Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering-enhanced CAR T cells for improved cancer therapy

An Author Correction to this article was published on 24 September 2021

This article has been updated

Abstract

Chimeric antigen receptor (CAR) T cell therapies have evolved from a research tool to a concept-shifting therapy with impressive responses in B cell malignancies. This Review summarizes the current state of the CAR T cell field, focusing on CD19- and B cell maturation antigen-directed CAR T cells—the most developed of the CAR T cell therapies. We discuss the many challenges to CAR T cell therapeutic success and innovations in CAR design and T cell engineering aimed at extending this therapeutic platform beyond hematologic malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B cell malignancies at the different stages of B cell development.
Fig. 2: Operational pipeline for integrating correlative studies in translational science laboratories.
Fig. 3: Current strategies to overcome the hurdles of poor response to autologous CAR T cell therapy.
Fig. 4: CAR design limitations that affect clinical responses following CAR T cell treatment, and potential solutions.

Similar content being viewed by others

Change history

References

  1. Bird, R. E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T. & Thompson, C. B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell Biol. 7, 4472–4481 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Mullis, K. B. The unusual origin of the polymerase chain reaction. Sci. Am. 262, 56–65 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24, e20–e22 (2006).

    Article  PubMed  Google Scholar 

  7. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sadelain, M.Chimeric antigen receptors: a paradigm shift in immunotherapy. Ann. Rev. Cancer Biol. 1, 447–466 (2017).

    Article  Google Scholar 

  9. Filley, A. C., Henriquez, M. & Dey, M.CART immunotherapy: development, success, and translation to malignant gliomas and other solid tumors.Front. Oncol. 8, 453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183, 5563–5574 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedmann-Morvinski, D., Bendavid, A., Waks, T., Schindler, D. & Eshhar, Z. Redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation. Blood 105, 3087–3093 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Brocker, T. Chimeric Fv-ζ or Fv-ε receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 96, 1999–2001 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Mitsuyasu, R. T. et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects. Blood 96, 785–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Scholler, J. et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4, 132ra153 (2012).

    Article  Google Scholar 

  18. Uckun, F. et al. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 71, 13–29 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Ishiura, N. et al. Differential phosphorylation of functional tyrosines in CD19 modulates B‐lymphocyte activation. Eur. J. Immunol. 40, 1192–1204 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. LeBien, T. W. & Tedder, T. F. B lymphocytes: how they develop and function. Blood 112, 1570–1580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grupp, S. A. et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maude, S. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turtle, C. J. et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. 35, 3010–3020 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Locke, F. L. et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol. Ther. 25, 285–295 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Melenhorst, J. J. et al. Long-term remission of CLL sustained by pauciclonal anti-CD19 chimeric antigen receptor T (CTL019) cell clones. Blood 132 (Suppl. 1), 699 (2018).

    Article  Google Scholar 

  38. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neelapu, S. S. et al. A comparison of two-year outcomes in ZUMA-1 (axicabtagene ciloleucel) and SCHOLAR-1 in patients with refractory large B cell lymphoma. Blood 134 (Suppl. 1), 4095 (2019).

    Article  Google Scholar 

  42. Baird, J. H. et al. CD22-Directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood 137, 2321–2325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bukhari, A. et al. Rapid relapse of large B-cell lymphoma after CD19 directed CAR-T-cell therapy due to CD-19 antigen loss. Am. J. Hematol. 94, E273–E275 (2019).

    Article  PubMed  Google Scholar 

  44. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Schuster, S. J. et al. Sustained disease control for adult patients with relapsed or refractory diffuse large B-cell lymphoma: an updated analysis of Juliet, a global pivotal phase 2 trial of tisagenlecleucel. Blood 132, 1684 (2018).

    Article  Google Scholar 

  46. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin, Z. et al. The severe cytokine release syndrome in phase I trials of CD19-CAR-T cell therapy: a systematic review. Ann. Hematol. 97, 1327–1335 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Ajina, A. & Maher, J. Strategies to address chimeric antigen receptor tonic signaling. Mol. Cancer Ther. 17, 1795–1815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maus, M. V. et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J. Immunother. Cancer 8, e001511 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Long Term Follow-Up After Administration of Human Gene Therapy Products: Guidance for Industry (US Food and Drug Administration, 2020); https://www.fda.gov/media/113768/download

  53. DAIDS Guidelines for Good Laboratory Practice Standards (National Institute of Allergy and Infectious Diseases, 2019); https://www.niaid.nih.gov/sites/default/files/gclp.pdf

  54. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130, 2295–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra225 (2014).

    Article  CAS  Google Scholar 

  58. Kadauke, S. et al. Early administration of tocilizumab (Toci) for the prevention of grade 4 cytokine release syndrome (CRS) after CD19-directed CAR T-cell therapy (CTL019). Cytotherapy 21, e2–e3 (2019).

    Article  Google Scholar 

  59. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Ruella, M. et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat. Med. 24, 1499–1503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maude, S. L. et al. Efficacy and safety of CTL019 in the first US phase II multicenter trial in pediatric relapsed/refractory acute lymphoblastic leukemia: results of an interim analysis. Blood 128, 2801 (2016).

    Article  Google Scholar 

  64. Singh, N. et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T cell dysfunction.Cancer Discov. 10, 552–567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mueller, K. T. et al. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood 130, 2317–2325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Finney, O. C. et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J. Clin. Invest. 129, 2123–2132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, M. et al. Identification and validation of predictive biomarkers to CD19- and BCMA-specific CAR T-cell responses in CAR T-cell precursors. Blood 134 (Suppl. 1), 622 (2019).

    Article  Google Scholar 

  69. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. White, E. & DiPaola, R. S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15, 5308–5316 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Palma, M. et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica 102, 562–572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chong, E. A. et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129, 1039–1041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Newick, K. et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase A localization. Cancer Immunol. Res. 4, 541–551 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Renner, K. et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front. Immunol. 8, 248 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shah, N. N. et al. Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood Adv. 3, 2317–2322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nobles, C. L. et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration.J. Clin. Invest. 130, 673–685 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Bushman, F. D. Retroviral insertional mutagenesis in humans: evidence for four genetic mechanisms promoting expansion of cell clones. Mol. Ther. 28, 352–356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sheih, A. et al. Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nat. Commun. 11, 219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peer, S., Baier, G. & Gruber, T. Cblb-deficient T cells are less susceptible to PD-L1-mediated inhibition. Oncotarget 8, 41841–41853 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schmitz, M. L. Activation of T cells: releasing the brakes by proteolytic elimination of Cbl-b. Sci. Signal. 2, pe38 (2009).

    Article  PubMed  CAS  Google Scholar 

  85. Stromnes, I. M. et al. Abrogating Cbl-b in effector CD8+ T cells improves the efficacy of adoptive therapy of leukemia in mice. J. Clin. Invest. 120, 3722–3734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lanitis, E. et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression.J. Exp. Med. 218, e20192203 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Mishra, A. et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell 22, 645–655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fehniger, T. A. et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med. 193, 219–232 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu, B. et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 20, 3025–3033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fraietta, J. A. et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 127, 1117–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gill, S. I. et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood 132, 298 (2018).

    Article  Google Scholar 

  94. Gauthier, J. et al. Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood 135, 1650–1660 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kater, A. P. & Melenhorst, J. J. CAR-T and ibrutinib vs CLL: sequential or simultaneous? Blood 135, 1611–1612 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat. Med. 7, 1118–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Garfall, A. L. et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N. Engl. J. Med. 373, 1040–1047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jacoby, E. et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 7, 12320 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Z. et al. Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR-T cell therapy. J. Immunother. Cancer 8, e001150 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Jia, H. et al. Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. J. Hematol. Oncol. 12, 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shalabi, H. et al. Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma.Haematologica 103, e215–e218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Finney, H. M., Akbar, A. N. & Lawson, A. D. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J. Immunol. 172, 104–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hong, M., Clubb, J. D. & Chen, Y. Y.Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38, 473–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Den Haan, J. et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268, 1476–1480 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Den Haan, J. M. et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279, 1054–1057 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Bevan, M. J. The major histocompatibility complex determines susceptibility to cytotoxic T cells directed against minor histocompatibility antigens. J. Exp. Med. 142, 1349–1364 (1975).

    Article  CAS  PubMed  Google Scholar 

  112. Lamberth, K. et al. Post hoc assessment of the immunogenicity of bioengineered factor VIIa demonstrates the use of preclinical tools. Sci. Transl. Med. 9, eaag1286 (2017).

    Article  PubMed  CAS  Google Scholar 

  113. Mahlangu, J. N. et al. Changes in the amino acid sequence of the recombinant human factor VIIa analog, vatreptacog alfa, are associated with clinical immunogenicity. J. Thromb. Haemost. 13, 1989–1998 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Berger, C., Flowers, M. E., Warren, E. H. & Riddell, S. R. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107, 2294–2302 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu, J. et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl Acad. Sci. USA 116, 9543–9551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jensen, M. C. et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant. 16, 1245–1256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wagner, D. L. et al. Immunogenicity of CAR T cells in cancer therapy. Nat. Rev. Clin. Oncol. 18, 379–393 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lamers, C. H. et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117, 72–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Hajek, R., Okubote, S. A. & Svachova, H. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma. Br. J. Haematol. 163, 551–564 (2013).

    Article  PubMed  Google Scholar 

  120. Mikkilineni, L. & Kochenderfer, J. N.CAR T cell therapies for patients with multiple myeloma. Nat. Rev. Clin. Oncol. 18, 71–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. D’Agostino, M. & Raje, N. Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better? Leukemia 34, 21–34 (2020).

    Article  PubMed  CAS  Google Scholar 

  122. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mailankody, S. et al. Clinical responses and pharmacokinetics of MCARH171, a human-derived BCMA targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a phase I clinical trial. Blood 132, 959 (2018).

    Article  Google Scholar 

  124. Mailankody, S. et al. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: initial proof of concept results from a phase 1/2 multicenter study (EVOLVE). Blood 132, 957 (2018).

    Article  Google Scholar 

  125. Mailankody, S. et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol. 38 (Suppl. 15), 8504–8504 (2020).

    Article  Google Scholar 

  126. Green, D. J. et al. Fully human BCMA targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood 132, 1011 (2018).

    Article  Google Scholar 

  127. Hao, S. et al. Two-year follow-up of investigator-initiated phase 1 trials of the safety and efficacy of fully human anti-BCMA CAR T cells (CT053) in relapsed/refractory multiple myeloma. Blood 136, 27–28 (2020).

    Article  Google Scholar 

  128. Kumar, S. K. et al. Results from lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in patients with relapsed and/or refractory multiple myeloma. Blood 136, 28–29 (2020).

    Article  Google Scholar 

  129. Chen, W. et al. Results from lummicar-1: a phase 1 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in Chinese subjects with relapsed and/or refractory multiple myeloma. Blood 136, 49–50 (2020).

    Google Scholar 

  130. Li, C. et al. Efficacy and safety of fully human BCMA targeting CAR T cell therapy in relapsed/refractory multiple myeloma. Blood 134, 929 (2019).

    Article  Google Scholar 

  131. Costello, C. L. et al. Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME) with novel therapeutic strategies. Blood 136, 29–30 (2020).

    Article  Google Scholar 

  132. Brudno, J. N. et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36, 2267–2280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lin, Y. et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: updated results from phase 1 CRB-401 study. Blood 136, 26–27 (2020).

    Google Scholar 

  134. Alsina, M. et al. Updated results from the phase I CRB-402 study of anti-BCMA CAR-T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma: correlation of expansion and duration of response with T cell phenotypes. Blood 136, 25–26 (2020).

    Article  Google Scholar 

  135. Fu, W. Sr et al. Efficacy and safety of CAR-T therapy with safety switch targeting BCMA for patients with relapsed/refractory multiple myeloma in a phase 1 clinical study. Blood 134, 3154 (2019).

    Article  Google Scholar 

  136. Wang, B. -Y. et al. Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA), in patients (pts) with relapsed/refractory multiple myeloma (RRMM). Blood 134 (Suppl. 1), 579 (2019).

    Article  Google Scholar 

  137. Zhao, W.-H. et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 11, 141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Madduri, D. et al. Results from CARTITUDE-1: a phase 1b/2 study of JNJ-4528, a CAR-T cell therapy directed against B-cell maturation antigen (BCMA), in patients with relapsed and/or refractory multiple myeloma (R/R MM). Blood 134, 577 (2019).

    Article  Google Scholar 

  139. Haas, A. R. et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol. Ther. 27, 1919–1929 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Baba, J. et al. Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia. Blood 120, 2417–2427 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Kodumudi, K. N., Weber, A., Sarnaik, A. A. & Pilon-Thomas, S. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. J. Immunol. 189, 5147–5154 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Pont, M. J. et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 134, 1585–1597 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Green, D. J. et al. Response to Bcma CAR-T cells correlates with pretreatment target antigen density and Is improved by small molecule inhibition of gamma secretase. Blood 134 (Suppl. 1), 1856 (2019).

    Article  Google Scholar 

  145. Laurent, S. A. et al. γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 6, 7333 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Cowan, A. J. et al. Efficacy and safety of fully human Bcma CAR T cells in combination with a gamma secretase inhibitor to increase Bcma surface expression in patients with relapsed or refractory multiple myeloma. Blood 134 (Suppl. 1), 204 (2019).

    Article  Google Scholar 

  147. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kandalaft, L. E., Powell, D. J. & Coukos, G. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J. Transl. Med. 10, 157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Castellarin, M., Watanabe, K., June, C. H., Kloss, C. C. & Posey, A. D. Driving cars to the clinic for solid tumors. Gene Ther. 25, 165–175 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Urbanska, K., Stashwick, C., Poussin, M. & Powell, D. J. Jr. Follicle-stimulating hormone receptor as a target in the redirected T-cell therapy for cancer. Cancer Immunol. Res. 3, 1130–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2, 112–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Evans, R. A. et al. Lack of immunoediting in murine pancreatic cancer reversed with neoantigen. JCI Insight 1, e88328 (2016).

    Article  PubMed Central  Google Scholar 

  156. Minutolo, N. G., Hollander, E. E. & Powell, D. J. Jr. The emergence of universal immune receptor T cell therapy for cancer. Front. Oncol. 9, 176 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Urbanska, K. et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 72, 1844–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wilkie, S. et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32, 1059–1070 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Hegde, M. et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J. Clin. Invest. 126, 3036–3052 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Balakrishnan, A. et al. Multispecific targeting with synthetic ankyrin repeat motif chimeric antigen receptors. Clin. Cancer Res. 25, 7506–7516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Song, D. G. et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71, 4617–4627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tchou, J. et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5, 1152–1161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fisher, B. et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J. Clin. Oncol. 7, 250–261 (1989).

    Article  CAS  PubMed  Google Scholar 

  166. Pockaj, B. A. et al. Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 73, 1731–1737 (1994).

    Article  CAS  PubMed  Google Scholar 

  167. Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69, 3077–3085 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Brown, C. E. et al. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J. Immunol. 179, 3332–3341 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Craddock, J. A. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 33, 780–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Di Stasi, A. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113, 6392–6402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, L. C. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120, 3953–3968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chinnasamy, D. et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res. 18, 1672–1683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Santoro, S. P. et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res. 3, 68–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Fu, X., Rivera, A., Tao, L. & Zhang, X. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery. Int. J. Cancer 133, 2483–2492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Guo, Y. et al. Tumour endothelial marker 1/endosialin-mediated targeting of human sarcoma. Eur. J. Cancer 90, 111–121 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Spiegel, J. Y. et al. Outcomes in large B-cell lymphoma progressing after axicabtagene ciloleucel (Axi-cel): results from the U.S. Lymphoma CAR-T Consortium. J. Clin. Oncol. 37 (Suppl. 15), 7517–7517 (2019).

    Article  Google Scholar 

  184. Munshi, N. C. et al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): initial KarMMa results. J. Clin. Oncol. 38, 8503 (2020).

    Article  Google Scholar 

  185. Yan, Z. et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 6, e521–e529 (2019).

    Article  PubMed  Google Scholar 

  186. Locke, F. L. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 20, 31–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Gill, S. I. et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood 132 (Suppl. 1), 298 (2018).

    Article  Google Scholar 

  188. Shah, N. N. et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat. Med. 26, 1569–1575 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Pan, J. et al. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 135, 387–391 (2020).

    Article  PubMed  Google Scholar 

  190. Weber, E. W. et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 3, 711–717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health (R01CA241762 and R01GM138908 to J.J.M.), Stand up to Cancer Convergence 2.0 Grant (to J.J.M.), Parker Institute for Cancer Immunotherapy (J.J.M. and M.A.C.), National Natural Science Foundation of China (81970189), National Visiting Scholar Program of the China Scholarship Council and Guang-Ci Visiting Scholar Program of Ruijin Hospital affiliated to Shanghai Jiao Tong University (to J.X.).

Author information

Authors and Affiliations

Authors

Contributions

J.J.M. developed the concept of the paper. All authors contributed to the first draft of the manuscript and approved the final version.

Corresponding author

Correspondence to J. Joseph Melenhorst.

Ethics declarations

Competing interests

J.J.M., D.J.P. Jr and M.C.M. are inventors on several patents issued and pending in the field of CAR T cell therapy for cancer, which are assigned to the University of Pennsylvania. Under the University of Pennsylvania’s policies, J.J.M., D.J.P. Jr and M.C.M. either currently, or may in the future, receive royalties from the licensing of these patent rights. M.C.M. is an inventor on issued and pending patents related to CAR technology, and receives royalties from the licensing of this IP. He is also a founder and equity holder in Cabaletta Bio. J.X., S.-J.C. and M.A.C. have no conflicts of interest. J.Z. receives research funding from and is chairman of the Medical and Scientific Advisory Board of IASO Biotherapeutics. D.J.P. Jr is or has provided consultation for Iovance Biotherapeutics, Bellicum Pharmaceuticals, Neon Therapeutics, and Tmunity Therapeutics, and holds patents in the areas of tumor-infiltrating lymphocytes and gene-engineered T cells. J.J.M. receives research funding from IASO Biotherapeutics, consult for Simcere of America, Shanghai Unicar Therapy, Johnson & Johnson, Poseida, and IASO Biotherapeutics, and is on the Medical and Scientific Advisory Board of IASO Biotherapeutics and Poseida Therapeutics. J.J.M. further holds patents related to CAR T cell manufacturing and biomarkers.

Additional information

Peer review information Nature Cancer thanks Terry Fry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milone, M.C., Xu, J., Chen, SJ. et al. Engineering-enhanced CAR T cells for improved cancer therapy. Nat Cancer 2, 780–793 (2021). https://doi.org/10.1038/s43018-021-00241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-021-00241-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer