.05, ** denotes p < 0.01, ns denotes p > 0.05. P-value in b is 0.012. Each plot depicts N = 9 patients 
with CRS 3/NET and N = 12 patients with CRS 1/2.
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