Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tailings storage facilities, failures and disaster risk

Abstract

Mining generates 13 billion tonnes per year of potentially toxic wet slurry waste, called tailings, commonly deposited in tailings storage facilities (TSF). Since 1915, 257 TSF failures have occurred, releasing a total of ~250 million m3 of tailings, destroying areas up to ~5,000 km2, killing an estimated 2,650 people and impacting ~317,000 people through displacement, property damage, and risks to livelihoods and health. In this Review, we provide an interdisciplinary approach to understanding the causes, effects and response to TSF failures, applying a disaster risk reduction framework. TSF failures can occur owing to earthquakes, overtopping, weak foundations and liquefaction, among other mechanisms. The severities and volumes of TSF failures have increased since the year 2000, owing to increasing mine waste generation from the exploitation of larger, lower-grade deposits. Despite the increasingly severe impacts, the mining industry has been hesitant to use the term ‘disaster’ to analyse TSF failure, presumably to avoid liability. TSF failures should be considered as disasters when they cause severe disruption to the functioning of ecological and social systems. Future research should build on attempts to link tailings facility locations to situated risk factors by improving spatial and time series analysis, reducing reliance on corporate disclosures, and increasing the visibility of priority locations and patterns of concern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of TSF failures and disasters, and other mining activities on river catchments.
Fig. 2: Classification of tailings storage facilities (TSFs).
Fig. 3: Tailings storage facility (TSF) failure mechanisms.
Fig. 4: Impacts of tailings storage facility (TSF) failures and other mining activities.
Fig. 5: Catchment impacts and transformation after the 1998 Aznalcóllar TSF failure, Spain.
Fig. 6: Distribution and frequency of TSFs and TSF failures.

Similar content being viewed by others

References

  1. Valenta, R. K. et al. Decarbonisation to drive dramatic increase in mining waste — options for reduction. Resour. Conserv. Recycl. 190, 106859 (2023).

    Article  CAS  Google Scholar 

  2. Franks, D. M. et al. Tailings facility disclosures reveal stability risks. Sci. Rep. 11, 5353 (2021).

    Article  CAS  Google Scholar 

  3. Franks, D. M. et al. in Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review (eds Oberle, B. et al.) 84–108 (Global Tailings Review, 2020).

  4. Hudson-Edwards, K. A. Tackling mine wastes. Science 352, 288–290 (2016).

    Article  CAS  Google Scholar 

  5. Macklin, M. G. et al. Impacts of metal mining on river systems: a global assessment. Science 381, 1345–1350 (2023).

    Article  CAS  Google Scholar 

  6. International Commission on Large Dams (ICOLD). Tailings dams: risk of dangerous occurrences — lessons learnt from practical experiences (UN, 2001).

  7. World Mine Tailings Failures. State of world mine tailings portfolio 2020. World Mine Tailings Failures https://worldminetailingsfailures.org/ (2024).

  8. Center for Science in Public Participation. TSF failures (1915-2016). CSP2 http://www.csp2.org/tsf-failures-from-1915 (2022).

  9. Piciullo, L., Størrosten, E. B., Liu, Z., Nadim, F. & Lacasse, S. A new look at the statistics of tailings dam failures. Eng. Geol. 303, 106657 (2022).

    Article  Google Scholar 

  10. Fernandes, G. W. et al. Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Nat. Conserv. 14, 35–45 (2016).

    Article  Google Scholar 

  11. Buch, A. C., Sautter, K. D., Marques, E. D. & Silva-Filho, E. V. Ecotoxicological assessment after the world’s largest tailing dam collapse (Fundão dam, Mariana, Brazil): effects on oribatid mites. Environ. Geochem. Health 42, 3575–3595 (2020).

    Article  CAS  Google Scholar 

  12. Aska, B., Franks, D. M., Stringer, M. & Sonter, L. J. Biodiversity conservation threatened by global mining wastes. Nat. Sustain. 7, 23–30 (2023).

    Article  Google Scholar 

  13. Clarkson, L. & Williams, D. Critical review of tailings dam monitoring best practice. Int. J. Min. Reclam. Environ. 34, 119–148 (2020).

    Article  Google Scholar 

  14. Lèbre, E. et al. Source risks as constraints to future metal supply. Environ. Sci. Technol. 53, 10571–10579 (2019).

    Article  Google Scholar 

  15. Lèbre, E. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 4823 (2020).

    Article  Google Scholar 

  16. Guimarāes, R. N., Moreira, V. R., Cruz, J. R. A., Saliba, A. P. M. & Amaral, M. C. S. History of tailings dam failure: impacts on access to safe water and influence on the legislative framework. Sci. Total Environ. 852, 158536 (2022).

    Article  Google Scholar 

  17. Kossoff, D. et al. Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 51, 229–245 (2014).

    Article  CAS  Google Scholar 

  18. Franks, D. M., Boger, D. V., Côte, C. M. & Mulligan, D. R. Sustainable development principles for the disposal of mining and mineral processing wastes. Resour. Policy 36, 114–122 (2011).

    Article  Google Scholar 

  19. Byrne, P. et al. Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada. Appl. Geochem. 91, 64–74 (2018).

    Article  CAS  Google Scholar 

  20. Agência Nacional de Águas. Encarte especial sobre a bacia do Rio Doce — Rompimento da barragem em Mariana/MG https://projetoriodoce.fgv.br/node/18761 (2016).

  21. do Carmo, F. F. et al. Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspect. Ecol. Conserv. 15, 145–151 (2017).

    Google Scholar 

  22. Silveira, F. A., Gama, E. M., Dixon, K. W. & Cross, A. T. Avoiding tailings dam collapses requires governance, partnership and responsibility. Biodivers. Conserv. 28, 1933–1934 (2019).

    Article  Google Scholar 

  23. Rotta, L. H. S. et al. The 2019 Brumadinho tailings dam collapse: possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 90, 102119 (2020).

    Google Scholar 

  24. Santamarina, J. C., Torres-Cruz, L. A. & Bachus, R. C. Why coal ash and tailings dam disasters occur. Science 364, 526–528 (2019).

    Article  CAS  Google Scholar 

  25. The Church of England. Investor mining and tailings safety initiative. The Church of England https://www.churchofengland.org/investor-mining-tailings-safety-initiative (2019).

  26. Church of England Pensions Board (CoE) & Council on Ethics of the Swedish National Pension Funds. Letter to board chairs and chief executive officers of listed extractive companies https://www.churchofengland.org/news-and-media/finance-news/investors-give-mining-companies-45-days-full-disclosure-tailings (2019).

  27. International Council on Mining and Metals (ICMM), United Nations Environment Programme (UNEP) & Principles for Responsible Investment (PRI). Global Tailings Review https://globaltailingsreview.org/ (2020).

  28. International Council on Mining and Metals (ICMM), United Nations Environment Programme (UNEP) & Principles for Responsible Investment (PRI). Global Industry Standard on Tailings Management https://www.unep.org/resources/report/global-industry-standard-tailings-management (2020).

  29. United Nations Office for Disaster Risk Reduction. Sendai framework terminology on disaster risk reduction. UNDRR https://www.undrr.org/terminology/disaster (2023).

  30. Rana, N. in ICOLD Annual Meeting 2023 (2023).

  31. Roche, C., Thygesen, K. & Baker, E. Mine tailings storage: safety is no accident. GRID-Arendal https://www.grida.no/publications/383 (2017).

  32. Smith, L. Hydrogeology and Mineral Resource Development (The Groundwater Project, 2021).

  33. Blight, G. Geotechnical Engineering for Mine Waste Storage Facilities (CRC and Balkema, 2010).

  34. Morrison, K. F. Tailings Management Handbook: A Lifecycle Approach (ed. Morrison, K. F.) 3–12 (Society for Mining, Metallurgy and Exploration, 2022).

  35. Wickland, B. Tailings Management Handbook: A Lifecycle Approach (ed. Morrison, K. F.) 133–139 (Society for Mining, Metallurgy and Exploration, 2022).

  36. Veenstra, R. L. Tailings Management Handbook: A Lifecycle Approach (ed. Morrison, K. F.) 121–132 (Society for Mining, Metallurgy and Exploration, 2022).

  37. Vick, S. G. Planning, Design, and Analysis of Tailings Dams (BiTech Publishers Ltd., 1990).

  38. Brouwer, K. J. & Smyth, G. L. in CIM 2017 Convention, Montreal, April 30 - May 3 https://www.knightpiesold.com/sites/en/assets/File/CIM%202017%20-%20Mount%20Polley%20Tailings%20Dam%20Failure.pdf (2017).

  39. Morrill, J. et al. Safety First: Guidelines for Responsible Mine Tailings Management (Earthworks, MiningWatch Canada and London Mining Network, 2022).

  40. Owen, J. R., Kemp, D., Lèbre, É., Svobodova, K. & Pérez Murillo, G. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Disaster Risk Reduct. 42, 101361 (2020).

    Article  Google Scholar 

  41. Kemp, D., Owen, J. R., Kemp, D. & Lèbre, É. Tailings facility failures in the global mining industry: will a ‘transparency turn’ drive change? Bus. Strategy Environ. 30, 122–134 (2021).

    Article  Google Scholar 

  42. dos Santos, R. S. P. & Milanez, B. The construction of the disaster and the “privatization” of mining regulation: reflections on the tragedy of the Rio Doce Basin, Brazil. Vibrant Virtual Braz. Anthropol. 14, 127–149 (2017).

    Google Scholar 

  43. Fourie, A., Verdugo, R., Bjelkevik, A., Torres-Cruz, L. A. & Znidarcic, D. In Proc. 20th International Conference on Soil Mechanics and Geotechnical Engineering (eds Jaksa, M. & Rahman, M.) 121–183 (Australian Geomechanics Society, 2022).

  44. Robertson, P. K., de Melo, L., Williams, D. J. & Wilson, G. W. Report of the Expert Panel on the Technical Causes of the Failure of Feijão Dam I https://bdrb1investigationstacc.z15.web.core.windows.net/assets/Feijao-Dam-I-Expert-Panel-Report-ENG.pdf (2019).

  45. Morgenstern, N. R., Vick, S. G. & van Zyl, D. Report on Mount Polley Tailings Storage Facility Breach (Province of British Columbia, 2015).

  46. Sánchez, L. E. et al. Impacts of the Fundão Dam failure: a pathway to sustainable and resilient mitigation https://doi.org/10.2305/IUCN.CH.2018.18.en (International Union for Conservation of Nature, 2018).

  47. Githiria, J. M. & Onifade, M. The impact of mining on sustainable practices and the traditional culture of developing countries. J. Environ. Stud. Sci. 10, 394–410 (2020).

    Article  Google Scholar 

  48. Ministry of Energy and Mines of British Columbia. Mount Polley Mine Tailings Storage Facility Breach August 4, 2014 (Mining and Minerals Resources Division of the Ministry of Energy and Mines of the Province of British Columbia, 2015).

  49. Comitê Independente de Assessoramento Extraordinário de Apuração (CIAEA). Executive summary of the independent investigation report, failure of dam 1 of the Córrego do Feijão Mine — Brumadinho, MG (Vale S.A., 2020).

  50. Hopkins, A. & Kemp, D. Credibility Crisis: Brumadinho and the Politics of Mining Industry Reform (Wolters Kluwer, 2021).

  51. Vick, S. G. Dam safety risk – from deviance to diligence. In Geo-Risk 2017 19–30 (American Society of Civil Engineers, 2017).

  52. Verweijen, B. & Lauche, K. How many blowouts does it take to learn the lessons? An institutional perspective on disaster development. Saf. Sci. 111, 111–118 (2019).

    Article  Google Scholar 

  53. Hart, P. T. After Fukushima: reflections on risk and institutional learning in an era of mega-crises. Public Adm. 91, 101–113 (2013).

    Article  Google Scholar 

  54. Amoah, P., Eweje, G. & Bathurst, R. Understanding grand challenges in sustainability implementation within mining in developing countries. Soc. Bus. 10, 123–149 (2020).

    Article  Google Scholar 

  55. France, J. W. et al. Independent Forensic Team Report Oroville Dam Spillway Incident (California Department of Water Resources, 2018).

  56. Muñoz, V. & Hoekstra, D. Tailings Management Handbook: A Lifecycle Approach Vol. 20 (ed. Morrison, K. F.) 361–385 (Society for Mining, Metallurgy & Exploration, 2022).

  57. Trottier, M. O., Franklin, K., Portocarrero, J., Dufault, D. & Millar, R. The impact of climate change on extreme events for operation and closure of tailings facilities. In Tailings and Mine Waste 2023 881–888 (AusIMM, 2023).

  58. Labonté-Raymond, P.-L., Pabst, T., Bussière, B. & Bresson, É. Impact of climate change on extreme rainfall events and surface water management at mine waste storage facilities. J. Hydrol. 590, 125383 (2020).

    Article  Google Scholar 

  59. Clohan, C. & Kidner, E. Tailings Management Handbook: A Lifecycle Approach (ed. Morrison, K. F.) 211–220 (Society for Mining, Metallurgy and Exploration, 2022).

  60. de Paiva, C. A., da Fonseca Santiago, A. & do Prado Filho, J. F. Content analysis of dam break studies for tailings dams with high damage potential in the Quadrilátero Ferrífero, Minas Gerais: technical weaknesses and proposals for improvements. Nat. Hazards 104, 1141–1156 (2020).

    Article  Google Scholar 

  61. Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters 2nd edn (Routledge, 2003).

  62. Ferson, S., Migueles, C. P., Sanini, M. T. F., Gambirage, C. & da Silva, J. C. I’m aware: informed mining: risk reduction through enhanced public and institutional risk awareness https://gtr.ukri.org/projects?ref=ES%2FT003537%2F1#/tabOverview (2023).

  63. Kemp, D. in Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review (eds Oberle, B. et al.) 37–46 (Global Tailings Review, 2020).

  64. Hoffman, S. M. & Oliver-Smith, A. E. Catastrophe and Culture: The Anthropology of Disaster (SAR Press, 2002).

  65. Lewin, J. & Macklin, M. Metal mining and floodplain sedimentation in Britain. Int. Geomorphol. 1986, 1009–1027 (1987).

    Google Scholar 

  66. Macklin, M. G. et al. A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 79, 423–447 (2006).

    Article  Google Scholar 

  67. Miller, J. R. The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J. Geochem. Explor. 58, 101–118 (1997).

    Article  CAS  Google Scholar 

  68. Lewin, J., Davies, B. & Wolfenden, P. in River Channel Changes (ed. Gregory, K. J.) 353–367 (Wiley, 1977).

  69. Hudson-Edwards, K. A., Macklin, M. G. & Taylor, M. P. 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK. Hydrol. Process. 13, 1087–1102 (1999).

    Article  Google Scholar 

  70. Macklin, M. G. & Dowsett, R. B. The chemical and physical speciation of trace metals in fine grained overbank flood sediments in the Tyne basin, north-east England. Catena 16, 135–151 (1989).

    Article  CAS  Google Scholar 

  71. Lawrence, S. et al. Society and sediment in the mining rivers of California and Australia. Water Hist. 13, 45–73 (2021).

    Article  Google Scholar 

  72. Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R. & Lechler, P. J. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. J. Geochem. Explor. 72, 229–250 (2001).

    Article  CAS  Google Scholar 

  73. Clement, A. J. H. et al. The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand. Geomorphology 295, 159–175 (2017).

    Article  Google Scholar 

  74. Foulds, S. A. et al. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change. Sci. Total Environ. 476, 165–180 (2014).

    Article  Google Scholar 

  75. Macklin, M. Fluxes and storage of sediment-associated heavy metals in floodplain systems: assessment and river basin management issues at a time of rapid environmental change. Floodplain Process. 13, 441–459 (1996).

    Google Scholar 

  76. Dennis, I. A., Macklin, M. G., Coulthard, T. J. & Brewer, P. A. The impact of the October-November 2000 floods on contaminant metal dispersal in the River Swale catchment, North Yorkshire, UK. Hydrol. Process. 17, 1641–1657 (2003).

    Article  Google Scholar 

  77. Macklin, M. G. et al. The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures County, upper Tisa Basin, Romania. Appl. Geochem. 18, 241–257 (2003).

    Article  CAS  Google Scholar 

  78. Bird, G. et al. River system recovery following the Novat-Rosu tailings dam failure, Maramures County, Romania. Appl. Geochem. 23, 3498–3518 (2008).

    Article  CAS  Google Scholar 

  79. Buch, A. C., Sims, D. B., Correia, M. E. F., Marques, E. D. & Silva-Filho, E. V. Preliminary assessment of potential pollution risks in soils: case study of the Córrego do Feijão Mine dam failure (Brumadinho, Minas Gerais, Brazil). Int. J. Min. Reclamat. Environ. https://doi.org/10.1080/17480930.2023.2226474 (2023).

    Article  Google Scholar 

  80. Hudson-Edwards, K. A. et al. The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Rios Agrio-Guadiamar, Aznalcollar, Spain. Appl. Geochem. 18, 221–239 (2003).

    Article  CAS  Google Scholar 

  81. Byrne, P., Wood, P. J. & Reid, I. The impairment of river systems by metal mine contamination: a review including remediation options. Crit. Rev. Environ. Sci. Technol. 42, 2017–2077 (2012).

    Article  CAS  Google Scholar 

  82. Hudson-Edwards, K. A., Jamieson, H. E., Charnock, J. M. & Macklin, M. G. Arsenic speciation in waters and sediment of ephemeral floodplain pools, Ríos Agrio–Guadiamar, Aznalcóllar, Spain. Chem. Geol. 219, 175–192 (2005).

    Article  CAS  Google Scholar 

  83. Hudson-Edwards, K. A. et al. Origin and fate of vanadium in the Hazeltine Creek catchment following the 2014 Mount Polley mine tailings spill in British Columbia, Canada. Environ. Sci. Technol. 53, 4088–4098 (2019).

    Article  CAS  Google Scholar 

  84. Palau, J. et al. Release of trace elements during bioreductive dissolution of magnetite from metal mine tailings: potential impact on marine environments. Sci. Total Environ. 788, 147579 (2021).

    Article  CAS  Google Scholar 

  85. Grimalt, J. O., Ferrer, M. & Macpherson, E. The mine tailing accident in Aznalcollar. Sci. Total Environ. 242, 3–11 (1999).

    Article  CAS  Google Scholar 

  86. Lásló, F. in Management of Intentional and Accidental Water Pollution (eds Dura, G. & Simeonova, F.) 43–50 (2006).

  87. Furlan, J. P. R. et al. Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho Dam disaster, Brazil. Sci. Total Environ. 726, 138100 (2020).

    Article  CAS  Google Scholar 

  88. Omachi, C. Y. et al. Atlantic forest loss caused by the world´s largest tailing dam collapse (Fundão Dam, Mariana, Brazil). Remote Sens. Appl. Soc. Environ. 12, 30–34 (2018).

    Google Scholar 

  89. Política, Economia, Mineração, Ambiente e Sociedade (PoEMAS). Antes fosse mais leve a carga: avaliação dos aspectos econômicos, políticos e sociais do desastre da Samarco/Vale/BHP em Mariana (MG) Relatório Final (PoEMAS, 2015).

  90. Garris, H. W. et al. Short-term microbial effects of a large-scale mine-tailing storage facility collapse on the local natural environment. PLoS ONE 13, e0196032 (2018).

    Article  Google Scholar 

  91. Giongo, A. et al. Adaption of microbial communities to the hostile environment in the Doce River after the collapse of two iron ore tailings dams. Heliyon 67, e04778 (2020).

    Article  Google Scholar 

  92. Hatam, I. et al. The bacterial community of Quesnel Lake sediments impacted by a catastrophic mine tailings spill differ in compositions from those at undisturbed locations — two years post-spill. Sci. Rep. 9, 2705 (2019).

    Article  CAS  Google Scholar 

  93. de Miguel, R. J., Oliva-Paterna, F. J., Gálvez-Bravo, L. & Fernández-Delgado, C. Habitat quality affects the condition of Luciobarbus sclateri in the Guadiamar River (SW Iberian Peninsula): effects of disturbances by the toxic spill of the Aznalcóllar mine. Hydrobiologia 700, 85–97 (2013).

    Article  Google Scholar 

  94. Gabriel, F. Â. et al. Contamination and oxidative stress biomarkers in estuarine fish following a mine tailing disaster. PeerJ 8, e10266 (2020).

    Article  Google Scholar 

  95. Weber, A. A. et al. Effects of metal contamination on liver in two fish species from a highly impacted neotropical river: a case study of the Fundão Dam, Brazil. Ecotoxicol. Environ. Saf. 190, 110165 (2020).

    Article  CAS  Google Scholar 

  96. Salvador, G. N. et al. Influences of multiple anthropogenic disturbances coupled with a tailings dam rupture on spatiotemporal variation in fish assemblages of a tropical river. Freshw. Biol. 67, 1708–1724 (2022).

    Article  Google Scholar 

  97. Owen, J. R. et al. Increasing mine waste will induce land cover change that results in ecological degradation and human displacement. J. Environ. Manag. 351, 119691 (2024).

    Article  Google Scholar 

  98. Shandro, J., Jokinen, L., Stockwell, A., Mazzei, F. & Winkler, M. S. Risks and impacts to First Nation health and the Mount Polley mine tailings dam failure. Int. J. Indig. Health 12, 84–201 (2017).

    Article  Google Scholar 

  99. Araújo, R. M. et al. Identification of victims of the collapse of a mine tailing dam in Brumadinho. Forensic Sci. Res. 12, 580–589 (2023).

    Google Scholar 

  100. Vormittag, E., Saldiva, P., Anastacio, A. & Barbosa, F. High levels of metals/metalloids in blood and urine of residents living in the area affected by the dam failing in Barra Longa, District, Brazil: a preliminary human biomonitoring study. Environ. Toxicol. Pharmacol. 83, 103556 (2021).

    Article  Google Scholar 

  101. Queiroz, H. M. et al. Manganese: the overlooked contaminant in the world largest mine tailings dam collapse. Environ. Int. 146, 106284 (2021).

    Article  CAS  Google Scholar 

  102. Fernandes, C. S., Santos, A. C., Santos, G. R. & Teixeira, M. C. Environmental arsenic in a changing world. In Proc. 7th International Congress and Exhibition on Arsenic in the Environment 203–204 (2019).

  103. Thompson, F. et al. Severe impacts of the Brumadinho Dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Sci. Total Environ. 705, 135914 (2020).

    Article  CAS  Google Scholar 

  104. Liu, H., Probst, A. & Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 339, 153–166 (2005).

    Article  CAS  Google Scholar 

  105. Xu, D. et al. Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns. Sci. Rep. 12, 9211 (2022).

    Article  CAS  Google Scholar 

  106. Kawabe, Y., Komai, T. & Sakamoto, Y. Exposure estimation of heavy metals in Japan — risk analysis by Geo-environmental Risk Assessment Model. J. Min. Mater. Process. Inst. Jpn. 119, 427–433 (2003).

    CAS  Google Scholar 

  107. Xu, Z., Ito, L., dos Muchangos, L. S. & Tokai, A. Health risk assessment and cost–benefit analysis of agricultural soil remediation for tailing dam failure in Jinding mining area, SW China. Environ. Geochem. Health 45, 3759–3775 (2022).

    Article  Google Scholar 

  108. Ruhl, L. et al. Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee. Environ. Sci. Technol. 43, 6326–6333 (2009).

    Article  CAS  Google Scholar 

  109. WISE Uranium Project. Chronology of major tailings dam failures. World Information Service of Energy https://www.wise-uranium.org/mdaf.html (2024).

  110. Renforth, P. et al. Contaminant mobility and carbon sequestration downstream of the Ajka (Hungary) red mud spill: the effects of gypsum dosing. Sci. Total Environ. 421, 253–259 (2012).

    Article  Google Scholar 

  111. Gao, T., Wang, X. C., Chen, R., Ngo, H. H. & Guo, W. Disability adjusted life year (DALY): a useful tool for quantitative assessment of environmental pollution. Sci. Total Environ. 511, 268–287 (2015).

    Article  CAS  Google Scholar 

  112. Neves, A. C. D. O., Nunes, F. P., de Carvalho, F. A. & Fernandes, G. W. Neglect of ecosystems services by mining, and the worst environmental disaster in Brazil. Perspect. Ecol. Conserv. 14, 24–27 (2016).

    Google Scholar 

  113. Vergilio, C. D. et al. Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil). Sci. Rep. https://doi.org/10.1038/s41598-020-62700-w (2020).

    Article  Google Scholar 

  114. Czajkowski, M. et al. Estimating environmental and cultural/heritage damages of a tailings dam failure: the case of the Fundão Dam in Brazil. J. Environ. Econ. Manag. 121, 102849 (2023).

    Article  Google Scholar 

  115. The Church of England. The Investor Mining and Tailings Safety Initiative. The Church of England https://www.churchofengland.org/about/leadership-and-governance/national-church-institutions/church-england-pensions-board/pensions (2022).

  116. United Nations Economic Commission for Europe. UNECE launches online toolkit and training for strengthening mine tailings safety. UNECE https://unece.org/environment-policy/industrial-accidents/online-toolkit-and-training-strengthening-mine-tailings (2021).

  117. Milanez, B., Ali, S. H. & de Oliveira, J. A. P. Mapping industrial disaster recovery: lessons from mining dam failures in Brazil. Extr. Ind. Soc. 8, 100900 (2021).

    Google Scholar 

  118. Hund, K. et al. Minerals for climate action: the mineral intensity of the clean energy transition. World Bank Group https://elibrary.worldbank.org/doi/abs/10.1596/40002 (2020).

  119. O’Regan, B. & Moles, R. Using system dynamics to model the interaction between environmental and economic factors in the mining industry. J. Clean. Prod. 14, 689–707 (2006).

    Article  Google Scholar 

  120. Valenta, R. K., Kemp, D., Owen, J. R., Corder, G. D. & Lebre, E. Re-thinking complex orebodies: consequences for the future world supply of copper. J. Clean. Prod. 220, 816–826 (2019).

    Article  Google Scholar 

  121. Comerio, M. C. Housing issues after disasters. J. Conting. Crisis Manag. 5, 166–178 (2002).

    Article  Google Scholar 

  122. Hein, W. et al. Climate change and natural disasters: government mitigation activities and public property demand response. Land Use Policy 82, 436–443 (2019).

    Article  Google Scholar 

  123. Kellenberg, D. & Mobarak, A. M. The economics of natural disasters. Annu. Rev. Resour. Econ. 3, 297–312 (2011).

    Article  Google Scholar 

  124. Collenteur, R. A., de Moel, H., Jongman, B. & Di Baldassarre, G. The failed-levee effect: do societies learn from flood disasters? Nat. Hazards 76, 373–388 (2015).

    Article  Google Scholar 

  125. Alexander, D. The study of natural disasters, 1977–97: some reflections on a changing field of knowledge. Disasters 21, 284–304 (2002).

    Article  Google Scholar 

  126. Turner, J. et al. Heavy metals and As transport under low and high flows in the River Guadiamar three years after the Aznalcóllar tailings dam failure: implications for river recovery and management. Cuad. de Invest. Geográfica 28, 31–47 (2002).

    Article  Google Scholar 

  127. Eriksson, N. & Adamek, P. The tailings pond failure at the Aznalcóllar mine, Spain. In Sixth International Symposium in Environmental Issues and Wate Management in Energy and Mineral Production 109–116 (Routledge, 2000).

  128. Turner, J. N., Brewer, P. A. & Macklin, M. G. Fluvial-controlled metal and As mobilisation, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands. Sci. Total Environ. 394, 144–161 (2008).

    Article  CAS  Google Scholar 

  129. Macklin, M. G. et al. Physical stability and rehabilitation of sustainable aquatic and riparian ecosystems in the Río Guadiamar, Spain, following the Aznalcóllar mine tailings dam failure. In Mine, Water and Environment. International Mine Water Association Congress 271–278 (International Mine Water Association, 1999).

  130. Akcil, A. A new global approach of cyanide management: international cyanide management code for the manufacture, transport, and use of cyanide in the production of gold. Miner. Process. Extr. Metall. Rev. 31, 135–149 (2010).

    Article  CAS  Google Scholar 

  131. Golder Associates. Mount Polley rehabilitation and remediation strategy. Remediation Plan https://imperialmetals.com/assets/docs/mt-polley/2019-03-golder-remediation-plan.pdf (2017).

  132. Márquez-Ferrando, R., Pleguezuelos, J. M., Santos, X., Ontiveros, D. & Fernández-Cardenete, J. R. Recovering the reptile community after the mine-tailing accident of Aznalcóllar (southwestern Spain). Restor. Ecol. 17, 660–667 (2009).

    Article  Google Scholar 

  133. Campanharo, Í. F. et al. Effects of forest restoration techniques on community diversity and aboveground biomass on area affected by mining tailings in Mariana, southeastern Brazil. Res. Ecol. 2, 22–30 (2020).

    Article  Google Scholar 

  134. Sun, W. et al. An extensive review on restoration technologies for mining tailings. Environ. Sci. Pollut. Res. 25, 33911–33925 (2018).

    Article  CAS  Google Scholar 

  135. McMahen, K., Anglin, C. D., Lavkulich, L. M., Grayston, S. J. & Simard, S. W. Small-volume additions of forest topsoil improve root symbiont colonization and seedling growth in mine reclamation. Appl. Soil Ecol. 180, 104622 (2022).

    Article  Google Scholar 

  136. Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    Article  Google Scholar 

  137. Vallance, S. & Carlton, S. First to respond, last to leave: communities’ roles and resilience across the ‘4Rs’. Int. J. Disaster Risk Reduct. 14, 27–36 (2015).

    Article  Google Scholar 

  138. LaLone, M. D. Neighbors helping neighbors: an examination of the social capital mobilization process for community resilience to environmental disasters. J. Appl. Soc. Sci. 6, 209–237 (2012).

    Article  Google Scholar 

  139. Murphy, B. L. Locating social capital in resilient community-level emergency management. Nat. Hazards 41, 297–315 (2007).

    Article  Google Scholar 

  140. Downing, T. E., Shi, G. Q., Zaman, M. & Garcia-Downing, C. Improving post-relocation support for people resettled by infrastructure development. Impact Assess. Proj. Apprais. 39, 357–365 (2021).

    Article  Google Scholar 

  141. Price, S. et al. Risk and value in benefit-sharing with displaced people: looking back 40 years, anticipating the future. Soc. Change 50, 447–465 (2020).

    Article  Google Scholar 

  142. Cernea, M. The risks and reconstruction model for resettling displaced populations. World Dev. 25, 1569–1587 (1997).

    Article  Google Scholar 

  143. Downing, T. E. Avoiding New Poverty: Mining-induced Displacement and Resettlement Vol. 52 (IIED, 2002).

  144. Vanclay, F. Project-induced displacement and resettlement: from impoverishment risks to an opportunity for development? Impact Assess. Proj. Apprais. 35, 3–21 (2017).

    Article  Google Scholar 

  145. Saharan, V. in Strategic Disaster Risk Management in Asia (eds Ha, H. et al.) 193–206 (Springer, 2015).

  146. Lyra, M. G. Challenging extractivism: activism over the aftermath of the Fundão disaster. Extr. Ind. Soc. 6, 897–905 (2019).

    Google Scholar 

  147. Owen, J. R. & Kemp, D. A return to responsibility: a critique of the single actor strategic model of CSR. J. Environ. Manag. 341, 118024 (2023).

    Article  Google Scholar 

  148. Zanini, M. T. F., Migueles, C. P., Gambriage, C. & Silva, J. Barriers to local community participation in mining projects: the eroding role of power imbalance and information asymmetry. Resour. Policy 86, 104283 (2023).

    Article  Google Scholar 

  149. Marais, L. et al. The catastrophic failure of the Jagersfontein tailings dam: an industrial disaster 150 years in the making. Int. J. Disaster Risk Reduct. 109, 104585 (2024).

    Article  Google Scholar 

  150. Pearce, T. D. et al. Climate change and mining in Canada. Mitig. Adaption Strateg. Glob. Change 16, 347–368 (2010).

    Article  Google Scholar 

  151. Jin, J., Song, C., Zhang, X. & Lv, X. Ageing deformation of tailings dams in seasonally frozen soil areas under freeze-thaw cycles. Sci. Rep. 9, 15033 (2019).

    Article  Google Scholar 

  152. Armstrong, M., Petter, R. & Petter, C. Why have so many tailings dams failed in recent years? Resour. Policy 63, 101412 (2019).

    Article  Google Scholar 

  153. Vaughan, D. The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA. (Univ. of Chicago Press, 2016).

  154. Williams, D. J. Lessons from tailings dam failures — where to go from here? Minerals 11, 853 (2021).

    Article  Google Scholar 

  155. Snow, R. E. in Tailings Management Handbook: A Life-cycle Approach. (ed. Morrison, K. F.) Ch 4, 41-64 (Society for Mining, Metallurgy & Exploration, 2022).

  156. Sako, C. H. & Pabst, T. Experimental and numerical evaluation of the critical degree of saturation and critical exposure time of acid generating filtered tailings. Appl. Geochem. 155, 105726 (2023).

    Article  CAS  Google Scholar 

  157. Vargas, C. C. & Campomanes, G. P. Practical experience of filtered tailings technology in Chile and Peru: an environmentally friendly solution. Minerals 12, 889 (2022).

    Article  Google Scholar 

  158. Torres-Cruz, L. A. & O’Donovan, C. Public remotely sensed data raise concerns about history of failed Jagersfontein Dam. Sci. Rep. 13, 4953 (2023).

    Article  CAS  Google Scholar 

  159. Grebby, S. et al. Advanced analysis of satellite data reveals ground deformation precursors to the Brumadinho Tailings Dam collapse. Commun. Earth Environ. 2, 2 (2021).

    Article  Google Scholar 

  160. Ouellet, S. M., Dettmer, J., Olivier, G., DeWit, T. & Lato, M. Advanced monitoring of tailings dam performance using seismic noise and stress models. Commun. Earth Environ. 3, 301 (2022).

    Article  Google Scholar 

  161. Lumbroso, D. et al. DAMSAT: an eye in the sky for monitoring tailings dams. Mine Water Environ. 40, 113–127 (2021).

    Article  Google Scholar 

  162. Innis, S. et al. The development and demonstration of a semi-automated regional hazard mapping tool for tailings storage facility failures. Resources 11, 82 (2022).

    Article  Google Scholar 

  163. International Council on Mining and Metals (ICMM). Member disclosures on progress towards conformance with the Global Industry Standard on Tailings Management (ICMM, 2023).

  164. Lèbre, E., Corder, G. D. & Golev, A. Sustainable practices in the management of mining waste: a focus on the mineral resource. Miner. Eng. 107, 34–42 (2017).

    Article  Google Scholar 

  165. Kinnunen, P., Karhu, M., Yli-Rantala, E., Kivikytö-Reponen, P. & Mäkinen, J. A review of circular economy strategies for mine tailings. Clean. Eng. Technol. 8, 100499 (2022).

    Article  Google Scholar 

  166. Simonsen, A. M. T., Solismaa, S., Hansen, H. K. & Jensen, P. E. Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics. Waste Manag. 102, 710–721 (2020).

    Article  CAS  Google Scholar 

  167. Ahmari, S. & Zhang, L. Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr. Build. Mater. 44, 743–750 (2013).

    Article  Google Scholar 

  168. Karhu, M. et al. Mining tailings as a raw material for glass-bonded thermally sprayed ceramic coatings: microstructure and properties. J. Eur. Ceram. Soc. 40, 4111–4121 (2020).

    Article  CAS  Google Scholar 

  169. Kinnunen, P. et al. Recycling mine tailings in chemically bonded ceramics — a review. J. Clean. Prod. 174, 634–649 (2018).

    Article  CAS  Google Scholar 

  170. Gou, M., Zhou, L. & Then, N. W. Y. Utilization of tailings in cement and concrete: a review. Sci. Eng. Compos. Mater. 26, 449–464 (2019).

    Article  CAS  Google Scholar 

  171. Bullock, L. A., Yang, A. D. & Darton, R. C. Kinetics-informed global assessment of mine tailings for CO2 removal. Sci. Total Environ. 808, 152111 (2022).

    Article  CAS  Google Scholar 

  172. Golev, A. et al. Ore-sand: a potential new solution to the mine tailings and global sand sustainability crises https://doi.org/10.14264/503a3fd (The University of Queensland, 2022).

  173. Segura-Salazar, J. & Franks, D. M. Ore-sand co-production from Newcrest’s Cadia East HydroFloat Reject: an exploratory study https://doi.org/10.14264/96249f6 (The University of Queensland, 2023).

  174. Li, Y., Li, S., Zhao, X., Pan, X. & Guo, P. Separation and purification of high-purity quartz from high-silicon iron ore tailing: an innovative strategy for comprehensive utilization of tailings resources. Process. Saf. Environ. Prot. 169, 142–148 (2023).

    Article  CAS  Google Scholar 

  175. Kinnunen, P. H.-M. & Kaksonen, A. H. Towards circular economy in mining: opportunities and bottlenecks for tailings valorization. J. Clean. Prod. 288, 153–160 (2019).

    Article  Google Scholar 

  176. Martens, E. et al. Toward a more sustainable mining future with electrokinetic in situ leaching. Sci. Adv. 7, eabf9971 (2021).

    Article  CAS  Google Scholar 

  177. Visual Capitalist. Visualizing the importance of environmental management in mining. Visual Capitalist https://www.visualcapitalist.com/sp/environmental-and-mining/ (2020).

  178. Cacciuttolo, C. & Atencio, E. In-pit disposal of mine tailings for a sustainable mine closure: a responsible alternative to develop long-term green mining solutions. Sustainability 15, 6481 (2023).

    Article  Google Scholar 

  179. MSHA. MSHA metal and nonmetal tailings and water impoundment inspection form https://www.resolutionmineeis.us/documents/fundao-2016 (2009).

  180. Islam, K. & Murakami, S. Global-scale impact analysis of mine tailings dam failures: 1915-2020. Glob. Environ. Change 70, 102361 (2021).

    Article  Google Scholar 

  181. Rudolph, T. & Coldewey, W. Implications of earthquakes on the stability of tailings dams. pebblescience http://www.pebblescience.org/OLD-SITE/pdfs/Tailings_dam.pdf (1971).

  182. Ishihara, K., Yasuda, S. & Yoshida, Y. Liquefaction-induced flow failure of embankments and residual strength of silty sands. Soils Found. 30, 69–80 (1990).

    Article  Google Scholar 

  183. Fundão Tailings Dam Review Panel. Report on the Immediate Causes of the Failure of the Fundão Dam (Fundão Tailings Dam Review Panel, 2016).

  184. Schneider, U., Becker, A., Finger, P., Rustemeier, E. & Ziese, M. GPCC full data monthly product version 2020 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. GPCC Full Data Monthly Product Version 2020 https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_050 (2020).

    Article  Google Scholar 

  185. Giardini, D. et al. in International Handbook of Earthquake & Engineering Seismology. 81B, International Geophysics Series (eds Lee, W. et al.) 1233–1239 (Academic, 2003).

  186. Genevois, R. & Tecca, P. R. in Environmental Management Geo-water and Engineering Aspects (eds Chowdhury, R. N. & Sivakumar, M.) 23–36 (Balkema, 1993).

  187. Alexander, D. E. Northern Italian dam failure and mudflow, July 1985. Disasters 10, 3–7 (1986).

    Article  Google Scholar 

  188. Takahashi, T. in Debris Flow (ed. International Association for Hydro-Environment Engineering and Research (IAHR)) 92–99 (Balkema, 1991).

  189. van Niekerk, H. J. & Viljoen, M. J. Causes and consequences of the Merriespruit and other tailings-dam failures. Land Degrad. Dev. 16, 201–212 (2005).

    Article  Google Scholar 

  190. Lucchi, G. in Stava-Tesero La Ricostruzione e la Memoria 23–49 (Fondazione Stava 1985, 2011).

  191. Fondazione Stava 1985. https://www.stava1985.it/ (2002).

  192. Simeoni, L., Tosatti, G., Lucchi, G. & Longo, M. The Stava catastrophic failure of July 19, 1985 (Italy): technical-scientific data and socioeconomic aspects. CSE J. 1, 17–30 (2017).

    Google Scholar 

  193. Chandler, R. J. & Tasatti, G. The Stava tailings dams failure, Italy, July 1985. Proc. Inst. Civ. Eng. 113, 67–79 (1995).

    Article  Google Scholar 

  194. Meyer Jr., V., Mamédio, D. F. & Adrião, M. in Universities and Sustainable Communities: Meeting the Goals of the Agenda 2030. 384-399 (Springer, 2020).

  195. McDermott, R. K. & Sibley, J. M. The Aznalcóllar tailings dam accident - A case study. Miner. Resour. Eng. 9, 101-118 (2000).

  196. Alonso, E. E. The failure of the Aznalcóllar tailings dam in SW Spain. Mine Water Environ. 40, 209–224 (2021).

  197. Pirulli, M., Barbero, M., Marchelli, M. & Scavia, C. The failure of the Stava Valley tailings dams (Northern Italy): numerical analysis of the flow dynamics and rheological properties. Geoenvironmental Disasters https://doi.org/10.1186/s40677-016-0066-5 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The contribution of D.K. was in part supported by the Australian Research Council grant LP200301160. The authors are grateful to A. Amanda Andrade for her feedback on an early draft of the manuscript. K.A.H.-E., D.K., D.M.F. and E.M. acknowledge the QUEX Institute (https://www.exeter.ac.uk/global/quex/) for helping to facilitate our collaboration.

Author information

Authors and Affiliations

Authors

Contributions

K.A.H.-E wrote and edited the article. All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Karen A. Hudson-Edwards.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks H. Queiroz, S. Northey, B. Mendonca Severiano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ash

The powdery inorganic waste material remaining after the combustion of mineral materials.

Best available practice

(BAP). Best available practices for tailings storage facilities, which include monitoring of physical mechanisms and human factors that could result in tailings storage facility failures.

Global Industry Standard on Tailings Management

(GISTM). The global standard developed by the United Nations Environment Programme (UNEP), International Council on Mining and Metals (ICMM) and Principles for Responsible Investment (PRI) in 2020 that requires operators to be responsible for, and prioritize the safety of, TSF throughout its life cycle.

Slags

The glassy siliceous waste materials remaining after the smelting of metal ores.

Tailings

Finely crushed rock and processing fluids left over after the economic materials of the mined resource have been extracted; they can contain potentially toxic, corrosive and radioactive components.

Tailings dams

TSF barriers constructed to hold back the tailings; it is the part of the TSF that has the highest tendency to fail.

Tailings storage facility

(TSF). Engineered facility designed to contain tailings; it can be an open pit, a dammed impoundment or an underground void.

TSF disasters

TSF failures that cause severe impacts and result in serious disruption to social, environmental and economic systems.

TSF failures

Failures of the dam or other part of the storage facility designed to hold back the tailings in the TSF.

Waste rock

Mined rock that does not contain ore minerals at sufficient grades to be economic and does not undergo mineral processing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson-Edwards, K.A., Kemp, D., Torres-Cruz, L.A. et al. Tailings storage facilities, failures and disaster risk. Nat Rev Earth Environ 5, 612–630 (2024). https://doi.org/10.1038/s43017-024-00576-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00576-4

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene