Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Indian Ocean Dipole in a warming world

Abstract

The Indian Ocean Dipole (IOD) strongly affects the climate of the Indo-Pacific. Observations suggest a shift towards stronger and earlier positive IOD (pIOD) events alongside an increased amplitude of sea surface temperature (SST) anomalies, but uncertainty remains, impeding assessments of ongoing changes. In this Review, we synthesize the available knowledge of projected changes in the IOD during the twenty-first century under anthropogenic warming. Compared to observations, models struggle to simulate the Bjerknes feedback, asymmetry in the strength of positive and negative IOD anomalies and El Niño–Southern Oscillation or monsoonal forcings. Yet several models do capture important feedbacks reasonably well and offer useful tools with which to assess IOD evolution. A pIOD-like SST warming pattern (an enhanced west-minus-east SST gradient) alongside shifts in feedback process drive corresponding changes to the IOD. Over the course of the twenty-first century, robust changes include: enhanced IOD SST variability (as measured by the first principal component of spring SST variability, not the dipole mode index); an increase in strong rainfall pIOD events; an increase and decrease in the frequency of strong-pIOD and moderate-pIOD, respectively, as defined by SST; and an increase in the frequency of early-pIOD events. Palaeo evidence reveals similar increases in the magnitude and frequency of pIOD events underpinned by a similar pattern of mean state change (Last Glacial Maximum, post-1960), reinforcing IOD projections. Sustained international efforts are needed to improve IOD simulations and reduce projection uncertainties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The observed characteristics and changes in the Indian Ocean Dipole since 1958.
Fig. 2: Simulated twentieth-century Indian Ocean Dipole characteristics.
Fig. 3: Projected changes in the mean state and feedbacks.
Fig. 4: Projected changes in first principal mode SST variability, the strong- and moderate-pIOD regimes, and changes in IOD teleconnection.
Fig. 5: Projected changes in ENSO–IOD and monsoon–IOD couplings, and impacts of mean state bias on the IOD changes.
Fig. 6: Past, present and future context for the IOD.
Fig. 7: Time of emergence of climate change signals in the tropical Indian Ocean.

Similar content being viewed by others

References

  1. Saji, N., Goswami, B. N., Vinayachandran, P. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article  CAS  Google Scholar 

  2. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).

    Article  CAS  Google Scholar 

  3. Murtugudde, R., McCreary, J. P. Jr & Busalacchi, A. J. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res. Atmos. 105, 3295–3306 (2000).

    Article  Google Scholar 

  4. Shi, W. & Wang, M. A biological Indian Ocean Dipole event in 2019. Sci. Rep. 11, 2452 (2021).

    Article  CAS  Google Scholar 

  5. McMonigal, K. & Larson, S. M. ENSO explains the link between Indian Ocean Dipole and meridional ocean heat transport. Geophys. Res. Lett. 49, e2021GL095796 (2022).

    Article  Google Scholar 

  6. Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).

    Article  CAS  Google Scholar 

  7. Hashizume, M., Terao, T. & Minakawa, N. The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc. Natl Acad. Sci. USA 106, 1857–1862 (2009).

    Article  CAS  Google Scholar 

  8. Hashizume, M., Chaves, L. F. & Minakawa, N. Indian Ocean Dipole drives malaria resurgence in East African highlands. Sci. Rep. 2, 269 (2012).

    Article  Google Scholar 

  9. Nicholson, S. E., Fink, A. H., Funk, C., Klotter, D. A. & Satheesh, A. R. Meteorological causes of the catastrophic rains of October/November 2019 in equatorial Africa. Glob. Planet. Change 208, 103687 (2022).

    Article  Google Scholar 

  10. Latif, M., Dommenget, D., Dima, M. & Grötzner, A. The role of Indian Ocean sea surface temperature in forcing East African rainfall anomalies during December–January 1997/98. J. Clim. 12, 3497–3504 (1999).

    Article  Google Scholar 

  11. Birkett, C., Murtugudde, R. & Allan, T. Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett. 26, 1031–1034 (1999).

    Article  Google Scholar 

  12. Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL039902 (2009).

  13. Cai, W., Van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).

    Article  Google Scholar 

  14. Nur’utami, M. N. & Hidayat, R. Influences of IOD and ENSO to Indonesian rainfall variability: role of atmosphere–ocean interaction in the Indo-Pacific sector. Proc. Environ. Sci. 33, 196–203 (2016).

    Article  Google Scholar 

  15. Wang, G. & Cai, W. Two-year consecutive concurrences of positive Indian Ocean Dipole and central Pacific El Niño preconditioned the 2019/2020 Australian “black summer” bushfires. Geosci. Lett. 7, 19 (2020).

    Article  CAS  Google Scholar 

  16. Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).

    Article  Google Scholar 

  17. van der Velde, I. R. et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 597, 366–369 (2021).

    Article  Google Scholar 

  18. Saji, N. & Yamagata, T. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim. Res. 25, 151–169 (2003).

    Article  Google Scholar 

  19. Chan, S. C., Behera, S. K. & Yamagata, T. Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL034204 (2008).

  20. Bell, G. et al. Tropical cyclones — Atlantic basin, state of the climate in 2011. Bull. Am. Meteor. Soc. 98, S108–S112 (2017).

    Google Scholar 

  21. Wood, K. M. et al. Factors affecting the 2019 Atlantic hurricane season and the role of the Indian Ocean Dipole. Geophys. Res. Lett. 47, e2020GL087781 (2020).

    Article  Google Scholar 

  22. Zheng, X.-T. et al. Indian Ocean Dipole response to global warming in the CMIP5 multimodel ensemble. J. Clim. 26, 6067–6080 (2013).

    Article  Google Scholar 

  23. Cai, W. et al. Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci. 6, 999–1007 (2013).

    Article  CAS  Google Scholar 

  24. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  25. Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  26. Cai, W. et al. Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 C warming. Nat. Commun. 9, 1419 (2018).

    Article  Google Scholar 

  27. Wang, G., Cai, W. & Santoso, A. Simulated thermocline tilt over the tropical Indian Ocean and its influence on future sea surface temperature variability. Geophys. Res. Lett. 48, e2020GL091902 (2021).

    Article  Google Scholar 

  28. Sharma, S. et al. Future Indian Ocean warming patterns. Nat. Commun. 14, 1789 (2023).

    Article  CAS  Google Scholar 

  29. Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  30. Izumo, T. et al. Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim. Dyn. 42, 291–310 (2014).

    Article  Google Scholar 

  31. Chan, D., Kent, E. C., Berry, D. I. & Huybers, P. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571, 393–397 (2019).

    Article  CAS  Google Scholar 

  32. Gopika, S. et al. Aliasing of the Indian Ocean externally-forced warming spatial pattern by internal climate variability. Clim. Dyn. 54, 1093–1111 (2020).

    Article  Google Scholar 

  33. Abram, N. J. et al. Seasonal characteristics of the Indian Ocean Dipole during the holocene epoch. Nature 445, 299–302 (2007).

    Article  CAS  Google Scholar 

  34. Yang, K. et al. Oceanic processes in ocean temperature products key to a realistic presentation of positive Indian Ocean Dipole nonlinearity. Geophys. Res. Lett. 47, e2020GL089396 (2020).

    Article  Google Scholar 

  35. An, S.-I. et al. Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model. npj Clim. Atmos. Sci. 6, 93 (2023).

    Article  Google Scholar 

  36. Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  Google Scholar 

  37. Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, https://doi.org/10.1029/2002JD002670 (2003).

  38. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  39. Behringer, D. & Xue, Y. Evaluation of the Global Ocean Data Assimilation System at NCEP: the Pacific Ocean. In Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (Americal Meteorological Society, 2004).

  40. Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G. & Griffies, S. M. Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J. Atmos. Ocean. Technol. 23, 1709–1728 (2006).

    Article  Google Scholar 

  41. Giese, B. S. & Ray, S. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res. Oceans 116, https://doi.org/10.1029/2010JC006695 (2011).

  42. Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean. Sci. 15, 779–808 (2019).

    Article  Google Scholar 

  43. Fischer, A. S., Terray, P., Guilyardi, E., Gualdi, S. & Delecluse, P. Two independent triggers for the Indian Ocean Dipole/zonal mode in a coupled GCM. J. Clim. 18, 3428–3449 (2005).

    Article  Google Scholar 

  44. Abram, N. J. et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature 579, 385–392 (2020).

    Article  CAS  Google Scholar 

  45. Li, T., Wang, B., Chang, C. & Zhang, Y. A theory for the Indian Ocean Dipole–zonal mode. J. Atmos. Sci. 60, 2119–2135 (2003).

    Article  Google Scholar 

  46. Xie, S.-P., Annamalai, H., Schott, F. A. & McCreary, J. P. Structure and mechanisms of south Indian Ocean climate variability. J. Clim. 15, 864–878 (2002).

    Article  Google Scholar 

  47. Du, Y., Xie, S.-P., Huang, G. & Hu, K. Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Clim. 22, 2023–2038 (2009).

    Article  Google Scholar 

  48. Du, Y. et al. Thermocline warming induced extreme Indian Ocean Dipole in 2019. Geophys. Res. Lett. 47, e2020GL090079 (2020).

    Article  Google Scholar 

  49. Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27–32 (2021).

    Article  Google Scholar 

  50. Zhang, Y. & Du, Y. Oceanic Rossby waves induced two types of ocean–atmosphere response and opposite Indian Ocean Dipole phases. J. Clim. 35, 3927–3945 (2022).

    Article  Google Scholar 

  51. Ng, B., Cai, W., Walsh, K. & Santoso, A. Nonlinear processes reinforce extreme Indian Ocean Dipole events. Sci. Rep. 5, 11697 (2015).

    Article  CAS  Google Scholar 

  52. Wang, G., Cai, W., Yang, K., Santoso, A. & Yamagata, T. A unique feature of the 2019 extreme positive Indian Ocean Dipole event. Geophys. Res. Lett. 47, e2020GL088615 (2020).

    Article  Google Scholar 

  53. Hong, C.-C., Li, T. & Kug, J.-S. Asymmetry of the Indian Ocean Dipole. Part I: observational analysis. J. Clim. 21, 4834–4848 (2008).

    Article  Google Scholar 

  54. Cai, W. & Qiu, Y. An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean Dipole. J. Clim. 26, 2880–2890 (2013).

    Article  Google Scholar 

  55. Ng, B., Cai, W. & Walsh, K. Nonlinear feedbacks associated with the Indian Ocean Dipole and their response to global warming in the GFDL–ESM2M coupled climate model. J. Clim. 27, 3904–3919 (2014).

    Article  Google Scholar 

  56. Cai, W., Hendon, H. H. & Meyers, G. Indian Ocean Dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Clim. 18, 1449–1468 (2005).

    Article  Google Scholar 

  57. Ogata, T., Xie, S.-P., Lan, J. & Zheng, X. Importance of ocean dynamics for the skewness of the Indian Ocean Dipole mode. J. Clim. 26, 2145–2159 (2013).

    Article  Google Scholar 

  58. Nakazato, M., Kido, S. & Tozuka, T. Mechanisms of asymmetry in sea surface temperature anomalies associated with the Indian Ocean Dipole revealed by closed heat budget. Sci. Rep. 11, 22546 (2021).

    Article  CAS  Google Scholar 

  59. Hong, C. C., Lu, M. M. & Kanamitsu, M. Temporal and spatial characteristics of positive and negative Indian Ocean Dipole with and without ENSO. J. Geophys. Res. Atmos. 113, https://doi.org/10.1029/2007JD009151 (2008).

  60. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    Article  CAS  Google Scholar 

  61. Wang, C. Three-ocean interactions and climate variability: a review and perspective. Clim. Dyn. 53, 5119–5136 (2019).

    Article  Google Scholar 

  62. Annamalai, H. et al. Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep. Sea Res. II 50, 2305–2330 (2003).

    Article  Google Scholar 

  63. Zhao, Y. & Nigam, S. The Indian Ocean Dipole: a monopole in SST. J. Clim. 28, 3–19 (2015).

    Article  Google Scholar 

  64. Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys. Res. Lett. 44, 2481–2492 (2017).

    Article  Google Scholar 

  65. Ashok, K., Guan, Z. & Yamagata, T. A look at the relationship between the ENSO and the Indian Ocean Dipole. J. Meteorol. Soc. Japan. Ser. II 81, 41–56 (2003).

    Article  Google Scholar 

  66. Behera, S. K. et al. A CGCM study on the interaction between IOD and ENSO. J. Clim. 19, 1688–1705 (2006).

    Article  Google Scholar 

  67. Yang, Y. et al. Seasonality and predictability of the Indian Ocean Dipole mode: ENSO forcing and internal variability. J. Clim. 28, 8021–8036 (2015).

    Article  Google Scholar 

  68. Lim, E.-P. & Hendon, H. H. Causes and predictability of the negative Indian Ocean Dipole and its impact on La Niña during 2016. Sci. Rep. 7, 12619 (2017).

    Article  Google Scholar 

  69. Sun, S., Lan, J., Fang, Y., Tana & Gao, X. A triggering mechanism for the Indian Ocean Dipoles independent of ENSO. J. Clim. 28, 5063–5076 (2015).

    Article  Google Scholar 

  70. Xiang, B., Yu, W., Li, T. & Wang, B. The critical role of the boreal summer mean state in the development of the IOD. Geophys. Res. Lett. 38, https://doi.org/10.1029/2010GL045851 (2011).

  71. Sun, S., Fang, Y., Zu, Y., Liu, L. & Li, K. Increased occurrences of early Indian Ocean Dipole under global warming. Sci. Adv. 8, eadd6025 (2022).

    Article  Google Scholar 

  72. Du, Y., Cai, W. & Wu, Y. A new type of the Indian Ocean Dipole since the mid-1970s. J. Clim. 26, 959–972 (2013).

    Article  Google Scholar 

  73. Zhang, Y. et al. Impact of the South China Sea summer monsoon on the Indian Ocean Dipole. J. Clim. 31, 6557–6573 (2018).

    Article  Google Scholar 

  74. Zhang, Y. et al. The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean Dipole development. Clim. Dyn. 53, 6665–6680 (2019).

    Article  Google Scholar 

  75. Behera, S. K. & Yamagata, T. Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett. 28, 327–330 (2001).

    Article  Google Scholar 

  76. Zhang, Y. et al. Indian Ocean tripole mode and its associated atmospheric and oceanic processes. Clim. Dyn. 55, 1367–1383 (2020).

    Article  Google Scholar 

  77. Huang, B. et al. Strengthened relationship between tropical Indian Ocean Dipole and subtropical Indian Ocean Dipole after the late 2000s. Geophys. Res. Lett. 48, e2021GL094835 (2021).

    Article  Google Scholar 

  78. Chen, P., Sun, B., Wang, H. & Zhu, B. Possible impacts of December Laptev sea ice on Indian Ocean Dipole conditions during spring. J. Clim. 34, 6927–6943 (2021).

    Google Scholar 

  79. Izumo, T., Khodri, M., Lengaigne, M. & Suresh, I. A subsurface Indian Ocean Dipole response to tropical volcanic eruptions. Geophys. Res. Lett. 45, 9150–9159 (2018).

    Article  Google Scholar 

  80. Annamalai, H., Xie, S., McCreary, J. & Murtugudde, R. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Clim. 18, 302–319 (2005).

    Article  Google Scholar 

  81. Tozuka, T., Luo, J.-J., Masson, S. & Yamagata, T. Decadal modulations of the Indian Ocean Dipole in the SINTEX-F1 coupled GCM. J. Clim. 20, 2881–2894 (2007).

    Article  Google Scholar 

  82. Nidheesh, A. et al. Natural decadal sea-level variability in the Indian Ocean: lessons from CMIP models. Clim. Dyn. 53, 5653–5673 (2019).

    Article  Google Scholar 

  83. Han, W. et al. Indian Ocean decadal variability: a review. Bull. Am. Meteorol. Soc. 95, 1679–1703 (2014).

    Article  Google Scholar 

  84. Krishnamurthy, L. & Krishnamurthy, V. Decadal and interannual variability of the Indian Ocean SST. Clim. Dyn. 46, 57–70 (2016).

    Article  Google Scholar 

  85. Dong, L. et al. The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures. Sci. Rep. 6, 21251 (2016).

    Article  CAS  Google Scholar 

  86. Zhang, Y. et al. Strengthened Indonesian throughflow drives decadal warming in the southern Indian Ocean. Geophys. Res. Lett. 45, 6167–6175 (2018).

    Article  Google Scholar 

  87. Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather. Rev. 109, 813–829 (1981).

    Article  Google Scholar 

  88. Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  89. Saji, N., Ambrizzi, T. & Ferraz, S. E. T. Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Ocean. 39, 87–101 (2005).

    Article  Google Scholar 

  90. Gillett, Z., Hendon, H., Arblaster, J., Lin, H. & Fuchs, D. On the dynamics of Indian Ocean teleconnections into the Southern Hemisphere during austral winter. J. Atmos. Sci. 79, 2453–2469 (2022).

    Article  Google Scholar 

  91. Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021).

    Article  Google Scholar 

  92. Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

    Article  Google Scholar 

  93. Cai, W., Van Rensch, P., Cowan, T. & Hendon, H. H. An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Clim. 25, 6318–6329 (2012).

    Article  Google Scholar 

  94. Endo, S. & Tozuka, T. Two flavors of the Indian Ocean Dipole. Clim. Dyn. 46, 3371–3385 (2016).

    Article  Google Scholar 

  95. Tozuka, T., Endo, S. & Yamagata, T. Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole. Geophys. Res. Lett. 43, 5378–5384 (2016).

    Article  Google Scholar 

  96. Guo, F., Liu, Q., Sun, S. & Yang, J. Three types of Indian Ocean Dipoles. J. Clim. 28, 3073–3092 (2015).

    Article  Google Scholar 

  97. Jiang, J. et al. Three types of positive Indian Ocean Dipoles and their relationships with the South Asian summer monsoon. J. Clim. 35, 405–424 (2022).

    Article  Google Scholar 

  98. Doi, T., Behera, S. K. & Yamagata, T. Predictability of the super IOD event in 2019 and its link with El Niño Modoki. Geophys. Res. Lett. 47, e2019GL086713 (2020).

    Article  Google Scholar 

  99. Zhang, Y. et al. Impact of the South China Sea summer monsoon on the Indian Ocean Dipole in CMIP5 models. J. Clim. 34, 1963–1981 (2021).

    Article  Google Scholar 

  100. Cai, W. & Cowan, T. Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett. 40, 1200–1205 (2013).

    Article  Google Scholar 

  101. Li, G., Xie, S.-P. & Du, Y. Climate model errors over the south Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J. Clim. 28, 3093–3098 (2015).

    Article  Google Scholar 

  102. Wang, G., Cai, W. & Santoso, A. Assessing the impact of model biases on the projected increase in frequency of extreme positive Indian Ocean Dipole events. J. Clim. 30, 2757–2767 (2017).

    Article  Google Scholar 

  103. McKenna, S., Santoso, A., Gupta, A. S., Taschetto, A. S. & Cai, W. Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Sci. Rep. 10, 11500 (2020).

    Article  CAS  Google Scholar 

  104. Ng, B. & Cai, W. Present‐day zonal wind influences projected Indian Ocean Dipole skewness. Geophys. Res. Lett. 43, 11,392–311,399 (2016).

    Article  Google Scholar 

  105. Qiu, Y., Cai, W., Li, L. & Guo, X. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophys. Res. Lett. 39, https://doi.org/10.1029/2012GL051441 (2012).

  106. Cai, W., Sullivan, A. & Cowan, T. Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J. Clim. 24, 1688–1704 (2011).

    Article  Google Scholar 

  107. Jourdain, N. C., Lengaigne, M., Vialard, J., Izumo, T. & Gupta, A. S. Further insights on the influence of the Indian Ocean Dipole on the following year’s ENSO from observations and CMIP5 models. J. Clim. 29, 637–658 (2016).

    Article  Google Scholar 

  108. Liu, L. et al. Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Clim. Dyn. 43, 1715–1730 (2014).

    Article  Google Scholar 

  109. Santoso, A., England, M. H., Kajtar, J. B. & Cai, W. Indonesian throughflow variability and linkage to ENSO and IOD in an ensemble of CMIP5 models. J. Clim. 35, 3161–3178 (2022).

    Article  Google Scholar 

  110. Sperber, K. et al. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 41, 2711–2744 (2013).

    Article  Google Scholar 

  111. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  112. Power, S. et al. Decadal climate variability in the tropical Pacific: characteristics, causes, predictability, and prospects. Science 374, eaay9165 (2021).

    Article  CAS  Google Scholar 

  113. Capotondi, A. & Qiu, B. Decadal variability of the Pacific shallow overturning circulation and the role of local wind forcing. J. Clim. 36, 1001–1015 (2023).

    Article  Google Scholar 

  114. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article  CAS  Google Scholar 

  115. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  116. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  CAS  Google Scholar 

  117. Knutson, T. R., Manabe, S. & Gu, D. Simulated ENSO in a global coupled ocean–atmosphere model: multidecadal amplitude modulation and CO2 sensitivity. J. Clim. 10, 138–161 (1997).

    Article  Google Scholar 

  118. Johnson, N. C. & Xie, S.-P. Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci. 3, 842–845 (2010).

    Article  CAS  Google Scholar 

  119. Zheng, X.-T., Xie, S.-P., Vecchi, G. A., Liu, Q. & Hafner, J. Indian Ocean Dipole response to global warming: analysis of ocean–atmospheric feedbacks in a coupled model. J. Clim. 23, 1240–1253 (2010).

    Article  Google Scholar 

  120. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Article  CAS  Google Scholar 

  121. Zheng, X.-T., Lu, J. & Hui, C. Response of seasonal phase locking of Indian Ocean Dipole to global warming. Clim. Dyn. 57, 2737–2751 (2021).

    Article  Google Scholar 

  122. Endris, H. S. et al. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim. Dyn. 52, 2029–2053 (2019).

    Article  Google Scholar 

  123. Zhao, X. & Allen, R. J. Strengthening of the Walker circulation in recent decades and the role of natural sea surface temperature variability. Environ. Res. Commun. 1, 021003 (2019).

    Article  Google Scholar 

  124. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).

    Article  Google Scholar 

  125. Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).

    Article  Google Scholar 

  126. Marathe, S., Terray, P. & Karumuri, A. Tropical Indian Ocean and ENSO relationships in a changed climate. Clim. Dyn. 56, 3255–3276 (2021).

    Article  Google Scholar 

  127. Annamalai, H., Hamilton, K. & Sperber, K. R. The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Clim. 20, 1071–1092 (2007).

    Article  Google Scholar 

  128. Li, X., Ting, M., Li, C. & Henderson, N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Clim. 28, 4107–4125 (2015).

    Article  Google Scholar 

  129. Hui, C. & Zheng, X.-T. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability. Clim. Dyn. 51, 3597–3611 (2018).

    Article  Google Scholar 

  130. Ng, B., Cai, W., Cowan, T. & Bi, D. Influence of internal climate variability on Indian Ocean Dipole properties. Sci. Rep. 8, 13500 (2018).

    Article  Google Scholar 

  131. Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).

    Article  Google Scholar 

  132. Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  133. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  134. Li, G., Xie, S.-P. & Du, Y. A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J. Clim. 29, 5589–5608 (2016).

    Article  Google Scholar 

  135. Abram, N. J. et al. Palaeoclimate perspectives on the Indian Ocean Dipole. Quat. Sci. Rev. 237, 106302 (2020).

    Article  Google Scholar 

  136. IPCC, 2019: Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, 2019).

  137. Arias, P. et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  138. Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S. & Mudelsee, M. Recent intensification of tropical climate variability in the Indian Ocean. Nat. Geosci. 1, 849–853 (2008).

    Article  CAS  Google Scholar 

  139. Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).

    Article  CAS  Google Scholar 

  140. Oppo, D. W., Rosenthal, Y. & Linsley, B. K. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460, 1113–1116 (2009).

    Article  CAS  Google Scholar 

  141. Mohtadi, M. et al. North Atlantic forcing of tropical Indian Ocean climate. Nature 509, 76–80 (2014).

    Article  CAS  Google Scholar 

  142. DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, eaat9658 (2018).

    Article  Google Scholar 

  143. Thirumalai, K., DiNezio, P. N., Tierney, J. E., Puy, M. & Mohtadi, M. An El Niño mode in the glacial Indian ocean? Paleoceanogr. Paleoclimatol. 34, 1316–1327 (2019).

    Article  Google Scholar 

  144. Tierney, J. E. et al. The influence of Indian Ocean atmospheric circulation on Warm Pool hydroclimate during the Holocene epoch. J. Geophys. Res. Atmos. 117, https://doi.org/10.1029/2012JD018060 (2012).

  145. Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389–392 (2013).

    Article  CAS  Google Scholar 

  146. Rustic, G. T., Koutavas, A., Marchitto, T. M. & Linsley, B. K. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling. Science 350, 1537–1541 (2015).

    Article  CAS  Google Scholar 

  147. Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Article  CAS  Google Scholar 

  148. Grothe, P. R. et al. Enhanced El Niño–Southern Oscillation variability in recent decades. Geophys. Res. Lett. 47, e2019GL083906 (2020).

    Article  Google Scholar 

  149. Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4–CMIP6 midHolocene simulations. Clim. Past. 16, 1847–1872 (2020).

    Article  Google Scholar 

  150. Ying, J. et al. Emergence of climate change in the tropical Pacific. Nat. Clim. Change 12, 356–364 (2022).

    Article  Google Scholar 

  151. Geng, T. et al. Emergence of changing central-Pacific and eastern-Pacific El Niño–Southern Oscillation in a warming climate. Nat. Commun. 13, 6616 (2022).

    Article  CAS  Google Scholar 

  152. Wang, G., Cai, W. & Santoso, A. Variability of the Indian Ocean Dipole post-2100 reverses to a reduction despite persistent global warming. Nat. Commun. 15, 5023 https://doi.org/10.1038/s41467-024-49401-y (2024).

  153. Jochum, M. & Murtugudde, R. Temperature advection by tropical instability waves. J. Phys. Oceanogr. 36, 592–605 (2006).

    Article  Google Scholar 

  154. Moum, J. et al. Sea surface cooling at the Equator by subsurface mixing in tropical instability waves. Nat. Geosci. 2, 761–765 (2009).

    Article  CAS  Google Scholar 

  155. Holmes, R. M., McGregor, S., Santoso, A. & England, M. H. Contribution of tropical instability waves to ENSO irregularity. Clim. Dyn. 52, 1837–1855 (2019).

    Article  Google Scholar 

  156. Warner, S. J. & Moum, J. N. Feedback of mixing to ENSO phase change. Geophys. Res. Lett. 46, 13920–13927 (2019).

    Article  Google Scholar 

  157. Xue, A. et al. Delineating the seasonally modulated nonlinear feedback onto ENSO from tropical instability waves. Geophys. Res. Lett. 47, e2019GL085863 (2020).

    Article  Google Scholar 

  158. Cai, W. et al. Southern Ocean warming and its climatic impacts. Sci. Bull. 68, 946–960 (2023).

    Article  Google Scholar 

  159. Wang, G. et al. Future Southern Ocean warming linked to projected ENSO variability. Nat. Clim. Change 12, 649–654 (2022).

    Article  CAS  Google Scholar 

  160. Cai, W. et al. Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nat. Clim. Change 13, 235–239 (2023).

    Article  Google Scholar 

  161. Planton, Y. Y. et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Am. Meteorol. Soc. 102, E193–E217 (2021).

    Article  Google Scholar 

  162. Liu, Y., Cai, W., Lin, X., Li, Z. & Zhang, Y. Nonlinear El Niño impacts on the global economy under climate change. Nat. Commun. 14, 5887 (2023).

    Article  CAS  Google Scholar 

  163. Cai, W. et al. Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies. Nat. Commun. 15, 5009 (2024).

    Article  CAS  Google Scholar 

  164. Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST) Version 5 10.7289/V5T72FNM (NOAA National Centers for Environmental Information, 2017).

Download references

Acknowledgements

This work is funded by the Chinese Academy of Sciences (XDB40030000). G.W. and B.N. are supported by the Australian government under the National Environmental Science Program. N.A. is funded by the Australian Research Council (CE170100023 and SR200100008). K.Y. is funded by the National Natural Science Foundation of China (42105032). T.G. is supported by the National Natural Science Foundation of China project (42206209, 42276006) and the China National Postdoctoral Program for Innovative Talents (BX20220279). Y.D. is funded by the National Natural Science Foundation of China (42090042, 42149910 and 42049910) and the Chinese Academy of Sciences (133244KYSB20190031, 183311KYSB20200015). J.L. is supported by the National Natural Science Foundation of China (42288101). T.L. is supported by the National Natural Science Foundation of China (42088101). T.I. is funded by the Institut de Recherche pour le Développement (IRD). S.S. is funded by the National Natural Science Foundation of China (41976021). T.T. is funded by the JSPS KAKENHI (JP22K18727). X.Z. is funded by the National Natural Science Foundation of China (41975092). S.H. is funded by the National Natural Science Foundation of China (42022040).

Author information

Authors and Affiliations

Authors

Contributions

G.W., W.C. and A.S. conceived the Review and coordinated the manuscript preparation, interpretation, discussion and writing. B.N., K.Y. and A.S. led the sections on the observed and simulated IOD processes. N.A. led the section on palaeoclimate data and created Fig. 6 with input from G.W. G.W. and T.G. conducted analysis and created Fig. 7. W.C. and G.W. led the remaining sections, and G.W. conducted analysis and generated other figures. All authors contributed to the manuscript preparation, interpretation, discussion and writing.

Corresponding authors

Correspondence to Guojian Wang or Wenju Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Shanshan Liu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Cai, W., Santoso, A. et al. The Indian Ocean Dipole in a warming world. Nat Rev Earth Environ 5, 588–604 (2024). https://doi.org/10.1038/s43017-024-00573-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00573-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing