Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antarctic benthic ecological change

Abstract

The benthic community around Antarctica is diverse and highly endemic. These cold-adapted species are under threat from local and global drivers, including warming, acidification and changes to the cryosphere. In this Review, we summarize observed, experimental and modelled Antarctic benthic ecological change. Warming, glacial melt and retreat, and reduced ice cover are causing regional benthic biomass to increase or decrease, depending on the additional influences of ice scour, turbidity and freshening. Additionally, the dominance of previously cold-restricted or light-restricted taxa is increasing, and several ecological tipping points have already been breached, leading to ecological phase shifts in some habitats. The largest changes have been observed in communities in the shallows of the West Antarctic Peninsula, notably change to distribution, biodiversity, biomass and trophic structure. Models based on observational and experimental evidence indicate that these changes will spread deeper and eastwards throughout this century. Available data are primarily limited to a handful of shallow-water taxa; thus, future work will need to involve multispecies observations and experiments encompassing multiple drivers to understand community and ecosystem responses, and autonomous monitoring techniques to fill geographical, bathymetric, seasonal and taxonomic gaps; advances in environmental DNA and artificial-intelligence-based techniques will help to rapidly analyse such data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drivers of present and future change in the Antarctic marine system.
Fig. 2: Antarctic bathymetry and sea-ice extents.
Fig. 3: Environmental drivers of changes in Antarctic benthic ecosystem structure and function.
Fig. 4: Impact of increased iceberg scour associated with sea-ice loss.
Fig. 5: Observed and predicted ecological impacts across a gradient between East and West Antarctica.

Similar content being viewed by others

References

  1. De Broyer, C. et al. Biogeographic Atlas of the Southern Ocean (Scientific Committee on Antarctic Research, 2014).

  2. Clarke, A., Aronson, R. B., Alistair Crame, J., Gili, J.-M. & Blake, D. B. Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct. Sci. 16, 559–568 (2004).

    Article  Google Scholar 

  3. Turner, J. Antarctic Climate Change and the Environment: A Contribution to the International Polar Year 2007–2008 (Scientific Committee on Antarctic Research, 2009).

  4. Ashton, G. V., Morley, S. A., Barnes, D. K. A., Clark, M. S. & Peck, L. S. Warming by 1 °C drives species and assemblage level responses in Antarctica’s marine shallows. Curr. Biol. 27, 2698–2705.e3 (2017).

    Article  CAS  Google Scholar 

  5. Griffiths, H. J., Meijers, A. J. S. & Bracegirdle, T. J. More losers than winners in a century of future Southern Ocean seafloor warming. Nat. Clim. Change 7, 749–754 (2017).

    Article  Google Scholar 

  6. Avila, C. et al. Would Antarctic marine benthos survive alien species invasions? What chemical ecology may tell us. Mar. Drugs 20, 543 (2022).

    Article  CAS  Google Scholar 

  7. Clarke, A., Barnes, D. K. A. & Hodgson, D. A. How isolated is Antarctica? Trends Ecol. Evol. 20, 1–3 (2005).

    Article  Google Scholar 

  8. Brasier, M. J. et al. Responses of Southern Ocean seafloor habitats and communities to global and local drivers of change. Front. Mar. Sci. 8, 622721 (2021).

    Article  Google Scholar 

  9. Rogers, A. D. et al. Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2020).

    Article  CAS  Google Scholar 

  10. Morley, S. A. et al. Global drivers on Southern Ocean ecosystems: changing physical environments and anthropogenic pressures in an Earth system. Front. Mar. Sci. 7, 547188 (2020).

    Article  Google Scholar 

  11. Grant, S. M. et al. Local drivers of change in Southern Ocean ecosystems: human activities and policy implications. Front. Ecol. Evol. 9, G03003 (2021).

    Article  Google Scholar 

  12. Krasnobaev, A. et al. Legacy and emerging persistent organic pollutants in Antarctic benthic invertebrates near Rothera Point, Western Antarctic Peninsula. Environ. Sci. Technol. 54, 2763–2771 (2020).

    Article  CAS  Google Scholar 

  13. Dinniman, M. S., Klinck, J. M. & Smith, W. O. A model study of circumpolar deep water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep Sea Res. II 58, 1508–1523 (2011).

    Article  CAS  Google Scholar 

  14. Clarke, A., Griffiths, H. J., Barnes, D. K. A., Meredith, M. P. & Grant, S. M. Spatial variation in seabed temperatures in the Southern Ocean: implications for benthic ecology and biogeography. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2008JG000886 (2009).

  15. Jun, S.-Y. et al. The internal origin of the west–east asymmetry of Antarctic climate change. Sci. Adv. 6, eaaz1490 (2020).

    Article  Google Scholar 

  16. Griffiths, H. J., Barnes, D. K. A. & Linse, K. Towards a generalized biogeography of the Southern Ocean benthos. J. Biogeogr. 1, 162–177 (2009).

    Article  Google Scholar 

  17. Morley, S. A., Griffiths, H. J., Barnes, D. K. A. & Peck, L. S. South Georgia: a key location for linking physiological capacity to distributional changes in response to climate change. Antarct. Sci. 22, 774–781 (2010).

    Article  Google Scholar 

  18. Louise Allan, E. et al. Critical indirect effects of climate change on sub-Antarctic ecosystem functioning. Ecol. Evol. 3, 2994–3004 (2013).

    Article  CAS  Google Scholar 

  19. Brasier, M. J. et al. Observations and models to support the first Marine Ecosystem Assessment for the Southern Ocean (MEASO). J. Mar. Syst. 197, 103182 (2019).

    Article  Google Scholar 

  20. Bonnet-Lebrun, A.-S. et al. Opportunities and limitations of large open biodiversity occurrence databases in the context of a Marine Ecosystem Assessment of the Southern Ocean. Front. Mar. Sci. 10, 1150603 (2023).

    Article  Google Scholar 

  21. Gutt, J., Sirenko, B. I., Smirnov, I. S. & Arntz, W. E. How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct. Sci. 16, 11–16 (2004).

    Article  Google Scholar 

  22. Bluhm, B. A. et al. An update of species richness and examples of biodiversity change. Oceanography 24, 232–248 (2011).

    Article  Google Scholar 

  23. Mapstone, B. D. Oceans: Science and Solutions for Australia (CSIRO, 2017).

  24. Brandt, A. & Gutt, J. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) 503–526 (Springer, 2011).

  25. Barnes, D. K. A. & Tarling, G. A. Polar oceans in a changing climate. Curr. Biol. 27, R454–R460 (2017).

    Article  CAS  Google Scholar 

  26. Whittle, R. J., Quaglio, F., Griffiths, H. J., Linse, K. & Crame, J. A. The Early Miocene Cape Melville Formation fossil assemblage and the evolution of modern Antarctic marine communities. Naturwissenschaften 101, 47–59 (2014).

    Article  CAS  Google Scholar 

  27. Barker, P. F. & Thomas, E. Origin, signature and palaeoclimatic influence of the Antarctic circumpolar current. Earth Sci. Rev. 66, 143–162 (2004).

    Article  Google Scholar 

  28. Dietz, L., Dömel, J. S., Leese, F., Mahon, A. R. & Mayer, C. Phylogenomics of the longitarsal Colossendeidae: the evolutionary history of an Antarctic sea spider radiation. Mol. Phylogenet. Evol. 136, 206–214 (2019).

    Article  Google Scholar 

  29. Whittle, R. J. et al. Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous–Palaeogene mass extinction. Palaeontology 62, 919–934 (2019).

    Article  Google Scholar 

  30. Griffiths, H. J., Whittle, R. J., Roberts, S. J., Belchier, M. & Linse, K. Antarctic crabs: invasion or endurance? PLoS ONE 8, e66981 (2013).

    Article  CAS  Google Scholar 

  31. Aronson, R. B., Frederich, M., Price, R. & Thatje, S. Prospects for the return of shell-crushing crabs to Antarctica. J. Biogeogr. 42, 1–7 (2015).

    Article  Google Scholar 

  32. Frederich, M., Sartoris, F. J. & Pörtner, H.-O. in Ecological Studies in the Antarctic Sea Ice Zone (eds Arntz, W. E. & Clarke, A.) 246–250 (Springer, 2002).

  33. Aronson, R. B. et al. Climate change and invasibility of the Antarctic benthos. Annu. Rev. Ecol. Evol. Syst. 38, 129–154 (2007).

    Article  Google Scholar 

  34. Harper, E. M. & Peck, L. S. Latitudinal and depth gradients in marine predation pressure. Glob. Ecol. Biogeogr. 25, 670–678 (2016).

    Article  Google Scholar 

  35. Smith, K. E. et al. Climate change and the threat of novel marine predators in Antarctica. Ecosphere 8, e02017 (2017).

    Article  Google Scholar 

  36. Peck, L. S. Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct. Sci. 17, 497–507 (2005).

    Article  Google Scholar 

  37. David, B., Guille, A. & Feral, J.-P. Echinoderms Through Time (CRC, 2020).

  38. Gutt, J. et al. Antarctic ecosystems in transition — life between stresses and opportunities. Biol. Rev. Camb. Philos. Soc. 96, 798–821 (2021).

    Article  Google Scholar 

  39. Dayton, P. et al. Surprising episodic recruitment and growth of Antarctic sponges: implications for ecological resilience. J. Exp. Mar. Biol. Ecol. 482, 38–55 (2016).

    Article  Google Scholar 

  40. Zenteno-Devaud, L. et al. Feeding ecology of Odontaster validus under different environmental conditions in the West Antarctic Peninsula. Biology 11, 1723 (2022).

    Article  CAS  Google Scholar 

  41. Norkko, A. et al. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88, 2810–2820 (2007).

    Article  CAS  Google Scholar 

  42. Gutt, J., Griffiths, H. J. & Jones, C. D. Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodivers. 43, 481–487 (2013).

    Article  Google Scholar 

  43. Duffy, G. A., Montiel, F., Purich, A. & Fraser, C. I. Emerging long-term trends and interdecadal cycles in Antarctic polynyas. Proc. Natl Acad. Sci. USA 121, e2321595121 (2024).

    Article  CAS  Google Scholar 

  44. Smith, C. R., Mincks, S. & DeMaster, D. J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep Sea Res. II 53, 875–894 (2006).

    Article  Google Scholar 

  45. Saeedi, H., Warren, D. & Brandt, A. The environmental drivers of benthic fauna diversity and community composition. Front. Mar. Sci. 9, 804019 (2022).

    Article  Google Scholar 

  46. Ingels, J. et al. Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa. Ecol. Evol. 2, 453–485 (2012).

    Article  Google Scholar 

  47. Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 24, 553–564 (2001).

    Article  Google Scholar 

  48. Isla, E. in Source-to-Sink Fluxes in Undisturbed Cold Environments (eds Beylich, A. A. et al.) 199–212 (Cambridge Univ. Press, 2016).

  49. Deppeler, S. L. & Davidson, A. T. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. 4, 40 (2017).

    Article  Google Scholar 

  50. Al-Habahbeh, A. K. et al. Arctic coastal benthos long-term responses to perturbations under climate warming. Phil. Trans. A 378, 20190355 (2020).

    Google Scholar 

  51. Zhulay, I., Iken, K., Renaud, P. E., Kosobokova, K. & Bluhm, B. A. Reduced efficiency of pelagic–benthic coupling in the Arctic deep sea during lower ice cover. Sci. Rep. 13, 6739 (2023).

    Article  CAS  Google Scholar 

  52. Cummings, V. J., Bowden, D. A., Pinkerton, M. H., Halliday, N. J. & Hewitt, J. E. Ross Sea benthic ecosystems: macro- and mega-faunal community patterns from a multi-environment survey. Front. Mar. Sci. 8, 629787 (2021).

    Article  Google Scholar 

  53. Gutt, J. & Starmans, A. Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol. 20, 229–247 (1998).

    Article  Google Scholar 

  54. Ingels, J. et al. Antarctic ecosystem responses following ice‐shelf collapse and iceberg calving: science review and future research. Wiley Interdiscip. Rev. Clim. Change 12, e682 (2021).

    Article  Google Scholar 

  55. Griffiths, H. J. et al. Breaking all the rules: the first recorded hard substrate sessile benthic community far beneath an Antarctic ice shelf. Front. Mar. Sci. 8, 76 (2021).

    Article  Google Scholar 

  56. Brasier, M. J. et al. Benthic biodiversity in the South Orkney Islands Southern Shelf marine protected area. Biodiversity 19, 5–19 (2018).

    Google Scholar 

  57. Rossi, L. et al. Antarctic food web architecture under varying dynamics of sea ice cover. Sci. Rep. 9, 12454 (2019).

    Article  Google Scholar 

  58. Thrush, S. et al. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep Sea Res. II 53, 959–971 (2006).

    Article  Google Scholar 

  59. Cummings, V. J., Hewitt, J. E., Thrush, S. F. & Marriott, P. M. Linking Ross Sea coastal benthic ecosystems to environmental conditions: documenting baselines in a changing world. Front. Mar. Sci. 5, 232 (2018).

    Article  Google Scholar 

  60. Orsi, A. H. & Whitworth, T. III Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), Vol. 1 Southern Ocean (eds Sparrow, M. et al.) (International WOCE Project Office, 2005).

  61. Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Change Biol. 19, 3749–3761 (2013).

    Article  Google Scholar 

  62. Lohrer, A. M., Cummings, V. J. & Thrush, S. F. Altered sea ice thickness and permanence affects benthic ecosystem functioning in coastal Antarctica. Ecosystems 16, 224–236 (2013).

    Article  CAS  Google Scholar 

  63. Pinkerton, M. H. et al. Evidence for the impact of climate change on primary producers in the Southern Ocean. Front. Ecol. Evol. 9, 592027 (2021).

    Article  Google Scholar 

  64. Zwerschke, N., Morley, S. A., Peck, L. S. & Barnes, D. K. A. Can Antarctica’s shallow zoobenthos ‘bounce back’ from iceberg scouring impacts driven by climate change? Glob. Change Biol. 27, 3157–3165 (2021).

    Article  CAS  Google Scholar 

  65. Ambroso, S. et al. Pristine populations of habitat-forming gorgonian species on the Antarctic continental shelf. Sci. Rep. 7, 12251 (2017).

    Article  Google Scholar 

  66. Dowdeswell, J. A. & Bamber, J. L. Keel depths of modern Antarctic icebergs and implications for sea-floor scouring in the geological record. Mar. Geol. 243, 120–131 (2007).

    Article  Google Scholar 

  67. Waller, C. L. Zonation in a cryptic Antarctic intertidal macrofaunal community. Antarct. Sci. 25, 62–68 (2013).

    Article  Google Scholar 

  68. Waller, C. L., Barnes, D. K. A. & Convey, P. Ecological contrasts across an Antarctic land–sea interface. Austral Ecol. 31, 656–666 (2006).

    Article  Google Scholar 

  69. Jossart, Q. et al. A pioneer morphological and genetic study of the intertidal fauna of the Gerlache Strait (Antarctic Peninsula). Environ. Monit. Assess. 195, 514 (2023).

    Article  CAS  Google Scholar 

  70. Chelchowski, M., Balazy, P. & Kuklinski, P. Seasonal variability in macrobenthos assemblage parameters in the highly disturbed Antarctic intertidal zone — relatively rich biodiversity year around. Estuar. Coast. Shelf Sci. 278, 108114 (2022).

    Article  Google Scholar 

  71. Barnes, D. K. A. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob. Change Biol. 23, 2649–2659 (2017).

    Article  Google Scholar 

  72. Deregibus, D., Quartino, M. L., Zacher, K., Campana, G. L. & Barnes, D. K. A. Understanding the link between sea ice, ice scour and Antarctic benthic biodiversity — the need for cross-station and international collaboration. Polar Rec. 53, 143–152 (2017).

    Article  Google Scholar 

  73. Robinson, B. J. O., Barnes, D. K. A., Grange, L. J. & Morley, S. A. Intermediate ice scour disturbance is key to maintaining a peak in biodiversity within the shallows of the Western Antarctic Peninsula. Sci. Rep. 11, 16712 (2021).

    Article  CAS  Google Scholar 

  74. Clark, G. F., Stark, J. S., Perrett, L. A., Hill, N. A. & Johnston, E. L. Algal canopy as a proxy for the disturbance history of understorey communities in East Antarctica. Polar Biol. 34, 781–790 (2011).

    Article  Google Scholar 

  75. Carmack, E. C. & Macdonald, R. W. Oceanography of the Canadian shelf of the Beaufort Sea: a setting for marine life. Arctic 55, 29–45 (2002).

    Article  Google Scholar 

  76. Eayrs, C. et al. Understanding the seasonal cycle of Antarctic sea ice extent in the context of longer‐term variability. Rev. Geophys. 57, 1037–1064 (2019).

    Article  Google Scholar 

  77. Barnes, D. K. A. & Souster, T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat. Clim. Change 1, 365–368 (2011).

    Article  Google Scholar 

  78. Hughes, K. A. et al. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Glob. Change Biol. 26, 2702–2716 (2020).

    Article  Google Scholar 

  79. Peck, L. S. Antarctic marine biodiversity: adaptations, environments and responses to change. Oceanogr. Mar. Biol. Annu. Rev. 56, 105–236 (2018).

    Article  Google Scholar 

  80. Griffiths, H. J. Antarctic marine biodiversity — what do we know about the distribution of life in the Southern Ocean? PLoS ONE 5, e11683 (2010).

    Article  Google Scholar 

  81. Pollock, N. W. Scientific diving in Antarctica: history and current practice. Diving Hyperb. Med. 37, 204 (2007).

    Google Scholar 

  82. Griffiths, H. J. & Waller, C. L. The first comprehensive description of the biodiversity and biogeography of Antarctic and Sub‐Antarctic intertidal communities. J. Biogeogr. 43, 1143–1155 (2016).

    Article  Google Scholar 

  83. Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. 5, 4 (2017).

    Article  Google Scholar 

  84. Jones, J. A. & Driscoll, C. T. Long-term ecological research on ecosystem responses to climate change. Bioscience 72, 814–826 (2022).

    Article  Google Scholar 

  85. Waller, C. L., Overall, A., Fitzcharles, E. M. & Griffiths, H. First report of Laternula elliptica in the Antarctic intertidal zone. Polar Biol. 40, 227–230 (2017).

    Article  Google Scholar 

  86. Dunlop, K. M., Barnes, D. K. A. & Bailey, D. M. Variation of scavenger richness and abundance between sites of high and low iceberg scour frequency in Ryder Bay, west Antarctic Peninsula. Polar Biol. 37, 1741–1754 (2014).

    Article  Google Scholar 

  87. Barnes, D. K. A., Fenton, M. & Cordingley, A. Climate-linked iceberg activity massively reduces spatial competition in Antarctic shallow waters. Curr. Biol. 24, R553–R554 (2014).

    Article  CAS  Google Scholar 

  88. Gerdes, D., Hilbig, B. & Montiel, A. Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar Biol. 26, 295–301 (2003).

    Article  Google Scholar 

  89. Gerdes, D., Isla, E., Knust, R., Mintenbeck, K. & Rossi, S. Response of Antarctic benthic communities to disturbance: first results from the artificial Benthic Disturbance Experiment on the eastern Weddell Sea Shelf, Antarctica. Polar Biol. 31, 1469–1480 (2008).

    Article  Google Scholar 

  90. Moon, H.-W., Wan Hussin, W. M. R., Kim, H.-C. & Ahn, I.-Y. The impacts of climate change on Antarctic nearshore mega-epifaunal benthic assemblages in a glacial fjord on King George Island: responses and implications. Ecol. Indic. 57, 280–292 (2015).

    Article  Google Scholar 

  91. Ha, S.-Y., Ahn, I.-Y., Moon, H.-W., Choi, B. & Shin, K.-H. Tight trophic association between benthic diatom blooms and shallow-water megabenthic communities in a rapidly deglaciated Antarctic fjord. Estuar. Coast. Shelf Sci. 218, 258–267 (2019).

    Article  CAS  Google Scholar 

  92. Sahade, R. et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 1, e1500050 (2015).

    Article  Google Scholar 

  93. Lagger, C. et al. Climate change, glacier retreat and a new ice-free island offer new insights on Antarctic benthic responses. Ecography 41, 579–591 (2018).

    Article  Google Scholar 

  94. Deregibus, D. et al. Potential macroalgal expansion and blue carbon gains with northern Antarctic Peninsula glacial retreat. Mar. Environ. Res. 189, 106056 (2023).

    Article  CAS  Google Scholar 

  95. Campana, G. L. et al. Succession of Antarctic benthic algae (Potter Cove, South Shetland Islands): structural patterns and glacial impact over a four-year period. Polar Biol. 41, 377–396 (2018).

    Article  Google Scholar 

  96. Ko, Y. W. et al. The glacier melting process is an invisible barrier to the development of Antarctic subtidal macroalgal assemblages. Environ. Res. 233, 116438 (2023).

    Article  CAS  Google Scholar 

  97. Amsler, C. D. et al. Strong correlations of sea ice cover with macroalgal cover along the Antarctic Peninsula: ramifications for present and future benthic communities. Elementa Sci. Anthrop. 11, 00020 (2023).

    Article  Google Scholar 

  98. McCarthy, A. H., Peck, L. S., Hughes, K. A. & Aldridge, D. C. Antarctica: the final frontier for marine biological invasions. Glob. Change Biol. 25, 2221–2241 (2019).

    Article  Google Scholar 

  99. Fraser, C. I., Nikula, R., Spencer, H. G. & Waters, J. M. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 106, 3249–3253 (2009).

    Article  CAS  Google Scholar 

  100. Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).

    Article  Google Scholar 

  101. Fraser, C. I. et al. Southern Hemisphere coasts are biologically connected by frequent, long-distance rafting events. Curr. Biol. 32, 3154–3160.e3 (2022).

    Article  CAS  Google Scholar 

  102. Avila, C. et al. Invasive marine species discovered on non-native kelp rafts in the warmest Antarctic island. Sci. Rep. 10, 1639 (2020).

    Article  CAS  Google Scholar 

  103. Cárdenas, L. et al. First mussel settlement observed in Antarctica reveals the potential for future invasions. Sci. Rep. 10, 5552 (2020).

    Article  Google Scholar 

  104. Hall, S. & Thatje, S. Temperature-driven biogeography of the deep-sea family Lithodidae (Crustacea: Decapoda: Anomura) in the Southern Ocean. Polar Biol. 34, 363–370 (2011).

    Article  Google Scholar 

  105. Hellberg, M. E. et al. Population expansion of an Antarctic king crab? Front. Biogeog. 11, e43165 (2019).

    Article  Google Scholar 

  106. López-Farrán, Z. et al. Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next invader of Antarctica? Glob. Change Biol. 27, 3487–3504 (2021).

    Article  Google Scholar 

  107. Gutt, J. et al. Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Res. Pt II 58, 74–83 (2011).

    Article  Google Scholar 

  108. Gutt, J. et al. Shifts in Antarctic megabenthic structure after ice-shelf disintegration in the Larsen area east of the Antarctic Peninsula. Polar Biol. 36, 895–906 (2013).

    Article  Google Scholar 

  109. Drennan, R., Dahlgren, T. G., Linse, K. & Glover, A. G. Annelid fauna of the Prince Gustav Channel, a previously ice-covered seaway on the northeastern Antarctic Peninsula. Front. Mar. Sci. 7, 595303 (2021).

    Article  Google Scholar 

  110. Almond, P. M. et al. In-situ image analysis of habitat heterogeneity and benthic biodiversity in the Prince Gustav Channel, Eastern Antarctic Peninsula. Front. Mar. Sci. 8, 614496 (2021).

    Article  Google Scholar 

  111. Anderson, M. P. B. C., Fenberg, P. B., Griffiths, H. J. & Linse, K. Macrobenthic mollusca of the Prince Gustav Channel, eastern Antarctic Peninsula: an area undergoing colonisation. Front. Mar. Sci. 8, 771369 (2021).

    Article  Google Scholar 

  112. Clark, G. F., Marzinelli, E. M., Fogwill, C. J., Turney, C. S. M. & Johnston, E. L. Effects of sea-ice cover on marine benthic communities: a natural experiment in Commonwealth Bay, East Antarctica. Polar Biol. 38, 1213–1222 (2015).

    Article  Google Scholar 

  113. Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecol. Appl. 29, e01823 (2019).

    Article  Google Scholar 

  114. Horvat, C., Bisson, K., Seabrook, S., Cristi, A. & Matthes, L. C. Evidence of phytoplankton blooms under Antarctic sea ice. Front. Mar. Sci. 9, 2154 (2022).

    Article  Google Scholar 

  115. Morley, S. A., Barnes, D. K. A. & Dunn, M. J. Predicting which species succeed in climate-forced polar seas. Front. Mar. Sci. 5, 507 (2019).

    Article  Google Scholar 

  116. Gutt, J. & Starmans, A. Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol. 24, 615–619 (2001).

    Article  Google Scholar 

  117. Göcke, C. & Janussen, D. Sponge assemblages of the deep Weddell Sea: ecological and zoogeographic results of ANDEEP I–III and SYSTCO I expeditions. Polar Biol. 36, 1059–1068 (2013).

    Article  Google Scholar 

  118. Göcke, C. & Janussen, D. ANT XXIV/2 (SYSTCO) Hexactinellida (Porifera) and bathymetric traits of Antarctic glass sponges (incorporating ANDEEP-material); including an emendation of the rediscovered genus Lonchiphora. Deep Sea Res. Pt II 58, 2013–2021 (2011).

    Article  Google Scholar 

  119. Détrée, C., Navarro, J. M., Figueroa, A. & Cardenas, L. Acclimation of the Antarctic sea urchin Sterechinus neumayeri to warmer temperatures involves a modulation of cellular machinery. Mar. Environ. Res. 188, 105979 (2023).

    Article  Google Scholar 

  120. Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256 (2009).

    Article  Google Scholar 

  121. Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).

    Article  Google Scholar 

  122. Janecki, T., Kidawa, A. & Potocka, M. The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita. Polar Biol. 33, 1013–1020 (2010).

    Article  Google Scholar 

  123. Bylenga, C. H., Cummings, V. J. & Ryan, K. G. Fertilisation and larval development in an Antarctic bivalve, Laternula elliptica, under reduced pH and elevated temperatures. Mar. Ecol. Prog. Ser. 536, 187–201 (2015).

    Article  Google Scholar 

  124. Byrne, M. et al. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Glob. Change Biol. 19, 2264–2275 (2013).

    Article  Google Scholar 

  125. Johnstone, J. W., Lunden, J. J., Waller, R. G., Poulton, N. J. & Togami, H. Antarctic deep-sea coral larvae may be resistant to end-century ocean warming. Coral Reefs 41, 1495–1510 (2022).

    Article  Google Scholar 

  126. van der Meer, J. Are the Q10 values of more than 1,000 reported for Antarctic seabed fauna realistic? Curr. Biol. 27, R1302–R1303 (2017).

    Article  Google Scholar 

  127. Barnes, D. K. A., Ashton, G. V., Morley, S. A. & Peck, L. S. 1 °C warming increases spatial competition frequency and complexity in Antarctic marine macrofauna. Commun. Biol. 4, 208 (2021).

    Article  Google Scholar 

  128. Clark, M. S. et al. Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming. Nat. Commun. 10, 3383 (2019).

    Article  Google Scholar 

  129. Kim, S. & Collins, C. A. Iceberg disturbance to benthic communities in McMurdo Sound, Antarctica. Polar Rec. 57, e11 (2021).

    Article  Google Scholar 

  130. Robinson, S. A. et al. The 2019/2020 summer of Antarctic heatwaves. Glob. Change Biol. 26, 3178–3180 (2020).

    Article  Google Scholar 

  131. Latorre, M. P. et al. Summer heatwaves affect coastal Antarctic plankton metabolism and community structure. J. Exp. Mar. Biol. Ecol. 567, 151926 (2023).

    Article  Google Scholar 

  132. Carter, M. J. et al. Upper thermal limits and risk of mortality of coastal Antarctic ectotherms. Front. Mar. Sci. 9, 1108330 (2023).

    Article  Google Scholar 

  133. González-Aravena, M. et al. Low transcriptomic plasticity of Antarctic giant isopod Glyptonotus antarcticus juveniles exposed to acute thermal stress. Front. Mar. Sci. 8, 76186 (2021).

    Article  Google Scholar 

  134. De Leij, R., Grange, L. J. & Peck, L. S. Functional thermal limits are determined by rate of warming during simulated marine heatwaves. Mar. Ecol. Prog. Ser. 685, 183–196 (2022).

    Article  Google Scholar 

  135. Clark, M. S. et al. Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multi-omics approach. Glob. Change Biol. 23, 318–330 (2017).

    Article  Google Scholar 

  136. Morley, S. A. et al. Spatial and temporal variation in the heat tolerance limits of two abundant Southern Ocean invertebrates. Mar. Ecol. Prog. Ser. 450, 81–92 (2012).

    Article  Google Scholar 

  137. Morley, S. A. et al. Testing the resilience, physiological plasticity and mechanisms underlying upper temperature limits of Antarctic marine ectotherms. Biology 13, 224 (2024).

    Article  Google Scholar 

  138. Woods, H. A. & Moran, A. L. Reconsidering the oxygen–temperature hypothesis of polar gigantism: successes, failures, and nuance. Integr. Comp. Biol. 60, 1438–1453 (2020).

    Article  Google Scholar 

  139. Shishido, C. M. et al. Polar gigantism and the oxygen-temperature hypothesis: a test of upper thermal limits to body size in Antarctic pycnogonids. Proc. Biol. Sci. 286, 20190124 (2019).

    CAS  Google Scholar 

  140. Figuerola, B. et al. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Front. Mar. Sci. 8, 584445 (2021).

    Article  Google Scholar 

  141. Cummings, V. et al. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS ONE 6, e16069 (2011).

    Article  CAS  Google Scholar 

  142. Dell’Acqua, O., Ferrando, S., Chiantore, M. & Asnaghi, V. The impact of ocean acidification on the gonads of three key Antarctic benthic macroinvertebrates. Aquat. Toxicol. 210, 19–29 (2019).

    Article  Google Scholar 

  143. Park, S., Ahn, I.-Y., Sin, E., Shim, J. & Kim, T. Ocean freshening and acidification differentially influence mortality and behavior of the Antarctic amphipod Gondogeneia antarctica. Mar. Environ. Res. 154, 104847 (2020).

    Article  CAS  Google Scholar 

  144. Cross, E. L., Harper, E. M. & Peck, L. S. Thicker shells compensate extensive dissolution in brachiopods under future ocean acidification. Environ. Sci. Technol. 53, 5016–5026 (2019).

    Article  CAS  Google Scholar 

  145. Schram, J. B. et al. Antarctic crustacean grazer assemblages exhibit resistance following exposure to decreased pH. Mar. Biol. 163, 106 (2016).

    Article  Google Scholar 

  146. Bylenga, C. H., Cummings, V. J. & Ryan, K. G. High resolution microscopy reveals significant impacts of ocean acidification and warming on larval shell development in Laternula elliptica. PLoS ONE 12, e0175706 (2017).

    Article  Google Scholar 

  147. Cross, E. L., Peck, L. S. & Harper, E. M. Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). J. Exp. Mar. Biol. Ecol. 462, 29–35 (2015).

    Article  CAS  Google Scholar 

  148. Morley, S. A., Suckling, C. C., Clark, M. S., Cross, E. L. & Peck, L. S. Long-term effects of altered pH and temperature on the feeding energetics of the Antarctic sea urchin, Sterechinus neumayeri. Biodiversity 17, 34–45 (2016).

    Article  Google Scholar 

  149. Suckling, C. C. et al. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. J. Anim. Ecol. 84, 773–784 (2015).

    Article  Google Scholar 

  150. Ericson, J. A., Lamare, M. D., Morley, S. A. & Barker, M. F. The response of two ecologically important Antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Mar. Biol. 157, 2689–2702 (2010).

    Article  Google Scholar 

  151. Enzor, L. A., Hunter, E. M. & Place, S. P. The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish. Conserv. Physiol. 5, cox019 (2017).

    Article  Google Scholar 

  152. Collard, M., De Ridder, C., David, B., Dehairs, F. & Dubois, P. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Glob. Change Biol. 21, 605–617 (2015).

    Article  Google Scholar 

  153. Sin, E., Ahn, I.-Y., Park, S. & Kim, T. Effects of low pH and low salinity induced by meltwater inflow on the behavior and physical condition of the Antarctic limpet, Nacella concinna. J. Mar. Sci. Eng. 8, 822 (2020).

    Article  Google Scholar 

  154. Ericson, J. A. et al. Combined effects of two ocean change stressors, warming and acidification, on fertilization and early development of the Antarctic echinoid Sterechinus neumayeri. Polar Biol. 35, 1027–1034 (2012).

    Article  Google Scholar 

  155. Pardo, L. M., Garrido, I., Chaparro, O. R. & Johnson, L. E. Vulnerability in Antarctic limpets: ready for an invasion of shell-crushing predators? Biol. Invasions 24, 2795–2808 (2022).

    Article  Google Scholar 

  156. Moles, J. et al. Anti-predatory chemical defences in Antarctic benthic fauna. Mar. Biol. 162, 1813–1821 (2015).

    Article  CAS  Google Scholar 

  157. Gutt, J. et al. Cross-disciplinarity in the advance of Antarctic ecosystem research. Mar. Genomics 37, 1–17 (2018).

    Article  CAS  Google Scholar 

  158. Eayrs, C., Li, X., Raphael, M. N. & Holland, D. M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021).

    Article  CAS  Google Scholar 

  159. Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    Article  CAS  Google Scholar 

  160. Torre, L., Tabares, P. C. C., Momo, F., Meyer, J. F. C. A. & Sahade, R. Climate change effects on Antarctic benthos: a spatially explicit model approach. Clim. Change 141, 733–746 (2017).

    Article  Google Scholar 

  161. Jerosch, K. et al. Ensemble modeling of Antarctic macroalgal habitats exposed to glacial melt in a polar fjord. Front. Ecol. Evol. 7, 207 (2019).

    Article  Google Scholar 

  162. Jansen, J. et al. Mapping Antarctic suspension feeder abundances and seafloor food-availability, and modeling their change after a major glacier calving. Front. Ecol. Evol. 6, 94 (2018).

    Article  Google Scholar 

  163. Jansen, J. et al. Integrated assessment of the spatial distribution and structural dynamics of deep benthic marine communities. Ecol. Appl. 30, e02065 (2020).

    Article  Google Scholar 

  164. Guy, C. I., Cummings, V. J., Lohrer, A. M., Gamito, S. & Thrush, S. F. Population trajectories for the Antarctic bivalve Laternula elliptica: identifying demographic bottlenecks in differing environmental futures. Polar Biol. 37, 541–553 (2014).

    Article  Google Scholar 

  165. Barnes, D. K. A., Griffiths, H. J. & Kaiser, S. Geographic range shift responses to climate change by Antarctic benthos: where we should look. Mar. Ecol. Prog. Ser. 393, 13–26 (2009).

    Article  Google Scholar 

  166. Basher, Z. & Costello, M. J. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ. 4, e1713 (2016).

    Article  Google Scholar 

  167. Vera-Escalona, I., Gimenez, L. H. & Brante, A. Short-term and long-term predictions: is the green crab Carcinus maenas a threat to Antarctica and southern South America under a climate-change scenario? Diversity 15, 632 (2023).

    Article  Google Scholar 

  168. Byrne, M., Gall, M., Wolfe, K. & Agüera, A. From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean. Glob. Change Biol. 22, 3874–3887 (2016).

    Article  Google Scholar 

  169. Dulière, V. et al. Dispersal models alert on the risk of non‐native species introduction by ballast water in protected areas from the Western Antarctic Peninsula. Divers. Distrib. 28, 649–666 (2022).

    Article  Google Scholar 

  170. Crame, J. A. et al. The early origin of the Antarctic marine fauna and its evolutionary implications. PLoS ONE 9, e114743 (2014).

    Article  Google Scholar 

  171. Aronson, R. B. et al. Climate change and trophic response of the Antarctic bottom fauna. PLoS ONE 4, e4385 (2009).

    Article  Google Scholar 

  172. Whittle, R. J., Hunter, A. W., Cantrill, D. J. & McNamara, K. J. Globally discordant Isocrinida (Crinoidea) migration confirms asynchronous Marine Mesozoic Revolution. Commun. Biol. 1, 46 (2018).

    Article  Google Scholar 

  173. Gutt, J. et al. The Southern Ocean ecosystem under multiple climate change stresses — an integrated circumpolar assessment. Glob. Change Biol. 21, 1434–1453 (2015).

    Article  Google Scholar 

  174. Quartino, M. L., Deregibus, D., Campana, G. L., Latorre, G. E. J. & Momo, F. R. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS ONE 8, e58223 (2013).

    Article  CAS  Google Scholar 

  175. Pasotti, F. et al. Antarctic shallow water benthos in an area of recent rapid glacier retreat. Mar. Ecol. 36, 716–733 (2015).

    Article  Google Scholar 

  176. Braeckman, U. et al. Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy. Commun. Biol. 4, 148 (2021).

    Article  CAS  Google Scholar 

  177. Mitchell, E. G., Whittle, R. J. & Griffiths, H. J. Benthic ecosystem cascade effects in Antarctica using Bayesian network inference. Commun. Biol. 3, 582 (2020).

    Article  Google Scholar 

  178. Caputi, S. S. et al. Seasonal food web dynamics in the Antarctic benthos of Tethys Bay (Ross Sea): implications for biodiversity persistence under different seasonal sea-ice coverage. Front. Mar. Sci. 7, 594454 (2020).

    Article  Google Scholar 

  179. Michel, L. N., David, B., Dubois, P., Lepoint, G. & De Ridder, C. Trophic plasticity of Antarctic echinoids under contrasted environmental conditions. Polar Biol. 39, 913–923 (2016).

    Article  Google Scholar 

  180. Morley, S. A. et al. Extreme phenotypic plasticity in metabolic physiology of Antarctic demosponges. Front. Ecol. Evol. 3, 157 (2016).

    Article  Google Scholar 

  181. Michel, L. N. et al. Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep. 9, 8062 (2019).

    Article  Google Scholar 

  182. Calizza, E., Careddu, G., Sporta Caputi, S., Rossi, L. & Costantini, M. L. Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS ONE 13, e0194796 (2018).

    Article  Google Scholar 

  183. Siegert, M. J. et al. Antarctic extreme events. Front. Environ. Sci. 11, 1229283 (2023).

    Article  Google Scholar 

  184. Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 1–9 (2023).

    Article  Google Scholar 

  185. Turner, J. et al. Record low Antarctic sea ice cover in February 2022. Geophys. Res. Lett. 49, e2022GL098904 (2022).

    Article  Google Scholar 

  186. Blanchard-Wrigglesworth, E., Cox, T., Espinosa, Z. I. & Donohoe, A. The largest ever recorded heatwave — characteristics and attribution of the Antarctic heatwave of March 2022. Geophys. Res. Lett 50, e2023GL104910 (2023).

    Article  Google Scholar 

  187. Gutt, J. et al. Reviews and syntheses: a framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean. Biogeosciences 19, 5313–5342 (2022).

    Article  Google Scholar 

  188. Kennicutt, M. C. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 27, 3–18 (2015).

    Article  Google Scholar 

  189. Van de Putte, A. P. et al. From data to marine ecosystem assessments of the Southern Ocean: achievements, challenges, and lessons for the future. Front. Mar. Sci. 8, 10–3389 (2021).

    Google Scholar 

  190. Barnes, D. K. A., Peck, L. S. & Morley, S. A. Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob. Change Biol. 16, 3164–3169 (2010).

    Article  Google Scholar 

  191. Pope, A. et al. Community review of Southern Ocean satellite data needs. Antarct. Sci. 29, 97–138 (2017).

    Article  Google Scholar 

  192. Marini, S. et al. Long‐term automated visual monitoring of Antarctic benthic fauna. Methods Ecol. Evol. 13, 1746–1764 (2022).

    Article  Google Scholar 

  193. Cary, S. C. et al. Antarctic near-shore and terrestrial observation system. 2015 ANTOS International workshop report. https://scar.org/~documents/science-4/physical-sciences/antos/2015-antos-workshop-report (2016).

  194. Piazza, P. et al. Underwater photogrammetry in Antarctica: long-term observations in benthic ecosystems and legacy data rescue. Polar Biol. 42, 1061–1079 (2019).

    Article  Google Scholar 

  195. Jansen, J. et al. The Antarctic seafloor annotated imagery database. Preprint at bioRxiv https://doi.org/10.1101/2023.02.16.528770 (2023).

  196. Meister, M. et al. Antarctic deep field deployments and design of the Icefin ROV. In Global Oceans 2020: Singapore – U.S. Gulf Coast https://doi.org/10.1109/IEEECONF38699.2020.9389361 (IEEE, 2020).

  197. Katija, K. et al. FathomNet: a global image database for enabling artificial intelligence in the ocean. Sci. Rep. 12, 15914 (2022).

    Article  CAS  Google Scholar 

  198. Clarke, L. J. et al. Environmental DNA metabarcoding for monitoring metazoan biodiversity in Antarctic nearshore ecosystems. PeerJ 9, e12458 (2021).

    Article  Google Scholar 

  199. Cowart, D. A., Murphy, K. R. & Cheng, C.-H. C. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Mar. Genomics 37, 148–160 (2018).

    Article  Google Scholar 

  200. Milillo, P. et al. Rapid glacier retreat rates observed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).

    Article  CAS  Google Scholar 

  201. Baumhoer, C. A., Dietz, A. J., Kneisel, C., Paeth, H. & Kuenzer, C. Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades. Cryosphere 15, 2357–2381 (2021).

    Article  Google Scholar 

  202. Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

    Article  CAS  Google Scholar 

  203. Bae, H. et al. Shift in polar benthic community structure in a fast retreating glacial area of Marian Cove, West Antarctica. Sci. Rep. 11, 241 (2021).

    Article  CAS  Google Scholar 

  204. Waller, C. L. Variability in intertidal communities along a latitudinal gradient in the Southern Ocean. Polar Biol. 31, 809–816 (2008).

    Article  Google Scholar 

  205. Grange, L. J. & Smith, C. R. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS ONE 8, e77917 (2013).

    Article  Google Scholar 

  206. Southwell, C., Smith, D., Bender, A. & Emmerson, L. A spatial reference and identification system for coastal ice-free land in East Antarctica. Polar Rec. 57, e30 (2021).

    Article  Google Scholar 

  207. Jones, R. L. et al. Continued glacial retreat linked to changing macronutrient supply along the West Antarctic Peninsula. Mar. Chem. 251, 104230 (2023).

    Article  CAS  Google Scholar 

  208. Pakhomov, E. A., Fuentes, V., Schloss, I., Atencio, A. & Esnal, G. B. Beaching of the tunicate Salpa thompsoni at high levels of suspended particulate matter in the Southern Ocean. Polar Biol. 26, 427–431 (2003).

    Article  Google Scholar 

  209. Deregibus, D. et al. Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biol. 39, 153–166 (2016).

    Article  Google Scholar 

  210. Kaiser, S. Southern Ocean deep-sea biodiversity: sampling strategies and predicting responses to climate change. Clim. Res. 37, 165–179 (2008).

    Article  Google Scholar 

  211. Navarro, J. M. et al. Evaluating the effects of ocean warming and freshening on the physiological energetics and transcriptomic response of the Antarctic limpet Nacella concinna. Sci. Total. Environ. 748, 142448 (2020).

    Article  CAS  Google Scholar 

  212. Tan, S. & Thurnherr, A. M. On the global decrease in the deep and abyssal density stratification along the spreading pathways of Antarctic bottom water since the 1990s. Geophys. Res. Lett. 50, e2022GL102422 (2023).

    Article  Google Scholar 

  213. Jacobs, S. S., Giulivi, C. F. & Dutrieux, P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting. J. Geophys. Res. C: Ocean. 127, e2021JC017808 (2022).

    Article  Google Scholar 

  214. Menezes, V. V., Macdonald, A. M. & Schatzman, C. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean. Sci. Adv. 3, e1601426 (2017).

    Article  Google Scholar 

  215. Gunn, K. L., Rintoul, S. R., England, M. H. & Bowen, M. M. Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023).

    Article  Google Scholar 

  216. Cai, W. et al. Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nat. Clim. Change 13, 235–239 (2023).

    Article  Google Scholar 

  217. Raphael, M. N. & Handcock, M. S. A new record minimum for Antarctic sea ice. Nat. Rev. Earth Environ. 3, 215–216 (2022).

    Article  Google Scholar 

  218. Liu, J., Zhu, Z. & Chen, D. Lowest Antarctic sea ice record broken for the second year in a row. Ocean Land Atmos. Res. 2, 0007 (2023).

    Article  Google Scholar 

  219. Lohrer, A. M., Norkko, A. M., Thrush, S. F. & Cummings, V. J. Climate cascades affect coastal Antarctic seafloor ecosystem functioning. Glob. Change Biol. 27, 6181–6191 (2021).

    Article  Google Scholar 

  220. Rowden, A. A., Kröger, K. & Clark, M. R. Compositional patterns of benthic assemblages on the northwestern Ross Sea shelf, Antarctica: interacting environmental drivers operating at multiple spatial scales. Hydrobiologia 761, 211–233 (2015).

    Article  CAS  Google Scholar 

  221. Rehm, P., Hooke, R. A. & Thatje, S. Macrofaunal communities on the continental shelf off Victoria Land, Ross Sea, Antarctica. Antarct. Sci. 23, 449–455 (2011).

    Article  Google Scholar 

  222. Barnes, D. K. A. Antarctic sea ice losses drive gains in benthic carbon drawdown. Curr. Biol. 25, R789–R790 (2015).

    Article  CAS  Google Scholar 

  223. Barnes, D. K. A. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Change Biol. 23, 5083–5091 (2017).

    Article  Google Scholar 

  224. Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. C 120, 5545–5565 (2015).

    Article  Google Scholar 

  225. Säring, F., Veit-Köhler, G., Seifert, D., Liskow, I. & Link, H. Sea-ice-related environmental drivers affect meiofauna and macrofauna communities differently at large scales (Southern Ocean, Antarctic). Mar. Ecol. Prog. Ser. 700, 13–37 (2022).

    Article  Google Scholar 

  226. Pineda-Metz, S. E. A., Gerdes, D. & Richter, C. Benthic fauna declined on a whitening Antarctic continental shelf. Nat. Commun. 11, 2226 (2020).

    Article  CAS  Google Scholar 

  227. Kim, S., Hammerstrom, K. & Dayton, P. Epifaunal community response to iceberg-mediated environmental change in McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps12899 (2019).

    Article  Google Scholar 

  228. Smith, W. O. Jr, Dinniman, M. S., Hofmann, E. E. & Klinck, J. M. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century. Geophys. Res. Lett. 41, 1624–1631 (2014).

    Article  Google Scholar 

  229. van Leeuwe, M. A. et al. Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis. Elem. Sci. Anth. 6, 4 (2018).

    Article  Google Scholar 

  230. Meiners, K. M. et al. Chlorophyll a in Antarctic sea ice from historical ice core data. Geophys. Res. Lett. 39, L21602 (2012).

    Article  Google Scholar 

  231. Greene, C. A., Gardner, A. S., Schlegel, N.-J. & Fraser, A. D. Antarctic calving loss rivals ice-shelf thinning. Nature 609, 948–953 (2022).

    Article  CAS  Google Scholar 

  232. Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).

    Article  Google Scholar 

  233. Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).

    Article  CAS  Google Scholar 

  234. Walker, C. C., Fricker, H. A., Millstein, J. D., Miles, B. & Trusel, L. D. Sustained long-term collapse of Conger-Glenzer ice shelf, East Antarctica. AGU Fall Meet. Abstr. 2022, C13B-02 (2022).

    Google Scholar 

  235. Bertolin, M. L. & Schloss, I. R. Phytoplankton production after the collapse of the Larsen A ice shelf, Antarctica. Polar Biol. 32, 1435–1446 (2009).

    Article  Google Scholar 

  236. Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).

    Article  CAS  Google Scholar 

  237. Purich, A. & England, M. H. Historical and future projected warming of Antarctic shelf bottom water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

    Article  Google Scholar 

  238. Sallée, J.-B. Southern ocean warming. Oceanography 31, 52–62 (2018).

    Article  Google Scholar 

  239. Turner, J. et al. An extreme high temperature event in coastal east Antarctica associated with an atmospheric river and record summer downslope winds. Geophys. Res. Lett. 49, e2021GL097108 (2022).

    Article  Google Scholar 

  240. González-Herrero, S., Barriopedro, D., Trigo, R. M., López-Bustins, J. A. & Oliva, M. Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Commun. Earth Environ. 3, 122 (2022).

    Article  Google Scholar 

  241. Montie, S., Thomsen, M. S., Rack, W. & Broady, P. A. Extreme summer marine heatwaves increase chlorophyll a in the Southern Ocean. Antarct. Sci. 32, 508–509 (2020).

    Article  Google Scholar 

  242. Azarian, C., Bopp, L., Pietri, A., Sallée, J.-B. & d’Ovidio, F. Current and projected patterns of warming and marine heatwaves in the Southern Indian Ocean. Prog. Oceanogr. 215, 103036 (2023).

    Article  Google Scholar 

  243. Schram, J. B., Schoenrock, K. M., McClintock, J. B., Amsler, C. D. & Angus, R. A. Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J. Exp. Mar. Biol. Ecol. 457, 90–96 (2014).

    Article  Google Scholar 

  244. Purkey, S. G. et al. Unabated bottom water warming and freshening in the South Pacific Ocean. J. Geophys. Res. C 124, 1778–1794 (2019).

    Article  Google Scholar 

  245. Isla, E. & Gerdes, D. Ongoing ocean warming threatens the rich and diverse macrobenthic communities of the Antarctic continental shelf. Prog. Oceanogr. 178, 102180 (2019).

    Article  Google Scholar 

  246. Chaabani, S. et al. Ecological niche modelling of cold-water corals in the Southern Ocean (N Antarctic), present distribution and future projections due to temperature changes. Mar. Ecol. Prog. Ser. 628, 73–93 (2019).

    Article  Google Scholar 

  247. Holland, O., Shaw, J., Stark, J. S. & Wilson, K. A. Hull fouling marine invasive species pose a very low, but plausible, risk of introduction to East Antarctica in climate change scenarios. Divers. Distrib. 27, 973–988 (2021).

    Article  Google Scholar 

  248. Gonzalez-Bernat, M. J., Lamare, M. & Barker, M. Effects of reduced seawater pH on fertilisation, embryogenesis and larval development in the Antarctic seastar Odontaster validus. Polar Biol. 36, 235–247 (2013).

    Article  Google Scholar 

  249. Sewell, M. A. & Hofmann, G. E. Antarctic echinoids and climate change: a major impact on the brooding forms. Glob. Change Biol. 17, 734–744 (2011).

    Article  Google Scholar 

  250. Hancock, A. M., King, C. K., Stark, J. S., McMinn, A. & Davidson, A. T. Effects of ocean acidification on Antarctic marine organisms: a meta-analysis. Ecol. Evol. 10, 4495–4514 (2020).

    Article  Google Scholar 

  251. Bracegirdle, T. J., Connolley, W. M. & Turner, J. Antarctic climate change over the twenty first century. J. Geophys. Res. 113, D03103 (2008).

    Article  Google Scholar 

  252. Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article  CAS  Google Scholar 

  253. Cook, A. J., Vaughan, D. G., Luckman, A. J. & Murray, T. A new Antarctic Peninsula glacier basin inventory and observed area changes since the 1940s. Antarct. Sci. 26, 614–624 (2014).

    Article  Google Scholar 

  254. Davison, B. J. et al. Annual mass budget of Antarctic ice shelves from 1997 to 2021. Sci. Adv. 9, eadi0186 (2023).

    Article  Google Scholar 

  255. Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 400, 212–226 (2008).

    Article  CAS  Google Scholar 

  256. Caruso, G., Bergami, E., Singh, N. & Corsi, I. Plastic occurrence, sources, and impacts in Antarctic environment and biota. Water Biol. Secur. 1, 100034 (2022).

    Article  Google Scholar 

  257. Reed, S., Clark, M., Thompson, R. & Hughes, K. A. Microplastics in marine sediments near Rothera Research Station, Antarctica. Mar. Pollut. Bull. 133, 460–463 (2018).

    Article  CAS  Google Scholar 

  258. Palmer, T. A. et al. Long-term changes in contamination and macrobenthic communities adjacent to McMurdo Station, Antarctica. Sci. Total Environ. 764, 142798 (2021).

    Article  CAS  Google Scholar 

  259. Nissen, C. et al. Severe 21st-century ocean acidification in Antarctic marine protected areas. Nat. Commun. 15, 259 (2024).

    Article  CAS  Google Scholar 

  260. Todgham, A. E. & Mandic, M. Understanding the metabolic capacity of Antarctic fishes to acclimate to future ocean conditions. Integr. Comp. Biol. 60, 1425–1437 (2020).

    Article  CAS  Google Scholar 

  261. Tait, L. W. et al. Deep-living and diverse Antarctic seaweeds as potentially important contributors to global carbon fixation. Commun. Earth Environ. 5, 205 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

H.J.G. and R.J.W. are funded by UKRI Future Leaders Fellowship MR/W01002X/1 ‘The past, present and future of unique cold-water benthic (sea floor) ecosystems in the Southern Ocean’. H.J.G. is also funded by BIOPOLE under the Natural Environment Research Council National Capability Science Multi-Centre award scheme (NC-SM2). V.J.C. is funded by the New Zealand Government’s Strategic Science Investment Fund (SSIF) to the National Institute for Water & Atmospheric Research Coasts and Estuaries Centre (CEME2402). A.V.deP. is funded by Belgian Science Policy (belspo) projects ADVANCE (RT/23/ADVANCE) and SO-BOMP (Prf-2019005_SO-BOMP). This paper contributes to the Marine Ecosystem Assessment of the Southern Ocean (MEASO), the Scientific Committee on Antarctic Research (SCAR) Scientific Research Programme Integrated Science to Inform Antarctic and Southern Ocean Conservation (Ant-ICON), the Antarctic Nearshore and Terrestrial Observation Systems (ANTOS) and the NZ Antarctic Science Platform (MBIE ANTA1801). The authors thank A. Constable for his input and improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. H.J.G., V.J.C., R.J.W. and C.L.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Huw J. Griffiths.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Josep-Maria Gili and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffiths, H.J., Cummings, V.J., Van de Putte, A. et al. Antarctic benthic ecological change. Nat Rev Earth Environ 5, 645–664 (2024). https://doi.org/10.1038/s43017-024-00583-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00583-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing