Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial

Abstract

Overcoming intrinsic resistance to immune checkpoint blockade for microsatellite stable (MSS) colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) remains challenging. We conducted a single-arm, non-randomized, phase II trial (NCT03104439) combining radiation, ipilimumab and nivolumab to treat patients with metastatic MSS CRC (n = 40) and PDAC (n = 25) with an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. The primary endpoint was disease control rate (DCR) by intention to treat. DCRs were 25% for CRC (ten of 40; 95% confidence interval (CI), 13–41%) and 20% for PDAC (five of 25; 95% CI, 7–41%). In the per-protocol analysis, defined as receipt of radiation, DCR was 37% (ten of 27; 95% CI, 19–58%) in CRC and 29% (five of 17; 95% CI, 10–56%) in PDAC. Pretreatment biopsies revealed low tumor mutational burden for all samples but higher numbers of natural killer (NK) cells and expression of the HERVK repeat RNA in patients with disease control. This study provides proof of concept of combining radiation with immune checkpoint blockade in immunotherapy-resistant cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Consort diagram of enrolled patients.
Fig. 2: PFS and OS analyses.
Fig. 3: Response to treatment by change in measurable disease.
Fig. 4: TMB and exome mutations in patient biopsies.
Fig. 5: Coding gene RNA expression and immune cell differences in patient biopsies.
Fig. 6: Repeat RNA expression differences in patient biopsies.

Data availability

All RNA-seq data have been uploaded to NCBI GEO accession GSE179351, and WES data have been uploaded to NCBI dbGaP accession phs002545.v1.p1. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

There was no custom code developed for this project, but all code and statistical packages used for the study will be provided upon request. For WES, the following software resources were used: the GATK b37 resource bundle (https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle), Picard 2.11.0 MarkDuplicates (http://broadinstitute.github.io/picard), bam-readcount software (0.8.0-unstable-6-963acab-dirty (commit 963acab-dirty); https://github.com/genome/bam-readcount) and SnpEff version 4.3t software. Additional details for WES can be found at https://github.com/dfhoyosg/17-021_RT_IpiNivo. For RNA-seq, the following software resources were used: STAR aligner (version 2.7.7), DESeq2 (version 1.32.0) and CIBERSORTx.

References

  1. Key Statistics for Colorectal Cancer https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html (2019).

  2. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Le, D. T. et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chung, K. Y. et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol. 28, 3485–3490 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. O’Reilly, E. M. et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 5, 1431–1438 (2019).

  6. Chen, E. X. et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 study. JAMA Oncol. 6, 831–838 (2020).

    Article  PubMed  Google Scholar 

  7. Xie, C. et al. Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Clin. Cancer Res. 26, 2318–2326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, Z. I. et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin. Cancer Res. 24, 1326–1336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, W., Chan, C. K., Weissman, I. L., Kim, B. Y. S. & Hahn, S. M. Immune priming of the tumor microenvironment by radiation. Trends Cancer 2, 638–645 (2016).

    Article  PubMed  Google Scholar 

  12. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24, 1845–1851 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Theelen, W. S. M. E. et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. 5, 1276–1282 (2019).

  16. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  19. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanne, A. et al. Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells. Proc. Natl Acad. Sci. USA 112, 15154–15159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leonova, K. I. et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl Acad. Sci. USA 110, E89–E98 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canadas, I. et al. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24, 1143–1150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grothey, A. et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381, 303–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Mayer, R. J. et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N. Engl. J. Med. 372, 1909–1919 (2015).

    Article  PubMed  Google Scholar 

  27. Gilabert, M. et al. Evaluation of gemcitabine efficacy after the FOLFIRINOX regimen in patients with advanced pancreatic adenocarcinoma. Medicine 96, e6544 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Demaria, S. & Formenti, S. C. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front. Oncol. 2, 153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schaue, D., Ratikan, J. A., Iwamoto, K. S. & McBride, W. H. Maximizing tumor immunity with fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys. 83, 1306–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

  32. Rodriguez-Ruiz, M. E., Vitale, I., Harrington, K. J., Melero, I. & Galluzzi, L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat. Immunol. 21, 120–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Hindson, J. Radiation promotes systemic responses. Nat. Rev. Immunol. 19, 3 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Dovedi, S. J. et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res. 23, 5514–5526 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Hsiehchen, D. et al. DNA repair gene mutations as predictors of immune checkpoint inhibitor response beyond tumor mutation burden. Cell Rep. Med. 1, 100034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Solovyov, A. et al. Global cancer transcriptome quantifies repeat element polarization between immunotherapy responsive and T cell suppressive classes. Cell Rep. 23, 512–521 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ting, D. T. et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331, 593–596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desai, N. et al. Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer. JCI Insight 2, e91078 (2017).

  41. Kong, Y. et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zapatka, M. et al. The landscape of viral associations in human cancers. Nat. Genet. 52, 320–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Panda, A. et al. Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight 3, e121522 (2018).

  44. Quatrini, L. et al. The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy. Cancers 12, 328 (2020).

  45. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).

  47. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.11–11.10.33 (2013).

    Google Scholar 

  50. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  51. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28, 1811–1817 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Tate, J. G. et al. COSMIC: the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grossman, R. L. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Solovyov for his help in computational and statistical consultation for this project. This work was supported by the Colorectal Dream Team: Targeting Genomic, Metabolic, and Immunological Vulnerabilities of Colorectal Cancer (SU2C-AACR-DT22-17; A.R.P., R.B.C., D.T.T., T.S.H.); National Institutes of Health grants P50CA127003 (R.B.C.), R01CA240924 (D.T.T., B.D.G.) and U01CA228963 (D.T.T., B.D.G.); the Conquer Cancer Foundation ASCO CDA (A.R.P.); the SU2C and Lustgarten Foundation (D.P.R., B.D.G., D.T.T., T.S.H.); the Robert L. Fine Cancer Research Foundation (D.T.T.); and generous donations from D. and I. Kosowsky, S. and A. Irving and R. and M. Ettl.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.R.P., A.S., D.T.T. and T.S.H.; methodology, A.R.P., A.S., M.R., H.T., D.H., A.M., D.J.L., B.D.G., D.T.T. and T.S.H.; formal analysis, A.R.P., A.S., M.R., H.T., D.H., A.M., D.J.L., B.Y.Y., B.D.G. and D.T.T.; investigation, A.R.P., A.S., M.R., H.T., D.H., A.M., D.J.L., B.D.G., D.T.T. and T.S.H.; resources, A.R.P., J.N.A., J.W.C., J.Y.W., L.C.D., L.S.B., B.J.G., C.D.W., A.X.Z., L.G., R.D.N., J.S.D., N.H., D.P.R., R.B.C., B.D.G., D.T.T. and T.S.H.; data curation, A.R.P., M.R., D.H., E.E.v.S., B.E.F., L.E.M., L.L. and J.A.M.; writing (original draft), A.R.P., A.S., D.T.T. and T.S.H.; writing (review and editing), A.R.P., J.W.C., J.Y.W., A.M., E.E.v.S., D.P.R., B.Y.Y., R.B.C., B.D.G., D.T.T. and T.S.H.; visualization, A.R.P., A.S., M.R., H.T., A.M., D.J.L., B.Y.Y. and D.T.T.; supervision, A.R.P., A.S., D.T.T. and T.S.H.; project administration, A.R.P., A.S., E.E.v.S., L.L., D.T.T. and T.S.H.; funding acquisition, A.R.P., D.P.R., R.B.C., B.D.G., D.T.T. and T.S.H.

Corresponding authors

Correspondence to David T. Ting or Theodore S. Hong.

Ethics declarations

Competing interests

A.R.P is a consultant and/or advisory board member for Eli Lilly, Natera, Checkmate Pharmaceuticals, Inivata and Pfizer; holds equity in C2I; serves on the DSMC for Roche; and has research funding from PureTech, PMV Pharmaceuticals, Plexxicon, Takeda, BMS, Novartis, Genentech, Guardant, Array and Eli Lilly. J.W.C. is an author for McGraw Hill and UpToDate. A.M. is a consultant and/or advisory board member for Third Rock Ventures, Asher Biotherapeutics, Abata Therapeutics, Rheos Medicines and Checkmate Pharmaceuticals; and holds equity in Asher Biotherapeutics and Abata Therapeutics, which are not related to this work. C.D.W. is a consultant and/or advisory board member for Ipsen, Bristol Myers Squibb and Eli Lilly; and receives research funding from Deciphera, EMD Serono, Ability Pharmaceuticals, Actuate Therapeutics and Novartis. A.X.Z. is a consultant and/or advisory board member for AstraZeneca, Bayer, Bristol Myers Squibb, Eisai, Eli Lilly, Exelixis, Merck, Novartis and Roche–Genentech; and received research funding from Bayer, Bristol Myers Squibb, Eli Lilly, Merck and Novartis. L.G. is a consultant and/or advisory board member for Alentis, AstraZeneca, Exelixis, Sirtex, Genetech, Genentech, H3 Biomedicine, Incyte, QED Therapeutics, Servier and Taiho; and has research funding from Adaptimmune, Bayer, Bristol Myers Squibb, Eisai, Leap Therapeutics, Loxo Oncology, MacroGenics, Merck, Novartis, NuCana, Relay Therapeutics, Genentech, H3 Biomedicine, Incyte, QED Therapeutics, Servier and Taiho. N.H. is an advisor and equity holder for Related Sciences, holds equity in BioNTech and receives research funding from Bristol Meyers Squibb. D.P.R. is a consultant and/or advisory board member for MPM Capital, Gritstone Oncology, Oncorus, Maverick Therapeutics, 28/7 Therapeutics, Thrive–Exact Sciences; has equity in MPM Capital, Acworth Pharmaceuticals and Thrive–Exact Sciences; is a legal consultant for Boeringer Ingelheim; and serves as an author for Johns Hopkins University Press, UpToDate and McGraw Hill. R.B.C. is a consultant and/or advisory board member for AbbVie, Amgen, Array Biopharma–Pfizer, Asana BioSciences, Astex Pharmaceuticals, AstraZeneca, Avidity Biosciences, BMS, C4 Therapeutics, Chugai, Elicio, Erasca, Fog Pharma, Genentech, Guardant Health, Ipsen, Kinnate Biopharma, Loxo, Merrimack, Mirati Therapeutics, Natera, Navire, N-of-One–Qiagen, Novartis, nRichDx, Remix Therapeutics, Revolution Medicines, Roche, Roivant, Shionogi, Shire, Spectrum Pharmaceuticals, Symphogen, Tango Therapeutics, Taiho, Warp Drive Bio and Zikani Therapeutics; holds equity in Avidity Biosciences, C4 Therapeutics, Erasca, Kinnate Biopharma, nRichDx, Remix Therapeutics and Revolution Medicines; and has research funding from Asana, AstraZeneca, Lilly, Novartis and Sanofi. B.D.G. is a consultant for or received honoraria from Darwin Health, Merck, PMV Pharma, ROME Therapeutics, Merck, Bristol Meyers Squibb and Chugai Pharmaceuticals; is a founder and has equity in ROME Therapeutics; and has research funding from Bristol Meyers Squibb. D.T.T. is a consultant and/or advisory board member for Pfizer, ROME Therapeutics, Merrimack Pharmaceuticals, Ventana Roche, NanoString Technologies, Foundation Medicine, EMD MilliporeSigma and Third Rock Ventures, which are not related to this work; is a founder and has equity in PanTher Therapeutics, ROME Therapeutics and TellBio, which are not related to this work; and has research funding from ACD-Biotechne, PureTech Health and Ribon Therapeutics, which was not used in this work. D.T.T.‘s interests were reviewed and are managed by Massachusetts General Hospital and Mass General Brigham in accordance with their conflict-of-interest policies. T.S.H. is consultant and/or advisory board member for Merck, EMD Serono, PanTher Therapeutics, Boston Scientific, Novocure and Synthetic Biologics; and has research funding from Taiho, AstraZeneca, Bristol Myers Squibb, IntraOp, Puma and Ipsen. All other authors have no disclosures.

Additional information

Peer review information Nature Cancer thanks Myriam Chalabi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Tumor Mutational Burden of all samples between responders and progressive disease.

Mutations per megabase shown with mean (bar) for patients with SD/PR/CR (n = 5) or PD (n = 12). Unpaired 2-tailed t-test p = 0.7738 was not significant.

Source data

Extended Data Fig. 2 Expression analysis of paired pre-XRT and post-XRT biopsy samples.

a, Heatmap of cell RNA-seq expression of myCAF and iCAF in pre-XRT and post-XRT biopsies from patients with SD/PR/CR (n = 3) and PD (n = 5). Scale −2 to 2 represents minimum and maximum values within the heatmap. b, Heatmap of cell percentage of immune cells in pre-XRT and post-XRT biopsies from patients with SD/PR/CR (n = 3) and PD (n = 5).

Source data

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–12.

Source data

Source Data Fig. 2

Survival data for Kaplan–Meier curves.

Source Data Fig. 3

Computed tomography scan response data.

Source Data Fig. 4

TMB at each time point by patient (mutations per Mb).

Source Data Fig. 5

Expression heatmap of EMT genes in log2 (RPM).

Source Data Fig. 6

Fold change of pre- and post-treatment biopsies for selected repeat RNA species.

Source Data Extended Data Fig. 1

TMB (mutations per Mb).

Source Data Extended Data Fig. 2

Cell type composition from RNA-seq deconvolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parikh, A.R., Szabolcs, A., Allen, J.N. et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat Cancer 2, 1124–1135 (2021). https://doi.org/10.1038/s43018-021-00269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-021-00269-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer