Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The metabolic landscape of RAS-driven cancers from biology to therapy

Abstract

Our understanding of how the RAS protein family, and in particular mutant KRAS, promotes metabolic dysregulation in cancer cells has advanced substantially over the last decade. In this Review, we discuss the metabolic reprogramming mediated by oncogenic RAS in cancer and elucidate the underlying mechanisms that could translate to novel therapeutic opportunities to target metabolic vulnerabilities in RAS-driven cancers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Frequency and distribution of mutations in RAS genes in human cancers.
Fig. 2: Oncogenic RAS-dependent control of cellular metabolism.
Fig. 3: Metabolic alterations and vulnerabilities of RAS-driven cancers.
Fig. 4: Oncogenic driver genes and their involvement in metabolic pathways.

Data availability

For Fig. 1 and Supplementary Tables 13, genome-wide cancer mutation data were compiled from databases and public resources, including AACR Genie (release 6.1-public)149, COSMIC (v90)150, cBioPortal151,152, the TCGA Research Network (https://www.cancer.gov/tcga) and NCI’s Genomic Data Commons (GDC)153, that are openly accessible to the public and are cited in the paper. The datasets derived from these resources that support the analyses and discussion presented in this article are available in the cited references. For Fig. 4a,b, previously published cancer driver mutation data were acquired from refs. 134,135 and ICGC/TCGA via controlled access through rigorous application and are available from these resources.

Code availability

For Fig. 4, genes with driver mutations were applied to an in-house pathway pattern extraction pipeline (PPEP) tool described in ref. 154 and implemented in customized R scripts (https://www.r-project.org/). PPEP and corresponding databases (WPS version 2) can be downloaded from the WPS homepage. This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool155 can be made available on request from the corresponding author.

References

  1. 1.

    Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Stalnecker, C. A. & Der, C. J. RAS, wanted dead or alive: advances in targeting RAS mutant cancers. Sci. Signal. https://doi.org/10.1126/scisignal.aay6013 (2020).

  3. 3.

    Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761–774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 2457–2467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Haigis, K. M. KRAS alleles: the devil is in the detail. Trends Cancer 3, 686–697 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Canon, J. et al. The clinical KRASG12C inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    CAS  PubMed  Google Scholar 

  9. 9.

    Hallin, J. et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    CAS  PubMed  Google Scholar 

  10. 10.

    Janes, M. R. et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589 (2018).

    CAS  PubMed  Google Scholar 

  11. 11.

    Hata, A. N. & Shaw, A. T. Resistance looms for KRASG12C inhibitors. Nat. Med. 26, 169–170 (2020).

    CAS  PubMed  Google Scholar 

  12. 12.

    Bar-Sagi, D., Knelson, E. H. & Sequist, L. V. A bright future for KRAS inhibitors. Nat. Cancer 1, 25–27 (2020).

    Google Scholar 

  13. 13.

    Fedele, C. et al. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J. Exp. Med. https://doi.org/10.1084/jem.20201414 (2021).

  14. 14.

    Ryan, M. B. et al. Vertical pathway inhibition overcomes adaptive feedback resistance to KRASG12C inhibition. Clin. Cancer Res. 26, 1633–1643 (2020).

    CAS  PubMed  Google Scholar 

  15. 15.

    Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Google Scholar 

  18. 18.

    Kelloff, G. J. et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785–2808 (2005).

    CAS  PubMed  Google Scholar 

  19. 19.

    d’Amico, A. Review of clinical practice utility of positron emission tomography with 18F-fluorodeoxyglucose in assessing tumour response to therapy. Radiol. Med. 120, 345–351 (2015).

    PubMed  Google Scholar 

  20. 20.

    Peters, G. J. et al. Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol. Ther. 87, 227–253 (2000).

    CAS  PubMed  Google Scholar 

  21. 21.

    Luengo, A., Gui, D. Y. & Vander Heiden, M. G. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Nagarajan, A., Malvi, P. & Wajapeyee, N. Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2, 365–377 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Levine, A. J. & Puzio-Kuter, A. M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340–1344 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yuneva, M. O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Amendola, C. R. et al. KRAS4A directly regulates hexokinase 1. Nature 576, 482–486 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555–1559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kole, H. K., Resnick, R. J., Van Doren, M. & Racker, E. Regulation of 6-phosphofructo-1-kinase activity in ras-transformed rat-1 fibroblasts. Arch. Biochem. Biophys. 286, 586–590 (1991).

    CAS  PubMed  Google Scholar 

  32. 32.

    Racker, E., Resnick, R. J. & Feldman, R. Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc. Natl Acad. Sci. USA 82, 3535–3538 (1985).

    CAS  PubMed  Google Scholar 

  33. 33.

    Chun, S. Y. et al. Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes. Mol. Cancer 9, 293 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Slawson, C., Copeland, R. J. & Hart, G. W. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci. 35, 547–555 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Stincone, A. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 90, 927–963 (2015).

    PubMed  Google Scholar 

  36. 36.

    Taparra, K. et al. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J. Clin. Invest. 128, 4924–4937 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 9, 4945 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yun, J. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350, 1391–1396 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lock, R. et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22, 165–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bellier, J. et al. Methylglyoxal scavengers resensitize KRAS-mutated colorectal tumors to cetuximab. Cell Rep 30, 1400–1416 e1406 (2020).

    CAS  PubMed  Google Scholar 

  41. 41.

    Bellahcene, A., Nokin, M. J., Castronovo, V. & Schalkwijk, C. Methylglyoxal-derived stress: an emerging biological factor involved in the onset and progression of cancer. Semin. Cancer Biol. 49, 64–74 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Moran, D. M. et al. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol. Cancer Ther. 13, 1611–1624 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Gomes, A. P. & Blenis, J. A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Curr. Opin. Biotechnol. 34, 110–117 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Calles, A. et al. Immunohistochemical loss of LKB1 is a biomarker for more aggressive biology in KRAS-mutant lung adenocarcinoma. Clin. Cancer Res. 21, 2851–2860 (2015).

    CAS  PubMed  Google Scholar 

  47. 47.

    Lv, J., Wang, J., Chang, S., Liu, M. & Pang, X. The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Acta Biochim. Biophys. Sin. 48, 17–26 (2016).

    CAS  PubMed  Google Scholar 

  48. 48.

    Flaig, T. W. et al. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest. New Drugs 25, 139–146 (2007).

    CAS  PubMed  Google Scholar 

  49. 49.

    Siebeneicher, H. et al. Identification and optimization of the first highly selective GLUT1 inhibitor BAY-876. ChemMedChem 11, 2261–2271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ma, Y. et al. Ovarian cancer relies on glucose transporter 1 to fuel glycolysis and growth: anti-tumor activity of BAY-876. Cancers https://doi.org/10.3390/cancers11010033 (2018).

  51. 51.

    van der Mijn, J. C., Panka, D. J., Geissler, A. K., Verheul, H. M. & Mier, J. W. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab. 4, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Yang, L., Venneti, S. & Nagrath, D. Glutaminolysis: a hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    DeBerardinis, R. J. & Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).

    CAS  PubMed  Google Scholar 

  54. 54.

    Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).

    CAS  PubMed  Google Scholar 

  55. 55.

    Toda, K. et al. Clinical role of ASCT2 (SLC1A5) in KRAS-mutated colorectal cancer. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18081632 (2017).

  56. 56.

    Dejure, F. R. & Eilers, M. MYC and tumor metabolism: chicken and egg. EMBO J. 36, 3409–3420 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Mukhopadhyay, S., Saqcena, M. & Foster, D. A. Synthetic lethality in KRas-driven cancer cells created by glutamine deprivation. Oncoscience 2, 807–808 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Mukhopadhyay, S. et al. Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-19-1363 (2020).

  61. 61.

    Chio, I. I. C. et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166, 963–976 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Sayin, V. I. et al. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. eLife https://doi.org/10.7554/eLife.28083 (2017).

  64. 64.

    Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    CAS  PubMed  Google Scholar 

  65. 65.

    Saqcena, M. et al. Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene 34, 2672–2680 (2015).

    CAS  PubMed  Google Scholar 

  66. 66.

    Galan-Cobo, A. et al. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 79, 3251–3267 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Skoulidis, F. & Heymach, J. V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 19, 495–509 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science https://doi.org/10.1126/science.aaw5473 (2020).

  69. 69.

    Kaufman, J. M. et al. LKB1 loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K–AKT. J. Thorac. Oncol. 9, 794–804 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Li, F. et al. LKB1 inactivation elicits a redox imbalance to modulate non-small cell lung cancer plasticity and therapeutic response. Cancer Cell 27, 698–711 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Best, S. A. et al. Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nat. Commun. 10, 4190 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Hernandez-Davies, J. E. et al. Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. J. Transl. Med. 13, 210 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Muir, A. et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife https://doi.org/10.7554/eLife.27713 (2017).

  74. 74.

    Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Biancur, D. E. et al. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun. 8, 15965 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Lim, J. K. M. et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl Acad. Sci. USA 116, 9433–9442 (2019).

    CAS  PubMed  Google Scholar 

  77. 77.

    Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Salloum, D., Mukhopadhyay, S., Tung, K., Polonetskaya, A. & Foster, D. A. Mutant Ras elevates dependence on serum lipids and creates a synthetic lethality for rapamycin. Mol. Cancer Ther. 13, 733–741 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013).

    CAS  PubMed  Google Scholar 

  82. 82.

    Carrer, A. et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 9, 416–435 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Padanad, M. S. et al. Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 16, 1614–1628 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Singh, A. et al. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer. FASEB J. https://doi.org/10.1096/fj.201800204 (2018).

  85. 85.

    Gouw, A. M. et al. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc. Natl Acad. Sci. USA 114, 4300–4305 (2017).

    CAS  PubMed  Google Scholar 

  86. 86.

    Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167–1181 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Guo, J. Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447–1461 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Guo, J. Y. & White, E. Autophagy is required for mitochondrial function, lipid metabolism, growth, and fate of KRASG12D-driven lung tumors. Autophagy 9, 1636–1638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Perera, R. M. et al. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    White, E. Exploiting the bad eating habits of Ras-driven cancers. Genes Dev. 27, 2065–2071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Kinsey, C. G. et al. Protective autophagy elicited by RAF–>MEK–>ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620–627 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Lee, C. S. et al. MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc. Natl Acad. Sci. USA 116, 4508–4517 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Humpton, T. J. et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 9, 1268–1287 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Zhang, Y. & Commisso, C. Macropinocytosis in cancer: a complex signaling network. Trends Cancer 5, 332–334 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Hobbs, G. A. et al. Atypical KRASG12R mutant is impaired in PI3K signaling and macropinocytosis in pancreatic cancer. Cancer Discov. 10, 104–123 (2020).

    CAS  PubMed  Google Scholar 

  100. 100.

    Ramirez, C., Hauser, A. D., Vucic, E. A. & Bar-Sagi, D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 576, 477–481 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Grana, T. M., Rusyn, E. V., Zhou, H., Sartor, C. I. & Cox, A. D. Ras mediates radioresistance through both phosphatidylinositol 3-kinase-dependent and Raf-dependent but mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-independent signaling pathways. Cancer Res. 62, 4142–4150 (2002).

    CAS  PubMed  Google Scholar 

  102. 102.

    Eberhard, D. A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).

    CAS  PubMed  Google Scholar 

  103. 103.

    Miller, A. C., Kariko, K., Myers, C. E., Clark, E. P. & Samid, D. Increased radioresistance of EJras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21ras isoprenylation. Int. J. Cancer 53, 302–307 (1993).

    CAS  PubMed  Google Scholar 

  104. 104.

    Bernhard, E. J. et al. Direct evidence for the contribution of activated N-ras and K-ras oncogenes to increased intrinsic radiation resistance in human tumor cell lines. Cancer Res. 60, 6597–6600 (2000).

    CAS  PubMed  Google Scholar 

  105. 105.

    Muzumdar, M. D. et al. Survival of pancreatic cancer cells lacking KRAS function. Nat. Commun. 8, 1090 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Liou, G. Y. et al. Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep. 14, 2325–2336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Ogrunc, M. et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 21, 998–1012 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Chio, I. I. C. & Tuveson, D. A. ROS in cancer: the burning question. Trends Mol. Med. 23, 411–429 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Grabocka, E. & Bar-Sagi, D. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell 167, 1803–1813 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Kansanen, E., Kivela, A. M. & Levonen, A. L. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12,14-prostaglandin J2. Free Radic. Biol. Med. 47, 1310–1317 (2009).

    CAS  PubMed  Google Scholar 

  112. 112.

    Hsu, P. P. & Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 134, 703–707 (2008).

    CAS  PubMed  Google Scholar 

  113. 113.

    Adhikari, H. & Counter, C. M. Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nat. Commun. 9, 3646 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Kelly, M. R. et al. Combined proteomic and genetic interaction mapping reveals new RAS effector pathways and susceptibilities. Cancer Discov. 10, 1950–1967 (2020).

    CAS  PubMed  Google Scholar 

  115. 115.

    Kovalski, J. R. et al. The functional proximal proteome of oncogenic Ras includes mTORC2. Mol. Cell 73, 830–844 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Beganton, B. et al. Proximal protein interaction landscape of RAS paralogs. Cancers https://doi.org/10.3390/cancers12113326 (2020).

  117. 117.

    Mukhopadhyay, S. et al. Reciprocal regulation of AMP-activated protein kinase and phospholipase D. J. Biol. Chem. 290, 6986–6993 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    CAS  PubMed  Google Scholar 

  119. 119.

    Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).

    CAS  PubMed  Google Scholar 

  120. 120.

    van den Heuvel, A. P., Jing, J., Wooster, R. F. & Bachman, K. E. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol. Ther. 13, 1185–1194 (2012).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Kung, H. N., Marks, J. R. & Chi, J. T. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 7, e1002229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Nelson, B. S. et al. Tissue of origin dictates GOT1 dependence and confers synthetic lethality to radiotherapy. Cancer Metab. 8, 1 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Brunelli, L., Caiola, E., Marabese, M., Broggini, M. & Pastorelli, R. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget 5, 4722–4731 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Stolze, B., Reinhart, S., Bulllinger, L., Frohling, S. & Scholl, C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci. Rep. 5, 8535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Santra, T. et al. An integrated global analysis of compartmentalized HRAS signaling. Cell Rep. 26, 3100–3115 (2019).

    CAS  PubMed  Google Scholar 

  126. 126.

    Brunelli, L., Caiola, E., Marabese, M., Broggini, M. & Pastorelli, R. Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo. Sci. Rep. 6, 28398 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A. & Saavedra, E. Energy metabolism in tumor cells. FEBS J. 274, 1393–1418 (2007).

    CAS  PubMed  Google Scholar 

  128. 128.

    DeVita, V. T. Jr. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    CAS  PubMed  Google Scholar 

  129. 129.

    Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Google Scholar 

  130. 130.

    Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    PubMed Central  Google Scholar 

  131. 131.

    Vander Heiden, M. G. Exploiting tumor metabolism: challenges for clinical translation. J. Clin. Invest. 123, 3648–3651 (2013).

    Google Scholar 

  132. 132.

    Lue, H. W. et al. Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes Dev. 31, 2067–2084 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Loftus, R. M. & Finlay, D. K. Immunometabolism: cellular metabolism turns immune regulator. J. Biol. Chem. 291, 1–10 (2016).

    CAS  PubMed  Google Scholar 

  134. 134.

    Sabarinathan, R. et al. The whole-genome panorama of cancer drivers. Preprint at bioRxiv https://doi.org/10.1101/190330 (2017).

  135. 135.

    ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Google Scholar 

  136. 136.

    Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010).

    CAS  PubMed  Google Scholar 

  137. 137.

    Alam, H. et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer. Cancer Cell 37, 599–617 (2020).

    CAS  PubMed  Google Scholar 

  138. 138.

    Castellano, E. & Downward, J. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2, 261–274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Nogueira, C. et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene 29, 6222–6232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Wakimoto, H. et al. Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin. Cancer Res. 20, 2898–2909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Fernandez-Garcia, B. et al. p73 cooperates with Ras in the activation of MAP kinase signaling cascade. Cell Death Differ. 14, 254–265 (2007).

    CAS  PubMed  Google Scholar 

  142. 142.

    Dias Carvalho, P. et al. KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer Res. 78, 7–14 (2018).

    CAS  PubMed  Google Scholar 

  143. 143.

    Lo Re, A. E. et al. Novel AKT1–GLI3–VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. J. Biol. Chem. 287, 25325–25334 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    CAS  PubMed  Google Scholar 

  145. 145.

    Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Zhang, S., Xiong, X. & Sun, Y. Functional characterization of SOX2 as an anticancer target. Signal Transduct. Target. Ther. 5, 135 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Jeong, W. J., Ro, E. J. & Choi, K. Y. Interaction between Wnt/β-catenin and RAS–ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precis Oncol. 2, 5 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Google Scholar 

  150. 150.

    Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2018).

    PubMed Central  Google Scholar 

  151. 151.

    Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Grossman, R. L. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Yi, M., Mudunuri, U., Che, A. & Stephens, R. M. Seeking unique and common biological themes in multiple gene lists or datasets: pathway pattern extraction pipeline for pathway-level comparative analysis. BMC Bioinformatics 10, 200 (2009).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Yi, M., Horton, J. D., Cohen, J. C., Hobbs, H. H. & Stephens, R. M. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data. BMC Bioinformatics 7, 30 (2006).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Yi (Frederick National Laboratory for Cancer Research, FNL) for helping search cancer databases for RAS-mutant samples and assisting with driver gene data preparation. We are grateful to D. V. Nissley (NCI RAS Initiative, FNL) for critical comments and thoughtful suggestions on the manuscript. We also thank FNL’s Scientific Publications, Graphics and Media group for their technical assistance. This work was supported by grants from NCI, HHS–National Institutes of Health, under contract number HHSN261200800001E. Research in the lab of F.M. is supported by NCI under award number R35CA197709. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government.

Author information

Affiliations

Authors

Contributions

All authors conceived of the article, performed literature searches, integrated the information and wrote, discussed and edited the manuscript.

Corresponding author

Correspondence to Frank McCormick.

Ethics declarations

Competing interests

The authors are aware of no direct conflicts with the topic of the paper; however, M.G.V.H. is a scientific advisory board member for Agios Pharmaceuticals, Aeglea Biotherapetics, iTeos Therapeutics, Faeth Therapeutics and Auron Therapeutics. F.M. is a consultant for the following companies: Amgen, Daiichi, Ideaya Biosciences, Kura Oncology, Leidos Biomedical Research, PellePharm, Pfizer, PMV Pharma and Quanta Therapeutics. F.M. is a consultant and co-founder for the following companies (with ownership interest including stock options): BridgeBio, DNAtrix, Olema Pharmaceuticals and Quartz. F.M. is the scientific director of the NCI RAS Initiative at the Frederick National Laboratory for Cancer Research/Leidos Biomedical Research. None of these affiliations represents a conflict of interest with respect to this paper.

Additional information

Peer review information Nature Cancer thanks Ralph DeBerardinis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S., Vander Heiden, M.G. & McCormick, F. The metabolic landscape of RAS-driven cancers from biology to therapy. Nat Cancer 2, 271–283 (2021). https://doi.org/10.1038/s43018-021-00184-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing