Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Overcoming therapy resistance in EGFR-mutant lung cancer

Abstract

Tyrosine kinase inhibitors (TKIs) have dramatically changed the clinical prospects of patients with non-small cell lung cancer harboring epidermal growth factor receptor (EGFR)-activating mutations. Despite prolonged disease control and high tumor response rates, all patients eventually progress on EGFR TKI treatment. Here, we review the mechanisms of acquired EGFR TKI resistance, the methods for monitoring its appearance, as well as current and future efforts to define treatment strategies to overcome resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the EGFR signal transduction pathway model, with a focus on the acquired resistance mechanisms and related potential treatment strategies.
Fig. 2: Mechanisms of resistance to osimertinib.
Fig. 3: Specific EGFR-dependent (on-target) mutations acquired after osimertinib treatment.

Similar content being viewed by others

References

  1. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 13, 397–406 (2014).

    Article  CAS  Google Scholar 

  2. Cohen, S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 237, 1555–1562 (1962).

    Article  CAS  PubMed  Google Scholar 

  3. Khalil, M. Y., Grandis, J. R. & Shin, D. M. Targeting epidermal growth factor receptor: novel therapeutics in the management of cancer. Expert Rev. Anticancer Ther. 3, 367–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. D’Angelo, S. P. et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J. Clin. Oncol. 29, 2066–2070 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Midha, A., Dearden, S. & McCormack, R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 5, 2892–2911 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Passaro, A. et al. Recent advances on the role of EGFR tyrosine kinase inhibitors in the management of NSCLC with uncommon, non exon 20 insertions, EGFR mutations. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2020.12.002 (2020).

  9. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, Y. L. et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 18, 1454–1466 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Y. L. et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 15, 213–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Soria, J.-C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2017).

    Article  PubMed  Google Scholar 

  15. Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Westover, D., Zugazagoitia, J., Cho, B. C., Lovly, C. M. & Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol. 29, i10–i19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Del Re, M. et al. Understanding the mechanisms of resistance in EGFR-positive NSCLC: from tissue to liquid biopsy to guide treatment strategy. Int. J. Mol. Sci. 20, 3951 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  18. Fogli, S. et al. EGFR-TKIs in non-small-cell lung cancer: focus on clinical pharmacology and mechanisms of resistance. Pharmacogenomics 19, 727–740 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. De Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greaves, M. Evolutionary determinants of cancer. Cancer Discov. 5, 806–820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Oxnard, G. R. The cellular origins of drug resistance in cancer. Nat. Med. 22, 232–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Santoni-Rugiu, E. et al. Intrinsic resistance to EGFR-tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: differences and similarities with acquired resistance. Cancers 11, 923 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  30. Yun, C.-H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schalm, S. S. et al. 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann. Oncol. https://doi.org/10.1016/j.annonc.2020.08.1610 (2020).

  32. Attili, I., Karachaliou, N., Conte, P., Bonanno, L. & Rosell, R. Therapeutic approaches for T790M mutation positive non-small-cell lung cancer. Expert Rev. Anticancer Ther. 18, 1021–1030 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Del Re, M. et al. Concise review: resistance to tyrosine kinase inhibitors in non-small cell lung cancer: the role of cancer stem cells. Stem Cells 36, 633–640 (2018).

    Article  PubMed  Google Scholar 

  34. Shah, K. N. et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat. Med. 25, 111–118 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, H. J. et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 26, 207–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Blakely, C. M. et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep. 11, 98–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gong, K. et al. EGFR inhibition triggers an adaptive response by co-opting antiviral signaling pathways in lung cancer. Nat. Cancer 1, 394–409 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Papadimitrakopoulou, V. A. et al. LBA51 Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Ann. Oncol. https://doi.org/10.1093/annonc/mdy424.064 (2018).

  39. Ramalingam, S. S. et al. LBA50 Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann. Oncol. https://doi.org/10.1093/annonc/mdy424.063 (2018).

  40. Wu, Y.-L. et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2027071 (2020).

  41. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mok, T. S. et al. Osimertinib or platinum–pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med. 376, 629–640 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Passaro, A. et al. Targeting EGFR T790M mutation in NSCLC: from biology to evaluation and treatment. Pharmacol. Res. 117, 406–415 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Chih-Hsin Yang, J. et al. Efficacy and safety of rociletinib versus chemotherapy in patients with EGFR-mutated NSCLC: the results of TIGER-3, a phase 3 randomized study. JTO Clin. Res. Rep. https://doi.org/10.1016/j.jtocrr.2020.100114 (2020).

  45. Chen, L.-Y. et al. Coexistence of EGFR T790M mutation and common activating mutations in pretreatment non-small cell lung cancer: a systematic review and meta-analysis. Lung Cancer 94, 46–53 (2016).

    Article  PubMed  Google Scholar 

  46. Papadimitrakopoulou, V. A. et al. Osimertinib versus platinum–pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann. Oncol. 31, 1536–1544 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Ahn, M.-J. et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1–2 study. Lancet Oncol. 20, 1681–1690 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Oxnard, G. R. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4, 1527–1534 (2018).

    Article  PubMed  Google Scholar 

  49. Zhao, S. et al. Loss of T790M mutation is associated with early progression to osimertinib in Chinese patients with advanced NSCLC who are harboring EGFR T790M. Lung Cancer 128, 33–39 (2019).

    Article  PubMed  Google Scholar 

  50. Lin, C. C. et al. Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: a genomic study. Lancet Respir. Med. 6, 107–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Cross, D. A. E. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4, 1046–1061 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, Z. et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin. Cancer Res. 24, 3097–3107 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Piotrowska, Z. et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov. 8, 1529–1539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, J. et al. Genomic landscape of acquired resistance to third-generation EGFR tyrosine kinase inhibitors in EGFR T790M-mutant non-small cell lung cancer. Cancer 126, 2704–2712 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Rangachari, D. et al. EGFR-mutated lung cancers resistant to osimertinib through EGFR C797S respond to first-generation reversible EGFR inhibitors but eventually acquire EGFR T790M/C797S in preclinical models and clinical samples. J. Thorac. Oncol. 14, 1995–2002 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ercan, D. et al. EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin. Cancer Res. 21, 3913–3923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Niederst, M. J. et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin. Cancer Res. 21, 3924–3933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arulananda, S. et al. Combination osimertinib and gefitinib in C797S and T790M EGFR-mutated non-small cell lung cancer. J. Thorac. Oncol. 12, 1728–1732 (2017).

    Article  PubMed  Google Scholar 

  60. Vokes, N. I. & Jänne, P. A. Resistance in trans-ition. J. Thorac. Oncol. 12, 1608–1610 (2017).

    Article  PubMed  Google Scholar 

  61. Ricordel, C., Friboulet, L., Facchinetti, F. & Soria, J. C. Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Ann. Oncol. 30, 858 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, Z. et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J. Thorac. Oncol. 12, 1723–1727 (2017).

    Article  PubMed  Google Scholar 

  63. Rotow, J. K. et al. Concurrent osimertinib plus gefitinib for first-line treatment of EGFR-mutated non-small cell lung cancer (NSCLC). J. Clin. Oncol. 38, abstr. 9507 (2020).

  64. Uchibori, K. et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat. Commun. 8, 14768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Passaro, A., Malapelle, U., Attili, I. & de Marinis, F. Overcoming resistance to osimertinib in non-small cell lung cancer: hopes, doubts, and in-between. Cancer 126, 2594–2596 (2020).

    Article  PubMed  Google Scholar 

  66. Ou, S. I. et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer 108, 228–231 (2017).

    Article  PubMed  Google Scholar 

  67. Zheng, D. et al. EGFR G796D mutation mediates resistance to osimertinib. Oncotarget 8, 49671–49679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang, Q. et al. EGFR L792H and G796R: two novel mutations mediating resistance to the third-generation EGFR tyrosine kinase inhibitor osimertinib. J. Thorac. Oncol. 13, 1415–1421 (2018).

    Article  PubMed  Google Scholar 

  69. Leventakos, K. et al. S768I mutation in EGFR in patients with lung cancer. J. Thorac. Oncol. 11, 1798–1801 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fassunke, J. et al. Overcoming EGFRG724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nat. Commun. 9, 4655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Y., He, B., Zhou, D., Li, M. & Hu, C. Newly emergent acquired EGFR exon 18 G724S mutation after resistance of a T790M specific EGFR inhibitor osimertinib in non-small-cell lung cancer: a case report. OncoTargets Ther. 12, 51–56 (2018).

    Article  Google Scholar 

  72. Brown, B. P. et al. On-target resistance to the mutant-selective EGFR inhibitor osimertinib can develop in an allele-specific manner dependent on the original EGFR-activating mutation. Clin. Cancer Res. 25, 3341–3351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nukaga, S. et al. Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res. 77, 2078–2089 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Chabon, J. J. et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun. 7, 11815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yamada, T. et al. Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFR-T790M mutant lung cancer. Clin. Cancer Res. 16, 174–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Noonan, S. A. et al. Identifying the appropriate FISH criteria for defining MET copy number-driven lung adenocarcinoma through oncogene overlap analysis. J. Thorac. Oncol. 11, 1293–1304 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cappuzzo, F. et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 27, 1667–1674 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Camidge, D. R. et al. Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC). J. Clin. Oncol. 32, abstr. 8001 (2014).

  80. Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. J. Am. Med. Assoc. 311, 1998–2006 (2014).

    Article  Google Scholar 

  81. Casadevall, D. et al. MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC). Oncotarget 6, 16215–16226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ha, S. Y. et al. MET overexpression assessed by new interpretation method predicts gene amplification and poor survival in advanced gastric carcinomas. Mod. Pathol. 26, 1632–1641 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Scagliotti, G. et al. A randomized-controlled phase 2 study of the MET antibody emibetuzumab in combination with erlotinib as first-line treatment for EGFR mutation-positive NSCLC patients. J. Thorac. Oncol. 15, 80–90 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Odegaard, J. I. et al. Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue- and plasma-based methodologies. Clin. Cancer Res. 24, 3539–3549 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Ai, X. et al. MET amplification and activating mutation analysis in solid tumors using comprehensive NGS panel. J. Clin. Oncol. 36, abstr. e24267 (2018).

  87. Wang, Y. et al. Clinical analysis by next-generation sequencing for NSCLC patients with MET amplification resistant to osimertinib. Lung Cancer 118, 105–110 (2018).

    Article  PubMed  Google Scholar 

  88. Takezawa, K. et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2, 922–933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dumbrava, E. E. I. et al. Targeting ERBB2 (HER2) amplification identified by next-generation sequencing in patients with advanced or metastatic solid tumors beyond conventional indications. JCO Precis. Oncol. https://doi.org/10.1200/po.18.00345 (2019).

  90. Hovelson, D. H. et al. Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia 17, 385–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schwaederle, M. et al. Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation sequencing. Cancer Res. 77, 5419–5427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeng, L., Yang, N. & Zhang, Y. GOPC-ROS1 rearrangement as an acquired resistance mechanism to osimertinib and responding to crizotinib combined treatments in lung adenocarcinoma. J. Thorac. Oncol. 13, e114–e116 (2018).

    Article  PubMed  Google Scholar 

  93. Sato, H. et al. Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer. Cancer Sci. 109, 3183–3196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, F. et al. Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations. Cancer Commun. 39, 7 (2019).

    Article  Google Scholar 

  95. Sos, M. L. et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 69, 3256–3261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ichihara, E. et al. SFK/FAK signaling attenuates osimertinib efficacy in both drug-sensitive and drug-resistant models of EGFR-mutant lung cancer. Cancer Res. 77, 2990–3000 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karachaliou, N. et al. Common co-activation of AXL and CDCP1 in EGFR-mutation-positive non-small cell lung cancer associated with poor prognosis. EBioMedicine 29, 112–127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Okura, N. et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin. Cancer Res. 26, 2244–2256 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Schoenfeld, A. J. et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin. Cancer Res. 26, 2654–2663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marcoux, N. et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37, 278–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Offin, M. et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J. Thorac. Oncol. 14, 1784–1793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065–3074 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Niederst, M. J. et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 6, 6377 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Ham, J. S. et al. Two cases of small cell lung cancer transformation from EGFR mutant adenocarcinoma during AZD9291 treatment. J. Thorac. Oncol. 11, e1–e4 (2016).

    Article  PubMed  Google Scholar 

  105. Roca, E. et al. Outcome of patients with lung adenocarcinoma with transformation to small-cell lung cancer following tyrosine kinase inhibitors treatment: a systematic review and pooled analysis. Cancer Treat. Rev. 59, 117–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Hakozaki, T., Kitazono, M., Takamori, M. & Kiriu, T. Combined small and squamous transformation in EGFR-mutated lung adenocarcinoma. Intern. Med. 59, 1291–1294 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Izumi, H. et al. Squamous cell carcinoma transformation from EGFR-mutated lung adenocarcinoma: a case report and literature review. Clin. Lung Cancer 19, e63–e66 (2018).

    Article  PubMed  Google Scholar 

  108. Francies, H. E., McDermott, U. & Garnett, M. J. Genomics-guided pre-clinical development of cancer therapies. Nat. Cancer 1, 482–492 (2020).

    Article  PubMed  Google Scholar 

  109. Donoghue, M. T. A., Schram, A. M., Hyman, D. M. & Taylor, B. S. Discovery through clinical sequencing in oncology. Nat. Cancer 1, 774–783 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang, S., Song, Y. & Liu, D. EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett. 385, 51–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. To, C. et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov. 9, 926–943 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Maity, S., Pai, K. S. R. & Nayak, Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep. 72, 799–813 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sequist, L. V. et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 21, 373–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Wu, Y. L. et al. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J. Clin. Oncol. 36, 3101–3109 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, Y.-L. et al. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): an open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir. Med. 8, 1132–1143 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. La Monica, S. et al. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines. J. Exp. Clin. Cancer Res. 36, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li, B. T. et al. HER2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers. Cancer Discov. 10, 674–687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tsurutani, J. et al. Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 10, 688–701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tian, Y. et al. Anexelekto (AXL) increases resistance to EGFR-TKI and activation of AKT and ERK1/2 in non-small cell lung cancer cells. Oncol. Res. 24, 295–303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ho, C. C. et al. Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J. Thorac. Oncol. 12, 567–572 (2017).

    Article  PubMed  Google Scholar 

  121. Yu, H. et al. P2.01-22 ORCHARD: a phase II platform study in patients with advanced NSCLC who have progressed on first-line osimertinib therapy. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2019.08.1366 (2019).

  122. Scagliotti, G. V. et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26, 3543–3551 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Mok, T. S. K. et al. Gefitinib plus chemotherapy versus chemotherapy in epidermal growth factor receptor mutation-positive non-small-cell lung cancer resistant to first-line gefitinib (IMPRESS): overall survival and biomarker analyses. J. Clin. Oncol. 35, 4027–4034 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Soria, J. C. et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol. 16, 990–998 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, C. K. et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer—a meta-analysis. J. Thorac. Oncol. 12, 403–407 (2017).

    Article  PubMed  Google Scholar 

  126. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Herbst, R. S. et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Gatzemeier, U. et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J. Clin. Oncol. 25, 1545–1552 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Herbst, R. S. et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J. Clin. Oncol. 23, 5892–5899 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Eberhard, D. A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Sugawara, S. et al. Randomized phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations: NEJ005/TCOG0902. Ann. Oncol. 26, 888–894 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Oizumi, S. et al. Updated survival outcomes of NEJ005/TCOG0902: a randomised phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations. ESMO Open 3, e000313 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hosomi, Y. et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J. Clin. Oncol. 38, 115–123 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Noronha, V. et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J. Clin. Oncol. 38, 124–136 (2019).

    Article  PubMed  Google Scholar 

  136. Jänne, P., Planchard, D., Howarth, P., Todd, A. & Kobayashi, K. OA07.01 Osimertinib plus platinum/pemetrexed in newly-diagnosed advanced EGFRm-positive NSCLC; the phase 3 FLAURA2 study. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2019.08.441 (2019).

  137. Cagnoni, G. & Tamagnone, L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene 33, 4795–4802 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Naumov, G. N. et al. Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin. Cancer Res. 15, 3484–3494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rosell, R. et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, phase 2 trial. Lancet Respir. Med. 5, 435–444 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Seto, T. et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 15, 1236–1244 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Saito, H. et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 20, 625–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Maemondo, M. et al. NEJ026: Final overall survival analysis of bevacizumab plus erlotinib treatment for NSCLC patients harboring activating EGFR-mutations. J. Clin. Oncol. 38, abstr. 9506 (2020).

  143. Nakagawa, K. et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 1655–1669 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Yu, H. A. et al. Effect of osimertinib and bevacizumab on progression-free survival for patients with metastatic EGFR-mutant lung cancers: a phase 1/2 single-group open-label trial. JAMA Oncol. 6, 1048–1054 (2020).

    Article  PubMed  Google Scholar 

  145. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017).

    Article  PubMed  Google Scholar 

  148. Mazieres, J. et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann. Oncol. 30, 1321–1328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. West, H. et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 924–937 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Reck, M. et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 7, 387–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Passaro, A. et al. Understanding EGFR heterogeneity in lung cancer. ESMO Open 5, e000919 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Oxnard, G. R. et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann. Oncol. 31, 507–516 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Yang, J. C. et al. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL brief report. J. Thorac. Oncol. 14, 933–939 (2019).

    Article  PubMed  Google Scholar 

  154. Rangachari, D. et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer 88, 108–111 (2015).

    Article  PubMed  Google Scholar 

  155. Hendriks, L. E. et al. EGFR mutated non-small cell lung cancer patients: more prone to development of bone and brain metastases? Lung Cancer 84, 86–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Heon, S. et al. Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefitinib or erlotinib. Clin. Cancer Res. 16, 5873–5882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Heon, S. et al. The impact of initial gefitinib or erlotinib versus chemotherapy on central nervous system progression in advanced non-small cell lung cancer with EGFR mutations. Clin. Cancer Res. 18, 4406–4414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Aragon-Ching, J. B. & Zujewski, J. A. CNS metastasis: an old problem in a new guise. Clin. Cancer Res. 13, 1644–1647 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Yang, J.-J. et al. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial. Lancet Respir. Med. 5, 707–716 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Fan, Y. et al. Effects of icotinib with and without radiation therapy on patients with EGFR mutant non-small cell lung cancer and brain metastases. Sci. Rep. 7, 45193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Magnuson, W. J. et al. Management of brain metastases in tyrosine kinase inhibitor-naïve epidermal growth factor receptor-mutant non-small-cell lung cancer: a retrospective multi-institutional analysis. J. Clin. Oncol. 35, 1070–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Wu, Y. L. et al. Erlotinib as second-line treatment in patients with advanced non-small-cell lung cancer and asymptomatic brain metastases: a phase II study (CTONG-0803). Ann. Oncol. 24, 993–999 (2013).

    Article  PubMed  Google Scholar 

  163. Hoffknecht, P. et al. Efficacy of the irreversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease. J. Thorac. Oncol. 10, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Schuler, M. et al. First-line afatinib versus chemotherapy in patients with non-small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. J. Thorac. Oncol. 11, 380–390 (2016).

    Article  PubMed  Google Scholar 

  165. Arbour, K. C. et al. Twice weekly pulse and daily continuous dose erlotinib as initial treatment for patients with EGFR-mutant lung cancers and brain metastases. Cancer 124, 105–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Ballard, P. et al. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 22, 5130–5140 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Yang, J. C. et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension component. J. Clin. Oncol. 35, 1288–1296 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Goss, G. et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 17, 1643–1652 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Goss, G. et al. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials. Ann. Oncol. 29, 687–693 (2017).

    Article  Google Scholar 

  170. Wu, Y. L. et al. CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (AURA3). J. Clin. Oncol. 36, 2702–2709 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Yang, J. C. H. et al. Osimertinib in patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer and leptomeningeal metastases: the BLOOM study. J. Clin. Oncol. 38, 538–547 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Park, S. et al. A phase II, multicenter, two cohort study of 160 mg osimertinib in EGFR T790M-positive non-small-cell lung cancer patients with brain metastases or leptomeningeal disease who progressed on prior EGFR TKI therapy. Ann. Oncol. 31, 1397–1404 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Piper-Vallillo, A. et al. High-dose osimertinib for CNS progression in EGFR+ non-small cell lung cancer (NSCLC): a multi-institutional experience. J. Clin. Oncol. 38, 9586–9586 (2020).

    Article  Google Scholar 

  174. Xing, L. et al. Biomarkers of osimertinib response in patients with refractory, EGFR-T790M-positive non-small cell lung cancer and central nervous system metastases: the APOLLO study. Clin. Cancer Res. 26, 6168–6175 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).

    Article  PubMed  Google Scholar 

  176. Diaz, L. A. Jr. & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zill, O. A. et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin. Cancer Res. 24, 3528–3538 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Aggarwal, C. et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer. JAMA Oncol. 5, 173–180 (2019).

    Article  PubMed  Google Scholar 

  179. Luo, J., Shen, L. & Zheng, D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci. Rep. 4, 6269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jenkins, S. et al. 134O_PR: plasma ctDNA analysis for detection of EGFR T790M mutation in patients (pts) with EGFR mutation-positive advanced non-small cell lung cancer (aNSCLC). J. Thorac. Oncol. https://doi.org/10.1016/S1556-0864(16)30327-6 (2016).

  181. Malapelle, U. et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br. J. Cancer 116, 802–810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Couraud, S. et al. Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002. Clin. Cancer Res. 20, 4613–4624 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Paweletz, C. P. et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin. Cancer Res. 22, 915–922 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Sacher, A. G., Komatsubara, K. M. & Oxnard, G. R. Application of plasma genotyping technologies in non-small cell lung cancer: a practical review. J. Thorac. Oncol. 12, 1344–1356 (2017).

    Article  PubMed  Google Scholar 

  185. Lai, G. G. Y. et al. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J. Clin. Oncol. 37, 876–884 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Bennouna, J. et al. Phase II study evaluating the mechanisms of resistance on tumor tissue and liquid biopsy in patients with EGFR-mutated non-pretreated advanced lung cancer receiving osimertinib until and beyond radiologic progression: the MELROSE trial. Clin. Lung Cancer 21, e10–e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Remon, J. et al. The APPLE trial: feasibility and activity of AZD9291 (osimertinib) treatment on positive plasma T790M in EGFR-mutant NSCLC patients. EORTC 1613. Clin. Lung Cancer 18, 583–588 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Chae, Y. K. & Oh, M. S. Detection of minimal residual disease using ctDNA in lung cancer: current evidence and future directions. J. Thorac. Oncol. 14, 16–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Goldman, J. W., Noor, Z. S., Remon, J., Besse, B. & Rosenfeld, N. Are liquid biopsies a surrogate for tissue EGFR testing? Ann. Oncol. 29, i38–i46 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Del Re, M. et al. Circulating tumor DNA and the future of EGFR-mutant lung cancer treatment. Pharmacogenomics 20, 1255–1257 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Passaro.

Ethics declarations

Competing interests

A.P. received honoraria for consulting, advising or lecturing from AstraZeneca, Agilent/Dako, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Janssen, Merck Sharp & Dohme, Novartis, Pfizer and Roche/Genentech. P.A.J. is a consultant at AstraZeneca, Boehringer Ingelheim, Daiichi Sankyo, Novartis, Sanofi Oncology, Takeda Oncology, Pfizer, Roche/Genentech, Biocartis, Silicon Therapeutics, Esai, Bayer, ACEA Biosciences, Eli Lilly, Araxes Pharma and SFJ Pharmaceuticals; is a Scientific Advisory Board member for Voronoi, Biocartis, Mirati Therapeutics, Ignyta and Loxo Oncology; reports receiving commercial research grants from AstraZeneca, Boehringer Ingelheim, Daiichi Sankyo, Astellas, Eli Lilly, Revolution Medicines and Takeda Oncology; has ownership interest (including patents) in Gatekeeper Pharmaceuticals and Loxo Oncology; and reports receiving other remuneration from LabCorp. T.M. reports grant/research support from AstraZeneca, Bristol Myers Squibb, Clovis Oncology, G1 Therapeutics, MSD, Merck Serono, Novartis, Pfizer, Roche, SFJ Pharmaceuticals, Takeda and Xcovery; speaker’s fees from ACEA Pharma, Alpha Biopharma, Amgen, Amoy Diagnostics, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, InMed Medical Communication, MSD, Novartis, Pfizer, prIME Oncology, Roche/Genentech, Taiho and Takeda Oncology; honoraria from AbbVie, ACEA Pharma, Alpha Biopharma, Amgen, Amoy Diagnostics, AstraZeneca, Bayer, Boehringer Ingelheim, Blueprint Medicines Corporation, Bristol Myers Squibb, Celgene, CStone Pharmaceuticals, Daiichi Sankyo, Eli Lilly, Fishawack Facilitate, Hengrui Therapeutics, Ignyta, Incyte Corporation, InMed Medical Communication, IQVIA, Janssen, Loxo Oncology, Merck Serono, MSD, MORE Health, Novartis, OncoGenex Pharmaceuticals, OrigiMed, PeerVoice, Pfizer, prIME Oncology, Roche/Genentech, Sanofi-Aventis R&D, SFJ Pharmaceuticals, Takeda Pharmaceuticals (Hong Kong), Vertex Pharmaceuticals, Yuhan Corporation, Medscape/WebMD (medical education/continuing medical education activities), PeerVoice (independent medical education) and prIME Oncology (medical education); shares in Hutchison Chi-Med and Sanomics; stock options in Clearbridge Biomedics (now Biolidics), Loxo Oncology, OrigiMed and Virtus Medical Group; an advisory role for AbbVie, ACEA Pharma, Amgen, AstraZeneca, Bayer, Blueprint Medicines Corporation, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Cirina, CStone Pharmaceuticals, Daiichi Sankyo, Eli Lilly, Fishawack Facilitate, G1 Therapeutics, GeneDecode (uncompensated), Hengrui Therapeutics, Hutchison Chi-Med, Ignyta, Incyte Corporation, IQVIA, Janssen, Loxo Oncology, Lunit, Merck Serono, Merck Sharp & Dohme, Novartis, OncoGenex Technologies, OrigiMed, Pfizer, Roche/Genentech, Sanofi-Aventis R&D, SFJ Pharmaceutical, Takeda Oncology, Vertex Pharmaceuticals, Virtus Medical Group and Yuhan Corporation; board of directors/leadership roles (remunerated) for AstraZeneca and Hutchison Chi-Med; and board of directors/leadership roles (non-remunerated) for the American Society of Clinical Oncology (ASCO), Asian Thoracic Oncology Research Group (ATORG), Chinese Lung Cancer Research Foundation Limited (CLCRF), Chinese Society of Clinical Oncology (CSCO), Hong Kong Cancer Fund (HKCF), Hong Kong Cancer Therapy Society (HKCTS), International Association for the Study of Lung Cancer (IASLC) and St. Stephen’s College Preparatory School. S.P. received education grants, provided consultation, attended advisory board meetings and/or provided lectures for AbbVie, Amgen, AstraZeneca, Bayer, Biocartis, BioInvent, Blueprint Medicines Corporation, Boehringer Ingelheim, Bristol Myers Squibb, Clovis, Daiichi Sankyo, Debiopharm, Eli Lilly, F. Hoffmann-La Roche, Foundation Medicine, Illumina, Janssen, Merck Sharp & Dohme, Merck Serono, Merrimack, Novartis, PharmaMar, Pfizer, Regeneron, Sanofi, Seattle Genetics, Takeda and Vaccibody, from whom she received honoraria (all fees to institution).

Additional information

Peer review information Nature Cancer thanks Jamie Chaft, Melina Marmarelis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passaro, A., Jänne, P.A., Mok, T. et al. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer 2, 377–391 (2021). https://doi.org/10.1038/s43018-021-00195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-021-00195-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer