Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:


Deep learning links histology, molecular signatures and prognosis in cancer

Deep learning can be used to predict genomic alterations on the basis of morphological features learned from digital histopathology. Two independent pan-cancer studies now show that automated learning from digital pathology slides and genomics can potentially delineate broader classes of molecular signatures and prognostic associations across cancer types.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the two pan-cancer deep-learning-based approaches to unveil genotypes information from whole slide images.


  1. El-Deiry, W. S. et al. CA Cancer J. Clin. 69, 305–343 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. Mobadersany, P. et al. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).

    Article  CAS  Google Scholar 

  3. Coudray, N. et al. Nat. Med. 24, 1559–1567 (2018).

    Article  CAS  Google Scholar 

  4. Campanella, G. et al. Nat. Med. 25, 1301–1309 (2019).

    Article  CAS  Google Scholar 

  5. Ehteshami Bejnordi, B. et al. J. Am. Med. Assoc. 318, 2199–2210 (2017).

    Article  Google Scholar 

  6. Topol, E. J. Nat. Med. 25, 44–56 (2019).

    Article  CAS  Google Scholar 

  7. Tizhoosh, H. R. & Pantanowitz, L. J. Pathol. Inform. 9, 38 (2018).

    Article  Google Scholar 

  8. Kazandjian, D. et al. Clin. Cancer Res. 22, 1307–1312 (2016).

    Article  CAS  Google Scholar 

  9. Kather, J. N. et al. Nat. Med. 25, 1054–1056 (2019).

    Article  CAS  Google Scholar 

  10. Sha, L. et al. J. Pathol. Inform. 10, 24 (2019).

    Article  Google Scholar 

  11. Schaumberg, A. J., Rubin, M. A. & Fuchs, T. J. bioRxiv (2018).

    Article  Google Scholar 

  12. Sun, M. et al. Cancers (Basel) 11, 1579 (2019).

    Article  CAS  Google Scholar 

  13. Kather, J. N. et al. Nat. Can. (2020).

    Article  Google Scholar 

  14. Fu, Y. et al. Nat. Can. (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Nicolas Coudray or Aristotelis Tsirigos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coudray, N., Tsirigos, A. Deep learning links histology, molecular signatures and prognosis in cancer. Nat Cancer 1, 755–757 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer