Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The occurrence, mechanisms and hazards of large landslides along tablelands

Abstract

The largest terrestrial coalescent landslide areas of the Earth, spanning hundreds to thousands of square kilometres, occur along the fringes of relatively low-relief sedimentary and volcanic tablelands. However, difficulties in landslide recognition in these areas have led to underestimations of their frequency and likelihood. In this Review, we explore the global distribution, controls and dynamics of landslides occurring along tableland fringes. Landslide fringes are caused by the uninterrupted and extensive presence of weak sub-caprock lithologies below a more competent caprock. Topography, escarpment height and caprock thickness do not affect landslide size but can locally influence the type of displacement. Rotational landslides dominate most landslide fringes and will eventually lead to tableland consumption over million-year timescales. Some tableland rims can generate catastrophic long-runout rock avalanches or earthflows, which might in turn trigger tsunamis, river avulsion or outburst floods. Tablelands can also fail by slow (centimetre per year) landslide movements sufficient to cause damage to infrastructure. These hazards are increasing especially in high-latitude tablelands owing to cryosphere degradation, as observed in Western Greenland. A more detailed global inventory of landslide fringe activity is urgently needed to better quantify these potential hazards.

Key points

  • Coalescent landslides found along tablelands in eastern Patagonia, the Colorado Plateau, the central Sahara, West Greenland and Central Asia cover areas spanning hundreds to thousands of square kilometres.

  • Landslide fringes emerge from the coalescence of numerous individual landslides over time and space, occasionally in conjunction with larger catastrophic events.

  • Giant tableland landslide fringes are influenced by geology, particularly weak rock occurrences at escarpment bases, with the lateral distribution of these units dictating the extent of landslide areas. Topography, escarpment height and caprock thickness do not affect landslide size but can locally influence the type of displacement.

  • Retrogressive rotational landslides, prevalent along tableland fringes, were often assumed to be fossilized or inactive, especially in arid regions. Satellite monitoring reveals that some landslide rims, even in arid regions, show movements in the order of centimetres per year.

  • Tableland fringes can also experience earthflows and catastrophic rock avalanches. Long-runout landslides can result in the damming of valley floors or landslide tsunamis, which can in turn trigger a chain of other hazards, such as flooding, river avulsions or outburst floods.

  • Future research should aim to build a broader global inventory of failed tablelands, through increased interferometric synthetic aperture radar-based monitoring and more extensive radiometric dating of known landslides along tableland rims.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tableland types and landslide fringes.
Fig. 2: Global distribution and regional examples of failed tablelands.
Fig. 3: Landslide mechanisms occurring in failed tablelands.
Fig. 4: The relationships among landslide metrics, escarpment height and caprock thickness.
Fig. 5: Landscape evolution of tablelands with a caprock versus flat plateaus made only of weak rock.

Similar content being viewed by others

References

  1. Hungr, O., Leroueil, S. & Picarelli, L. The Varnes classification of landslide types, an update. Landslides 11, 167–194 (2014).

    Article  Google Scholar 

  2. Korup, O. et al. Giant landslides, topography, and erosion. Earth Planet. Sci. Lett. 261, 578–589 (2007).

    Article  CAS  Google Scholar 

  3. Hewitt, K., Clague, J. J. & Orwin, J. F. Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci. Rev. 87, 1–38 (2008).

    Article  Google Scholar 

  4. Marc, O. et al. Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides. Earth Surf. Dyn. 7, 107–128 (2019).

    Article  Google Scholar 

  5. Petley, D. Global patterns of loss of life from landslides. Geology 40, 927–930 (2012).

    Article  Google Scholar 

  6. Schönfeldt, E., Winocur, D., Pánek, T. & Korup, O. Deep learning reveals one of Earth’s largest landslide terrain in Patagonia. Earth Planet. Sci. Lett. 593, 117642 (2022).

    Article  Google Scholar 

  7. Migoń, P. & Duszyński, F. Landscapes and landforms in coarse clastic sedimentary tablelands — is there a unifying theme? CATENA 218, 106545 (2022).

    Article  Google Scholar 

  8. Pánek, T., Korup, O., Minár, J. & Hradecký, J. Giant landslides and highstands of the Caspian Sea. Geology 44, 939–942 (2016).

    Article  Google Scholar 

  9. Mazzoni, E. & Rabassa, J. Types and internal hydro-geomorphologic variability of mallines (wet-meadows) of Patagonia: emphasis on volcanic plateaus. J. South Am. Earth Sci. 46, 170–182 (2013).

    Article  Google Scholar 

  10. Mazzoni, E. & Rabassa, J. Introduction: Patagonia basalt tablelands (‘Escoriales’) and their significance in the genesis of wetlands. in Volcanic Landscapes and Associated Wetlands of Lowland Patagonia (eds Mazzoni, E. & Rabassa, J.) 1–29 (Springer International Publishing, 2018).

  11. Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 13835 (2016).

    Article  CAS  Google Scholar 

  12. Busche, D. Early quaternary landslides of the Sahara and their significance for geomorphic and climatic history. J. Arid Environ. 49, 429–448 (2001).

    Article  Google Scholar 

  13. Strahler, A. N. Landslides of the Vermilion and Echo cliffs, northern Arizona. J. Geomorphol. 3, 285–301 (1940).

    Google Scholar 

  14. Ahnert, F. The influence of Pleistocene climates upon the morphology of cuesta scarps on the Colorado Plateau. Ann. Assoc. Am. Geograph. 50, 139–156 (1960).

    Article  Google Scholar 

  15. Reneau, S. L. & Dethier, D. P. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico. GSA Bull. 108, 1492–1507 (1996).

    Article  Google Scholar 

  16. Coe, J. A. et al. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado. Geosphere 12, 607–631 (2016).

    Article  Google Scholar 

  17. Watkins, C. M. & Rogers, J. D. A new look at landslides of the Vermilion and Echo Cliffs, Northern Arizona. Environ. Eng. Geosci. 28, 173–192 (2022).

    Article  Google Scholar 

  18. Svennevig, K. et al. A large frozen debris avalanche entraining warming permafrost ground — the June 2021 Assapaat landslide, West Greenland. Landslides 19, 2549–2567 (2022).

    Article  Google Scholar 

  19. Schoeneich, P. & Bouzou, I. Landslides in Niger (Western Africa). in Lanslides. Glissements de terrain (ed. Kaare, S.) 1967–1972 (Balkema, 1996).

  20. Sæmundsson, Th., Pétursson, H. G., Kneisel, C. & Beylich, A. A. Monitoring of the Tjarnardalir landslide, in central North Iceland. First North Am. Landslide Conf. 23, 1029–1040 (2007).

    Google Scholar 

  21. Evstatiev, D. & Evlogiev, Y. Landslides along the northern Black Sea coast between Varna city and Kavarna town (Bulgaria). Geo-Eco-Marina 19/2013, 39–57 (2013).

    Google Scholar 

  22. Mantovani, M., Devoto, S. & Forte, E. A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 10, 611–622 (2013).

    Article  Google Scholar 

  23. Dufresne, A., Siebert, L. & Bernard, B. Distribution and geometric parameters of volcanic debris avalanche deposits. in Volcanic Debris Avalanches (eds Roverato, M., Dufresne, A. & Proter, J.) 75–90 (Springer, 2021).

  24. Zhuang, J. et al. Distribution and characteristics of landslide in Loess Plateau: a case study in Shaanxi province. Eng. Geol. 236, 89–96 (2018).

    Article  Google Scholar 

  25. Kong, J. et al. Failure mechanism and movement process of three loess landslides due to freeze–thaw cycle in the Fangtai village, Yongjing County, Chinese Loess Plateau. Eng. Geol. 315, 107030 (2023).

    Article  Google Scholar 

  26. Bjerrum, L. Stability of natural slopes in quick clay. Géotechnique 5, 101–119 (1955).

    Article  Google Scholar 

  27. Bryn, P., Berg, K., Forsberg, C. F., Solheim, A. & Kvalstad, T. J. Explaining the Storegga Slide. Mar. Petrol. Geol. 22, 11–19 (2005).

    Article  Google Scholar 

  28. Vanneste, M., Mienert, J. & Bünz, S. The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean. Earth Planet. Sci. Lett. 245, 373–388 (2006).

    Article  CAS  Google Scholar 

  29. Elger, J. et al. Chronology of the fram slide complex offshore NW Svalbard and its implications for local and regional slope stability. Mar. Geol. 393, 141–155 (2017).

    Article  Google Scholar 

  30. Brunetti, M. T. et al. Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars. Earth Planet. Sci. Lett. 405, 156–168 (2014).

    Article  CAS  Google Scholar 

  31. Crosta, G. B., Frattini, P., Valbuzzi, E. & De Blasio, F. V. Introducing a new inventory of large Martian landslides. Earth Space Sci. 5, 89–119 (2018).

    Article  Google Scholar 

  32. Reiche, P. The Toreva-block — a distinctive landslide type. J. Geol. 45, 538–548 (1937).

    Article  Google Scholar 

  33. Robertson, J. E., Karlstrom, K. E., Heizler, M. T. & Crossey, L. J. Realignments of the Colorado River by 2 m.y. of rotational bedrock landsliding: the Surprise Valley landslide complex, Grand Canyon, Arizona. Geosphere 17, 1715–1744 (2021).

    Article  Google Scholar 

  34. Pánek, T., Korup, O., Lenart, J., Hradecký, J. & Břežný, M. Giant landslides in the foreland of the Patagonian Ice Sheet. Quater. Sci. Rev. 194, 39–54 (2018).

    Article  Google Scholar 

  35. Pánek, T., Břežný, M., Harrison, S., Schönfeldt, E. & Winocur, D. Large landslides cluster at the margin of a deglaciated mountain belt. Sci. Rep. 12, 5658 (2022).

    Article  Google Scholar 

  36. Pánek, T. et al. The largest rock avalanches in Patagonia: timing and relation to Patagonian Ice Sheet retreat. Quater. Sci. Rev. 302, 107962 (2023).

    Article  Google Scholar 

  37. Schönfeldt, E., Pánek, T., Winocur, D., Šilhán, K. & Korup, O. Postglacial Patagonian mass movement: from rotational slides and spreads to earthflows. Geomorphology 367, 107316 (2020).

    Article  Google Scholar 

  38. Svennevig, K. et al. Holocene gigascale rock avalanches in Vaigat strait, West Greenland — implications for geohazard. Geology 52, 147–152 (2024).

    Article  Google Scholar 

  39. Svennevig, K. Preliminary landslide mapping in Greenland. GEUS Bull. 43, 5 (2019).

    Article  Google Scholar 

  40. Schoeneich, P. & Bouzou, I. Glissements de terrain dans l’Adar (Niger). in Geowissenschaftliche Untersuchungen in Afrika Vol. 69 (eds Hagedorn, H. & Baumhauer, R.) 149–165 (Würzburg, 1988).

  41. Mège, D., Le Deit, L., Rango, T. & Korme, T. Gravity tectonics of topographic ridges: halokinesis and gravitational spreading in the western Ogaden, Ethiopia. Geomorphology 193, 1–13 (2013).

    Article  Google Scholar 

  42. Aslan, G., De Michele, M., Raucoules, D., Bernardie, S. & Cakir, Z. Transient motion of the largest landslide on earth, modulated by hydrological forces. Sci. Rep. 11, 10407 (2021).

    Article  CAS  Google Scholar 

  43. Mège, D. et al. Large-scale gravitational spreading in Southeast Ethiopia. in Geomorphology for Human Adaptation to Changing Tropical Environments (eds Asrat, A. & Dramis, F.) (Addis Ababa, 2011).

  44. Foglini, F. et al. Late Quaternary coastal landscape morphology and evolution of the Maltese Islands (Mediterranean Sea) reconstructed from high resolution seafloor data. in Geology and Archaeology: Submerged Landscapes of the Continental Shelf Vol. 411 (eds Harff, J., Bailey, G. & Lüth, F.) 77–95 (Geological Society, 2015).

  45. Prampolini, M. et al. Geomorphological mapping of terrestrial and marine areas, northern Malta and Comino (central Mediterranean Sea). J. Maps 13, 457–469 (2017).

    Article  Google Scholar 

  46. Moeyersons, J. et al. Mass movement mapping for geomorphological understanding and sustainable development: Tigray, Ethiopia. CATENA 75, 45–54 (2008).

    Article  Google Scholar 

  47. Van Den Eeckhaut, M. et al. Spatial patterns of old, deep-seated landslides: a case-study in the northern Ethiopian highlands. Geomorphology 105, 239–252 (2009).

    Article  Google Scholar 

  48. Kropáček, J., Vařilová, Z. & Nyssen, J. Historical aerial and terrestrial photographs for the investigation of mass movement dynamics in the Ethiopian Highlands. Land Degrad. Dev. 30, 483–493 (2019).

    Article  Google Scholar 

  49. Nyssen, J., Moeyersons, J., Poesen, J., Deckers, J. & Mitiku, H. The environmental significance of the remobilisation of ancient mass movements in the Atbara–Tekeze headwaters, Northern Ethiopia. Geomorphology 49, 303–322 (2003).

    Article  Google Scholar 

  50. Whalley, W. B., Douglas, G. R. & Jonsson, A. The magnitude and frequency of large rockslides in Iceland in the postglacial. Geografiska Annaler. Ser. A Phys. Geogr. 65, 99–110 (1983).

    Article  Google Scholar 

  51. Cossart, E. et al. Impacts of post-glacial rebound on landslide spatial distribution at a regional scale in northern Iceland (Skagafjörður). Earth Surf. Process. Landf. 39, 336–350 (2014).

    Article  Google Scholar 

  52. Feuillet, T. et al. Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: do paraglacial factors vary over space? Prog. Phys. Geogr. 38, 354–377 (2014).

    Article  Google Scholar 

  53. Decaulne, A. et al. An early Holocene age for the Vatn landslide (Skagafjörður, central northern Iceland): insights into the role of postglacial landsliding on slope development. Holocene 26, 1304–1318 (2016).

    Article  Google Scholar 

  54. Peras, A., Decaulne, A., Cossart, E., Coquin, J. & Mercier, D. Distribution and spatial analysis of rockslides failures in the Icelandic Westfjords: first results. Géomorphologie 22, 25–35 (2016).

    Article  Google Scholar 

  55. Portier, E., Mercier, D. & Decaulne, A. Spatial analysis and controlling factors of landslides in East Icelandic fjords. Géomorphologie 29, 17634 (2023).

    Article  Google Scholar 

  56. Coquin, J., Mercier, D., Bourgeois, O., Cossart, E. & Decaulne, A. Gravitational spreading of mountain ridges coeval with Late Weichselian deglaciation: impact on glacial landscapes in Tröllaskagi, northern Iceland. Quater. Sci. Rev. 107, 197–213 (2015).

    Article  Google Scholar 

  57. Coquin, J., Mercier, D., Bourgeois, O., Feuillet, T. & Decaulne, A. Is gravitational spreading a precursor for the Stífluhólar landslide (Skagafjörður, Northern Iceland)? Géomorphologie 22, 9–24 (2016).

    Article  Google Scholar 

  58. Rybář, J., Stemberk, J. & Hartvich, F. Slope failures around the rock castle Drábské světničky, Czech Republic. Acta Geodyn. Geomater. 4, 51–65 (2006).

    Google Scholar 

  59. Duszyński, F., Jancewicz, K., Kasprzak, M. & Migoń, P. The role of landslides in downslope transport of caprock-derived boulders in sedimentary tablelands, Stołowe Mts, SW Poland. Geomorphology 295, 84–101 (2017).

    Article  Google Scholar 

  60. Stemberk, J., Hartvich, F., Blahůt, J., Rybář, J. & Krejčí, O. Tectonic strain changes affecting the development of deep seated gravitational slope deformations in the Bohemian Massif and Outer Western Carpathians. Geomorphology 289, 3–17 (2017).

    Article  Google Scholar 

  61. Schmidt, K. H. & Beyer, I. Factors controlling mass movement susceptibility on the Wellenkalk-scarp in Hesse and Thuringia. Z. fur Geomorphologie, Supplementband 125, 43–63 (2001).

    Google Scholar 

  62. Schmidt, K.-H. & Beyer, I. High-magnitude landslide events on a limestone-scarp in central Germany: morphometric characteristics and climatic controls. Geomorphology 49, 323–342 (2003).

    Article  Google Scholar 

  63. Yenes, M., Monterrubio, S., Nespereira, J. & Santos, G. Geometry and kinematics of a landslide surface in tertiary clays from the Duero Basin (Spain). Eng. Geol. 104, 41–54 (2009).

    Article  Google Scholar 

  64. Yenes, M., Monterrubio, S., Nespereira, J., Santos, G. & Fernández-Macarro, B. Large landslides induced by fluvial incision in the Cenozoic Duero Basin (Spain). Geomorphology 246, 263–276 (2015).

    Article  Google Scholar 

  65. Knight, J. Deglaciation and paraglacial landsliding in the Antrim Glens: an example from Garron Point. in North of Ireland: Field Guide (eds Whitehouse, N. J., Roe, H. M., McCarron, S. & Knight, J.) 129–136 (Quaternary Research Association, 2008).

  66. Southall, D. W. et al. Age evaluation and causation of rock-slope failures along the western margin of the Antrim Lava Group (ALG), Northern Ireland, based on cosmogenic isotope (36Cl) surface exposure dating. Geomorphology 285, 235–246 (2017).

    Article  Google Scholar 

  67. Stengel, I. Fossil landslides in the Schwarzrand, Huib and Huns escarpment areas — a contribution to the quaternary morphostratigraphy of Southern Namibia. Paleoecol. Afr. Surround. Isl. 27, 221–238 (2001).

    Google Scholar 

  68. Slee, A. et al. The age and paleoclimate implications of relict periglacial block deposits on the New England Tablelands, Australia. Quater. Res. 111, 121–137 (2023).

    Article  CAS  Google Scholar 

  69. Selby, M. J. Hillslope Materials and Processes (Oxford Univ. Press, 1993).

  70. Dupuis, C. et al. Genesis and geometry of tilted blocks in the Theban Hills, near Luxor (Upper Egypt). J. Afr. Earth Sci. 61, 245–267 (2011).

    Article  Google Scholar 

  71. Peulvast, J.-P., Bétard, F. & de Oliveira Magalhães, A. Scarp morphology and identification of large-scale mass movements in tropical tablelands: the eastern Araripe basin (Ceará, Brazil). Géomorphologie 17, 33–52 (2011).

    Article  Google Scholar 

  72. Baum, R. L. & Odum, J. K. Geologic Map of Slump-Block Deposits in Part of the Grand Mesa Area, Delta and Mesa Counties Vol. 1 (United States Geological Survey, 1996).

  73. Gerath, R. F. & Hungr, O. Active earth: landslide terrain, Scatter River Valley, Northeastern British Columbia. Geosci. Canada 10, 30–32 (1983).

    Google Scholar 

  74. Fenton, C., Martin, P., Cheng, F. & Murphy, B. Geomorphological analysis of large scale slope instability, Trotternish, Isle of Skye. Eng. Geol. Soc. Territory 2, 1037–1040 (2015).

    Article  Google Scholar 

  75. Devoto, S. et al. Geomorphological map of the NW coast of the island of Malta, Mediterranean Sea.J. Maps 8, 33–40 (2012).

    Article  Google Scholar 

  76. Evstatiev, D. & Evlogiev, Y. On the origin of the ‘Ikantalaka’ landslide — the Balchik coast. Geol. Balcanica 36, 25–30 (2007).

    Article  Google Scholar 

  77. Berov, B., Ivanov, P., Dobrev, N., Nankin, R. & Krastanov, M. State of the Art for Landslides Along the North Bulgarian Black Sea Coast 97–112 (Springer, 2013).

  78. Watson, R. A. & Wright, H. E. Landslides on the east flank of the Chuska Mountains, northwestern New Mexico. Am. J. Sci. 261, 525–548 (1963).

    Article  Google Scholar 

  79. Grunert, J. Geomorphologie der Schichtstufen am Westrand des Murzuk-Beckens (Zentrale Sahara).Relief-Boden-Palaöklima 2, 271 (1983).

    Google Scholar 

  80. Pasuto, A., Soldati, M. & Tecca, P. R. 5.10 — lateral spread: from rock to soil spreading. in Treatise on Geomorphology 2nd edn (ed. Shroder, J.) 169–182 (Academic Press, 2022).

  81. Moore, J. M. & Schultz, R. A. Processes of faulting in jointed rocks of Canyonlands National Park, Utah. Geol. Soc. Am. Bull. 111, 808–822 (1999).

    Article  Google Scholar 

  82. Gutiérrez, F. Origin of the salt valleys in the Canyonlands section of the Colorado Plateau: evaporite-dissolution collapse versus tectonic subsidence. Geomorphology 57, 423–435 (2004).

    Article  Google Scholar 

  83. Schultz-Ela, D. D. & Walsh, P. Modeling of grabens extending above evaporites in Canyonlands National Park. Utah J. Struct. Geol. 24, 247–275 (2002).

    Article  Google Scholar 

  84. Goldscheider, N., Chen, Z. & Auler, A. S. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 28, 1661–1677 (2020).

    Article  CAS  Google Scholar 

  85. Davies, T. R., McSaveney, M. J. & Hodgson, K. A. A fragmentation-spreading model for long-runout rock avalanches. Can. Geotech. J. 36, 1096–1110 (1999).

    Article  Google Scholar 

  86. Aaron, J. & McDougall, S. Rock avalanche mobility: the role of path material. Eng. Geol. 257, 105126 (2019).

    Article  Google Scholar 

  87. Safran, E. B., Anderson, S. W., Mills-Novoa, M., House, P. K. & Ely, L. Controls on large landslide distribution and implications for the geomorphic evolution of the southern interior Columbia River basin. Geol. Soc. Am. Bull. 123, 1851–1862 (2011).

    Article  Google Scholar 

  88. Safran, E. B. et al. Plugs or flood-markers? The unstable landslide dams of eastern Oregon. Geomorphology 248, 237–251 (2015).

    Article  Google Scholar 

  89. Mercier, D. et al. The Höfðahólar rock avalanche (Sturzström): chronological constraint of paraglacial landsliding on an Icelandic hillslope. Holocene 23, 432–446 (2013).

    Article  Google Scholar 

  90. White, J. L., Morgan, M. L. & Berry, K. A. The West Salt Creek landslide: a catastrophic rockslide and rock/debris avalanche in Mesa County, Colorado. Colo. Geol. Surv. Bull. 55, 2 (2015).

    Google Scholar 

  91. Peulvast, J. P. & Bétard, F. A history of basin inversion, scarp retreat and shallow denudation: the Araripe basin as a keystone for understanding long-term landscape evolution in NE Brazil. Geomorphology 233, 20–40 (2015).

    Article  Google Scholar 

  92. Penna, I. M., Hermanns, R. L., Niedermann, S. & Folguera, A. Multiple slope failures associated with neotectonic activity in the Southern Central Andes (37°–37°30′S), Patagonia, Argentina. GSA Bull. 123, 1880–1895 (2011).

    Article  Google Scholar 

  93. Penna, I. M., Hermanns, R. L., Daicz, S., Suriano, J. & Tedesco, A. M. Effects of tectonic deformation and landslides in the erosion of a mountain plateau in the transitional zone between the central and Patagonian Andes. Am. J. Sci. 315, 257–274 (2015).

    Article  CAS  Google Scholar 

  94. Duszyński, F., Migoń, P. & Strzelecki, M. C. Escarpment retreat in sedimentary tablelands and cuesta landscapes — landforms, mechanisms and patterns. Earth Sci. Rev. 196, 102890 (2019).

    Article  Google Scholar 

  95. Soldati, M., Barrows, T. T. & Prampolini, M. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea).J. Coast. Conserv. 22, 831–844 (2018).

    Article  Google Scholar 

  96. Flint, R. F. & Denny, C. S. Quaternary geology of Boulder Mountain Aquarius Plateau, Utah. Geol. Surv. Bull. 1061-D, 103–164 (1958).

    Google Scholar 

  97. Marchetti, D. W., Cerling, T. E., Dohrenwend, J. C. & Gallin, W. Ages and significance of glacial and mass movement deposits on the west side of Boulder Mountain, Utah, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 503–513 (2007).

    Article  Google Scholar 

  98. Krijgsman, W. et al. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth Sci. Rev. 188, 1–40 (2019).

    Article  Google Scholar 

  99. Aubrecht, R. et al. Sandstone caves on Venezuelan tepuis: return to pseudokarst? Geomorphology 132, 351–365 (2011).

    Article  Google Scholar 

  100. Hamza, O., De Vargas, T., Boff, F. E., Hussain, Y. & Sian Davies-Vollum, K. Geohazard assessment of landslides in South Brazil: case Study. Geotech. Geol. Eng. 38, 971–984 (2020).

    Article  Google Scholar 

  101. Joshi, M. et al. Weathering controlled landslide in Deccan traps: insight from Mahabaleshwar, Maharashtra. J. Geol. Soc. India 92, 555–561 (2018).

    Article  CAS  Google Scholar 

  102. Singh, R. G., Botha, G. A., Richards, N. P. & McCarthy, T. S. Holocene landslides in KwaZulu-Natal, South Africa. South Afr. J. Geol. 111, 39–52 (2008).

    Article  Google Scholar 

  103. Kycl, P. et al. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): implications for landslide formation. Geomorphology 288, 175–187 (2017).

    Article  Google Scholar 

  104. Ostaficzuk, S. Large-scale landslides in North-Western Libya. Acta Geol. Pol. 23, 231–244 (1973).

    Google Scholar 

  105. Mantovani, M. et al. Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes. Eng. Geol. 296, 106466 (2022).

    Article  Google Scholar 

  106. Pánek, T. et al. A megalandslide in the Northern Caucasus foredeep (Uspenskoye, Russia): geomorphology, possible mechanism and age constraints. Geomorphology 177–178, 144–157 (2012).

    Article  Google Scholar 

  107. Xin, P., Liu, Z., Wu, S., Liang, C. & Lin, C. Rotational–translational landslides in the neogene basins at the northeast margin of the Tibetan Plateau. Eng. Geol. 244, 107–115 (2018).

    Article  Google Scholar 

  108. Davidson, E. S. Geology of the Circle Cliffs Area, Garfield and Kane Counties, Utah. Bulletin. https://pubs.usgs.gov/publication/b1229 (1967).

  109. Břežný, M. & Pánek, T. Deep-seated landslides affecting monoclinal flysch morphostructure: evaluation of LiDAR-derived topography of the highest range of the Czech Carpathians. Geomorphology 285, 44–57 (2017).

    Article  Google Scholar 

  110. Fan, Y., Toran, L. & Schlische, R. W. Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks: insights from numerical models. Water Res. Res. https://doi.org/10.1029/2006WR004864 (2007).

  111. Klimeš, J. et al. The monitoring of slow-moving landslides and assessment of stabilization measures using an optical-mechanical crack gauge. Landslides 9, 407–415 (2012).

    Article  Google Scholar 

  112. Grunert, J. & Busche, D. Large scale fossil landslides at the Msāk Mallat and Hamādat Mānghīnī Escarpment. in The Geology of Libya Vol. III (eds Salem, M. J. & Busrewil, M. R.) 849–860 (Academic Press, 1980).

  113. Dethier, D. P. & Reneau, S. L. Lacustrine chronology links Late Pleistocene climate change and mass movements in northern New Mexico. Geology 24, 539–542 (1996).

    Article  Google Scholar 

  114. Fleitmann, D. et al. Holocene and Pleistocene pluvial periods in Yemen, southern Arabia. Quater. Sci. Rev. 30, 783–787 (2011).

    Article  Google Scholar 

  115. Nicholson, S. L. Pluvial periods in Southern Arabia over the last 1.1 million-years. Quater. Sci. Rev. 229, 106112 (2020).

    Article  Google Scholar 

  116. Skonieczny, C., Paillou, P. & Bory, A. African humid periods triggered the reactivation of a large river system in Western Sahara. Nat. Commun. 6, 8751 (2015).

    Article  CAS  Google Scholar 

  117. Blanchet, C. L., Osborne, A. H. & Tjallingii, R. Drivers of river reactivation in North Africa during the last glacial cycle. Nat. Geosci. 14, 97–103 (2021).

    Article  CAS  Google Scholar 

  118. Ballantyne, C. K., Stone, J. O. & Fifield, L. K. Cosmogenic Cl-36 dating of postglacial landsliding at the Storr, Isle of Skye, Scotland. Holocene 8, 347–351 (1998).

    Article  Google Scholar 

  119. Shurtliff, R. Wetlands on the thousand lake mountain mega-landslide as paleoclimate proxies. Theses and Dissertations (2014).

  120. Shurtliff, R. A. et al. A 13000 year multi-proxy climate record from central Utah (western USA), emphasizing conditions leading to large mass movements. Boreas 46, 308–324 (2017).

    Article  Google Scholar 

  121. Ballantyne, C. K. Scottish landforms examples 2, The landslides of Trotternish, Isle of Skye. Scott. Geogr. Mag. 107, 130–135 (1991).

    Google Scholar 

  122. Ramos, V. A., Niemeyer, H., Skarmeta, J. & Mun˜oz, J. Magmatic evolution of the Austral Patagonian Andes. Earth Sci. Rev. 18, 411–443 (1982).

    Article  CAS  Google Scholar 

  123. Cobos, J. C., Anselmi, G., Panza, J. L. A., Giacosa, R. E. & Escosteguy, L. D. Hoja Geológica 4972-IV Tres Lagos (Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales, 2009).

  124. Bardají, T. et al. Geomorphology of Dra Abu el-Naga (Egypt): the basis of the funerary sacred landscape. J. Afr. Earth Sci. 131, 233–250 (2017).

    Article  Google Scholar 

  125. McCormick, W. V., Richmond, J. C. & Dahlen, K. Revised Geotechnical Assessment Bitter Springs Landslide US Highway 89 MP 526 ER-089E(205)T Tracs H 8641 01D (2014).

  126. Hilger, P. et al. Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and 10Be exposure dating. Holocene 28, 1841–1854 (2018).

    Article  Google Scholar 

  127. Arzhannikova, A. V., Arzhannikov, S. G. & Akulova, V. V. Traces of dammed paleolake activity in the main valley relief and fill in the south of the Irkutsk amphitheater. Russ. Geol. Geophys. 49, 124–131 (2008).

    Article  Google Scholar 

  128. Arzhannikov, S. G. et al. Catastrophic events in the quaternary outflow history of Lake Baikal. Earth Sci. Rev. 177, 76–113 (2018).

    Article  Google Scholar 

  129. Ballantyne, C. K. Paraglacial geomorphology. Quaternary Sci. Rev. 21, 1935–2017 (2002).

    Article  Google Scholar 

  130. Pánek, T. et al. Moraines and marls: giant landslides of the Lago Pueyrredón valley in Patagonia, Argentina. Quater. Sci. Rev. 248, 106598 (2020).

    Article  Google Scholar 

  131. Mercier, D. et al. Are Icelandic rock-slope failures paraglacial? Age evaluation of seventeen rock-slope failures in the Skagafjörður area, based on geomorphological stacking, radiocarbon dating and tephrochronology. Geomorphology 296, 45–58 (2017).

    Article  Google Scholar 

  132. Korsgaard, N. J. et al. Evidence of middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland. Nat. Hazards Earth Syst. Sci. 24, 757–772 (2024).

    Article  Google Scholar 

  133. Aslan, G. et al. Dynamics of a giant slow landslide complex along the coast of the Aral Sea, Central Asia. Turkish J. Earth Sci. 32, 819–832 (2023).

    Article  Google Scholar 

  134. Kuhn, D. et al. Anatomy of a mega-rock slide at Forkastningsfjellet, Spitsbergen and its implications for landslide hazard and risk considerations. Nor. J. Geol. 99, 41–61 (2019).

    Google Scholar 

  135. Davies, B. J. et al. Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. Geol. Soc. Lond. Spec. Publ. 381, 353–395 (2013).

    Article  Google Scholar 

  136. Jennings, S. J. A. et al. Geomorphology of Ulu Peninsula, James Ross Island, Antarctica. J. Maps 17, 125–139 (2021).

    Article  Google Scholar 

  137. Dahl-Jensen, T. et al. Landslide and tsunami 21 November 2000 in Paatuut, West Greenland. Nat. Hazards 31, 277–287 (2004).

    Article  Google Scholar 

  138. Svennevig, K. et al. Uncovering a 70-year-old permafrost degradation induced disaster in the Arctic, the 1952 Niiortuut landslide-tsunami in central West Greenland. Sci. Total Environ. 859, 160110 (2023).

    Article  CAS  Google Scholar 

  139. LaHusen, S. R., Duvall, A. R., Booth, A. M. & Montgomery, D. R. Surface roughness dating of long-runout landslides near Oso, Washington (USA), reveals persistent postglacial hillslope instability. Geology 44, 111–114 (2016).

    Article  CAS  Google Scholar 

  140. Booth, A. M., LaHusen, S. R., Duvall, A. R. & Montgomery, D. R. Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling: landsliding in the N. Fork Stillaguamish. J. Geophys. Res. Earth Surf. 122, 456–472 (2017).

    Article  Google Scholar 

  141. LaHusen, S. R. et al. Rainfall triggers more deep-seated landslides than Cascadia earthquakes in the Oregon Coast Range, USA. Sci. Adv. 6, eaba6790 (2020).

    Article  Google Scholar 

  142. Haller, M. J., Massaferro, G. I., Alric, V. I., Navarrete, C. R. & Menegatti, N. Cenozoic intraplate magmatism of central Patagonia, Argentina. J. South Am. Earth Sci. 102, 102650 (2020).

    Article  Google Scholar 

  143. Mazzoni, E. & Rabassa, J. An evolutionary model of volcanic landscapes. in Volcanic Landscapes and Associated Wetlands of Lowland Patagonia. The Latin American Studies Book Series (eds Mazzoni, E. & Rabassa, J.) 155–176 (Springer, 2018).

  144. Cruden, D. M. & Varness, D. J. Landslide types and processes. in Landslides: Investigation and Mitigation Vol. 247 (eds Turner, K. A. & Schuster, R. L.) 36–75 (National Academy Press, 1996).

  145. Fernandes, N. F. & Dietrich, W. E. Hillslope evolution by diffusive processes: the time scale for equilibrium adjustments. Water Resour. Res. 33, 1307–1318 (1997).

    Article  Google Scholar 

  146. Mudd, S. M. & Furbish, D. J. Responses of soil-mantled hillslopes to transient channel incision rates. J. Geophys. Res. Earth Surface 112, JF000516 (2007).

    Article  Google Scholar 

  147. Blahůt, J. et al. A comprehensive global database of giant landslides on volcanic islands. Landslides 16, 2045–2052 (2019).

    Article  Google Scholar 

  148. Hermanns, R. et al. Relation of recent megalandslides to prehistoric events in the city of La Paz, Bolivia. in Landslides and Engineered Slopes: Protecting Society Through Improved Understanding 265–271 (Taylor & Francis, 2012).

  149. Crosta, G. B., Frattini, P. & Agliardi, F. Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605, 13–33 (2013).

    Article  Google Scholar 

  150. Pánek, T., Břežný, M., Kapustová, V., Lenart, J. & Chalupa, V. Large landslides and deep-seated gravitational slope deformations in the Czech Flysch Carpathians: new LiDAR-based inventory. Geomorphology 346, 106852 (2019).

    Article  Google Scholar 

  151. González Díaz, E., Fauque, L., Giaccardi, A. & Costa, C. Las lagunas de varvar co campos y varvar co tapia (N del Neuquén, Argentina): Su relación con avalanchas de rocas. Rev. de la Asociación Geológica Argentina 55, 147–164 (2000).

    Google Scholar 

  152. González Díaz, E. F., Folguera, A. & Hermanns, R. La avalancha de rocas del cerro Los Cardos (37°10′ S, 70°53′ O) en la región norte de la provincia del Neuquén. Rev. de la Asociación Geológica Argentina 60, 207–220 (2005).

    Google Scholar 

  153. Brooks, G. R. A massive sensitive clay landslide, Quyon Valley, southwestern Quebec, Canada, and evidence for a paleoearthquake triggering mechanism. Quater. Res. 80, 425–434 (2013).

    Article  Google Scholar 

  154. Brooks, G. R. & Perret, D. A long-term context for the 1663 Charlevoix CE earthquake interpreted from the postglacial landslide record in the Gouffre Valley, Quebec, Canada. Quater. Sci. Rev. 309, 108096 (2023).

    Article  Google Scholar 

  155. Gatter, R., Clare, M. A., Kuhlmann, J. & Huhn, K. Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation. Earth-Sci. Rev. 223, 103845 (2021).

    Article  Google Scholar 

  156. Conti, S. & Tosatti, G. Landslides affecting tabular rocks in complex geological situations: the case of Sasso di Simone and Simoncello (Northern Apennines, Italy). In. Landslides Proc. Seventh ICFL, Czech Slovak. Repub. 28, 219–224 (1993).

    Google Scholar 

  157. Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).

    Article  Google Scholar 

  158. Jaboyedoff, M. et al. Use of LIDAR in landslide investigations: a review. Nat. Hazards 61, 5–28 (2012).

    Article  Google Scholar 

  159. Casagli, N., Intrieri, E., Tofani, V., Gigli, G. & Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 4, 51–64 (2023).

    Article  Google Scholar 

  160. Pánek, T. Recent progress in landslide dating: a global overview. Prog. Phys. Geogr. Earth Environ. 39, 168–198 (2015).

    Article  Google Scholar 

  161. Solle, G. Felsgleitungen in Oberägypten: ein Beitrag zum Ablauf großer Gleitungssysteme. Notizbl. des. Hessischen Landesamts für Bodenforsch. 95, 117–147 (1967).

    Google Scholar 

  162. Dam, G. et al. Lithostratigraphy of the Cretaceous–Paleocene Nuussuaq Group, Nuussuaq Basin, West Greenland. GEUS Bull. 19, 1–171 (2009).

    Article  Google Scholar 

  163. Pedersen, A. K., Larsen, L. M. & Pedersen, G. K. Lithostratigraphy, geology and geochemistry of the volcanic rocks of the Vaigat Formation on Disko and Nuussuaq. Paleocene West Greenland GEUS Bull. 39, 1–244 (2017).

    Article  Google Scholar 

  164. Pedersen, A. K., Larsen, L. M. & Pedersen, G. K. Lithostratigraphy, geology and geochemistry of the volcanic rocks of the Maligât Formation and associated intrusions on Disko and Nuussuaq, Paleocene West Greenland. GEUS Bull. 40, 1–239 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This Review was conducted within the framework of the Czech Science Foundation, project 23-07310S.

Author information

Authors and Affiliations

Authors

Contributions

T.P. and K.S. researched data for the article. All authors contributed substantially to discussion of the content. T.P. and K.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tomáš Pánek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks R. Hermanns, M. Soldati and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pánek, T., Svennevig, K., Břežný, M. et al. The occurrence, mechanisms and hazards of large landslides along tablelands. Nat Rev Earth Environ 5, 686–700 (2024). https://doi.org/10.1038/s43017-024-00587-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00587-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing