Abstract
The Indian Ocean Dipole (IOD) strongly affects the climate of the Indo-Pacific. Observations suggest a shift towards stronger and earlier positive IOD (pIOD) events alongside an increased amplitude of sea surface temperature (SST) anomalies, but uncertainty remains, impeding assessments of ongoing changes. In this Review, we synthesize the available knowledge of projected changes in the IOD during the twenty-first century under anthropogenic warming. Compared to observations, models struggle to simulate the Bjerknes feedback, asymmetry in the strength of positive and negative IOD anomalies and El Niño–Southern Oscillation or monsoonal forcings. Yet several models do capture important feedbacks reasonably well and offer useful tools with which to assess IOD evolution. A pIOD-like SST warming pattern (an enhanced west-minus-east SST gradient) alongside shifts in feedback process drive corresponding changes to the IOD. Over the course of the twenty-first century, robust changes include: enhanced IOD SST variability (as measured by the first principal component of spring SST variability, not the dipole mode index); an increase in strong rainfall pIOD events; an increase and decrease in the frequency of strong-pIOD and moderate-pIOD, respectively, as defined by SST; and an increase in the frequency of early-pIOD events. Palaeo evidence reveals similar increases in the magnitude and frequency of pIOD events underpinned by a similar pattern of mean state change (Last Glacial Maximum, post-1960), reinforcing IOD projections. Sustained international efforts are needed to improve IOD simulations and reduce projection uncertainties.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Saji, N., Goswami, B. N., Vinayachandran, P. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).
Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).
Murtugudde, R., McCreary, J. P. Jr & Busalacchi, A. J. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res. Atmos. 105, 3295–3306 (2000).
Shi, W. & Wang, M. A biological Indian Ocean Dipole event in 2019. Sci. Rep. 11, 2452 (2021).
McMonigal, K. & Larson, S. M. ENSO explains the link between Indian Ocean Dipole and meridional ocean heat transport. Geophys. Res. Lett. 49, e2021GL095796 (2022).
Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).
Hashizume, M., Terao, T. & Minakawa, N. The Indian Ocean Dipole and malaria risk in the highlands of western Kenya. Proc. Natl Acad. Sci. USA 106, 1857–1862 (2009).
Hashizume, M., Chaves, L. F. & Minakawa, N. Indian Ocean Dipole drives malaria resurgence in East African highlands. Sci. Rep. 2, 269 (2012).
Nicholson, S. E., Fink, A. H., Funk, C., Klotter, D. A. & Satheesh, A. R. Meteorological causes of the catastrophic rains of October/November 2019 in equatorial Africa. Glob. Planet. Change 208, 103687 (2022).
Latif, M., Dommenget, D., Dima, M. & Grötzner, A. The role of Indian Ocean sea surface temperature in forcing East African rainfall anomalies during December–January 1997/98. J. Clim. 12, 3497–3504 (1999).
Birkett, C., Murtugudde, R. & Allan, T. Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett. 26, 1031–1034 (1999).
Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett. 36, https://doi.org/10.1029/2009GL039902 (2009).
Cai, W., Van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).
Nur’utami, M. N. & Hidayat, R. Influences of IOD and ENSO to Indonesian rainfall variability: role of atmosphere–ocean interaction in the Indo-Pacific sector. Proc. Environ. Sci. 33, 196–203 (2016).
Wang, G. & Cai, W. Two-year consecutive concurrences of positive Indian Ocean Dipole and central Pacific El Niño preconditioned the 2019/2020 Australian “black summer” bushfires. Geosci. Lett. 7, 19 (2020).
Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).
van der Velde, I. R. et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 597, 366–369 (2021).
Saji, N. & Yamagata, T. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim. Res. 25, 151–169 (2003).
Chan, S. C., Behera, S. K. & Yamagata, T. Indian Ocean Dipole influence on South American rainfall. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL034204 (2008).
Bell, G. et al. Tropical cyclones — Atlantic basin, state of the climate in 2011. Bull. Am. Meteor. Soc. 98, S108–S112 (2017).
Wood, K. M. et al. Factors affecting the 2019 Atlantic hurricane season and the role of the Indian Ocean Dipole. Geophys. Res. Lett. 47, e2020GL087781 (2020).
Zheng, X.-T. et al. Indian Ocean Dipole response to global warming in the CMIP5 multimodel ensemble. J. Clim. 26, 6067–6080 (2013).
Cai, W. et al. Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci. 6, 999–1007 (2013).
Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).
Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).
Cai, W. et al. Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 C warming. Nat. Commun. 9, 1419 (2018).
Wang, G., Cai, W. & Santoso, A. Simulated thermocline tilt over the tropical Indian Ocean and its influence on future sea surface temperature variability. Geophys. Res. Lett. 48, e2020GL091902 (2021).
Sharma, S. et al. Future Indian Ocean warming patterns. Nat. Commun. 14, 1789 (2023).
Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).
Izumo, T. et al. Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim. Dyn. 42, 291–310 (2014).
Chan, D., Kent, E. C., Berry, D. I. & Huybers, P. Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming. Nature 571, 393–397 (2019).
Gopika, S. et al. Aliasing of the Indian Ocean externally-forced warming spatial pattern by internal climate variability. Clim. Dyn. 54, 1093–1111 (2020).
Abram, N. J. et al. Seasonal characteristics of the Indian Ocean Dipole during the holocene epoch. Nature 445, 299–302 (2007).
Yang, K. et al. Oceanic processes in ocean temperature products key to a realistic presentation of positive Indian Ocean Dipole nonlinearity. Geophys. Res. Lett. 47, e2020GL089396 (2020).
An, S.-I. et al. Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model. npj Clim. Atmos. Sci. 6, 93 (2023).
Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, https://doi.org/10.1029/2002JD002670 (2003).
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
Behringer, D. & Xue, Y. Evaluation of the Global Ocean Data Assimilation System at NCEP: the Pacific Ocean. In Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (Americal Meteorological Society, 2004).
Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G. & Griffies, S. M. Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J. Atmos. Ocean. Technol. 23, 1709–1728 (2006).
Giese, B. S. & Ray, S. El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res. Oceans 116, https://doi.org/10.1029/2010JC006695 (2011).
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean. Sci. 15, 779–808 (2019).
Fischer, A. S., Terray, P., Guilyardi, E., Gualdi, S. & Delecluse, P. Two independent triggers for the Indian Ocean Dipole/zonal mode in a coupled GCM. J. Clim. 18, 3428–3449 (2005).
Abram, N. J. et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature 579, 385–392 (2020).
Li, T., Wang, B., Chang, C. & Zhang, Y. A theory for the Indian Ocean Dipole–zonal mode. J. Atmos. Sci. 60, 2119–2135 (2003).
Xie, S.-P., Annamalai, H., Schott, F. A. & McCreary, J. P. Structure and mechanisms of south Indian Ocean climate variability. J. Clim. 15, 864–878 (2002).
Du, Y., Xie, S.-P., Huang, G. & Hu, K. Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Clim. 22, 2023–2038 (2009).
Du, Y. et al. Thermocline warming induced extreme Indian Ocean Dipole in 2019. Geophys. Res. Lett. 47, e2020GL090079 (2020).
Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27–32 (2021).
Zhang, Y. & Du, Y. Oceanic Rossby waves induced two types of ocean–atmosphere response and opposite Indian Ocean Dipole phases. J. Clim. 35, 3927–3945 (2022).
Ng, B., Cai, W., Walsh, K. & Santoso, A. Nonlinear processes reinforce extreme Indian Ocean Dipole events. Sci. Rep. 5, 11697 (2015).
Wang, G., Cai, W., Yang, K., Santoso, A. & Yamagata, T. A unique feature of the 2019 extreme positive Indian Ocean Dipole event. Geophys. Res. Lett. 47, e2020GL088615 (2020).
Hong, C.-C., Li, T. & Kug, J.-S. Asymmetry of the Indian Ocean Dipole. Part I: observational analysis. J. Clim. 21, 4834–4848 (2008).
Cai, W. & Qiu, Y. An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean Dipole. J. Clim. 26, 2880–2890 (2013).
Ng, B., Cai, W. & Walsh, K. Nonlinear feedbacks associated with the Indian Ocean Dipole and their response to global warming in the GFDL–ESM2M coupled climate model. J. Clim. 27, 3904–3919 (2014).
Cai, W., Hendon, H. H. & Meyers, G. Indian Ocean Dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Clim. 18, 1449–1468 (2005).
Ogata, T., Xie, S.-P., Lan, J. & Zheng, X. Importance of ocean dynamics for the skewness of the Indian Ocean Dipole mode. J. Clim. 26, 2145–2159 (2013).
Nakazato, M., Kido, S. & Tozuka, T. Mechanisms of asymmetry in sea surface temperature anomalies associated with the Indian Ocean Dipole revealed by closed heat budget. Sci. Rep. 11, 22546 (2021).
Hong, C. C., Lu, M. M. & Kanamitsu, M. Temporal and spatial characteristics of positive and negative Indian Ocean Dipole with and without ENSO. J. Geophys. Res. Atmos. 113, https://doi.org/10.1029/2007JD009151 (2008).
Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).
Wang, C. Three-ocean interactions and climate variability: a review and perspective. Clim. Dyn. 53, 5119–5136 (2019).
Annamalai, H. et al. Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep. Sea Res. II 50, 2305–2330 (2003).
Zhao, Y. & Nigam, S. The Indian Ocean Dipole: a monopole in SST. J. Clim. 28, 3–19 (2015).
Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys. Res. Lett. 44, 2481–2492 (2017).
Ashok, K., Guan, Z. & Yamagata, T. A look at the relationship between the ENSO and the Indian Ocean Dipole. J. Meteorol. Soc. Japan. Ser. II 81, 41–56 (2003).
Behera, S. K. et al. A CGCM study on the interaction between IOD and ENSO. J. Clim. 19, 1688–1705 (2006).
Yang, Y. et al. Seasonality and predictability of the Indian Ocean Dipole mode: ENSO forcing and internal variability. J. Clim. 28, 8021–8036 (2015).
Lim, E.-P. & Hendon, H. H. Causes and predictability of the negative Indian Ocean Dipole and its impact on La Niña during 2016. Sci. Rep. 7, 12619 (2017).
Sun, S., Lan, J., Fang, Y., Tana & Gao, X. A triggering mechanism for the Indian Ocean Dipoles independent of ENSO. J. Clim. 28, 5063–5076 (2015).
Xiang, B., Yu, W., Li, T. & Wang, B. The critical role of the boreal summer mean state in the development of the IOD. Geophys. Res. Lett. 38, https://doi.org/10.1029/2010GL045851 (2011).
Sun, S., Fang, Y., Zu, Y., Liu, L. & Li, K. Increased occurrences of early Indian Ocean Dipole under global warming. Sci. Adv. 8, eadd6025 (2022).
Du, Y., Cai, W. & Wu, Y. A new type of the Indian Ocean Dipole since the mid-1970s. J. Clim. 26, 959–972 (2013).
Zhang, Y. et al. Impact of the South China Sea summer monsoon on the Indian Ocean Dipole. J. Clim. 31, 6557–6573 (2018).
Zhang, Y. et al. The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean Dipole development. Clim. Dyn. 53, 6665–6680 (2019).
Behera, S. K. & Yamagata, T. Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett. 28, 327–330 (2001).
Zhang, Y. et al. Indian Ocean tripole mode and its associated atmospheric and oceanic processes. Clim. Dyn. 55, 1367–1383 (2020).
Huang, B. et al. Strengthened relationship between tropical Indian Ocean Dipole and subtropical Indian Ocean Dipole after the late 2000s. Geophys. Res. Lett. 48, e2021GL094835 (2021).
Chen, P., Sun, B., Wang, H. & Zhu, B. Possible impacts of December Laptev sea ice on Indian Ocean Dipole conditions during spring. J. Clim. 34, 6927–6943 (2021).
Izumo, T., Khodri, M., Lengaigne, M. & Suresh, I. A subsurface Indian Ocean Dipole response to tropical volcanic eruptions. Geophys. Res. Lett. 45, 9150–9159 (2018).
Annamalai, H., Xie, S., McCreary, J. & Murtugudde, R. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Clim. 18, 302–319 (2005).
Tozuka, T., Luo, J.-J., Masson, S. & Yamagata, T. Decadal modulations of the Indian Ocean Dipole in the SINTEX-F1 coupled GCM. J. Clim. 20, 2881–2894 (2007).
Nidheesh, A. et al. Natural decadal sea-level variability in the Indian Ocean: lessons from CMIP models. Clim. Dyn. 53, 5653–5673 (2019).
Han, W. et al. Indian Ocean decadal variability: a review. Bull. Am. Meteorol. Soc. 95, 1679–1703 (2014).
Krishnamurthy, L. & Krishnamurthy, V. Decadal and interannual variability of the Indian Ocean SST. Clim. Dyn. 46, 57–70 (2016).
Dong, L. et al. The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures. Sci. Rep. 6, 21251 (2016).
Zhang, Y. et al. Strengthened Indonesian throughflow drives decadal warming in the southern Indian Ocean. Geophys. Res. Lett. 45, 6167–6175 (2018).
Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather. Rev. 109, 813–829 (1981).
Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).
Saji, N., Ambrizzi, T. & Ferraz, S. E. T. Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Ocean. 39, 87–101 (2005).
Gillett, Z., Hendon, H., Arblaster, J., Lin, H. & Fuchs, D. On the dynamics of Indian Ocean teleconnections into the Southern Hemisphere during austral winter. J. Atmos. Sci. 79, 2453–2469 (2022).
Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021).
Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).
Cai, W., Van Rensch, P., Cowan, T. & Hendon, H. H. An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Clim. 25, 6318–6329 (2012).
Endo, S. & Tozuka, T. Two flavors of the Indian Ocean Dipole. Clim. Dyn. 46, 3371–3385 (2016).
Tozuka, T., Endo, S. & Yamagata, T. Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole. Geophys. Res. Lett. 43, 5378–5384 (2016).
Guo, F., Liu, Q., Sun, S. & Yang, J. Three types of Indian Ocean Dipoles. J. Clim. 28, 3073–3092 (2015).
Jiang, J. et al. Three types of positive Indian Ocean Dipoles and their relationships with the South Asian summer monsoon. J. Clim. 35, 405–424 (2022).
Doi, T., Behera, S. K. & Yamagata, T. Predictability of the super IOD event in 2019 and its link with El Niño Modoki. Geophys. Res. Lett. 47, e2019GL086713 (2020).
Zhang, Y. et al. Impact of the South China Sea summer monsoon on the Indian Ocean Dipole in CMIP5 models. J. Clim. 34, 1963–1981 (2021).
Cai, W. & Cowan, T. Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett. 40, 1200–1205 (2013).
Li, G., Xie, S.-P. & Du, Y. Climate model errors over the south Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J. Clim. 28, 3093–3098 (2015).
Wang, G., Cai, W. & Santoso, A. Assessing the impact of model biases on the projected increase in frequency of extreme positive Indian Ocean Dipole events. J. Clim. 30, 2757–2767 (2017).
McKenna, S., Santoso, A., Gupta, A. S., Taschetto, A. S. & Cai, W. Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Sci. Rep. 10, 11500 (2020).
Ng, B. & Cai, W. Present‐day zonal wind influences projected Indian Ocean Dipole skewness. Geophys. Res. Lett. 43, 11,392–311,399 (2016).
Qiu, Y., Cai, W., Li, L. & Guo, X. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophys. Res. Lett. 39, https://doi.org/10.1029/2012GL051441 (2012).
Cai, W., Sullivan, A. & Cowan, T. Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J. Clim. 24, 1688–1704 (2011).
Jourdain, N. C., Lengaigne, M., Vialard, J., Izumo, T. & Gupta, A. S. Further insights on the influence of the Indian Ocean Dipole on the following year’s ENSO from observations and CMIP5 models. J. Clim. 29, 637–658 (2016).
Liu, L. et al. Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Clim. Dyn. 43, 1715–1730 (2014).
Santoso, A., England, M. H., Kajtar, J. B. & Cai, W. Indonesian throughflow variability and linkage to ENSO and IOD in an ensemble of CMIP5 models. J. Clim. 35, 3161–3178 (2022).
Sperber, K. et al. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 41, 2711–2744 (2013).
England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).
Power, S. et al. Decadal climate variability in the tropical Pacific: characteristics, causes, predictability, and prospects. Science 374, eaay9165 (2021).
Capotondi, A. & Qiu, B. Decadal variability of the Pacific shallow overturning circulation and the role of local wind forcing. J. Clim. 36, 1001–1015 (2023).
Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).
Knutson, T. R., Manabe, S. & Gu, D. Simulated ENSO in a global coupled ocean–atmosphere model: multidecadal amplitude modulation and CO2 sensitivity. J. Clim. 10, 138–161 (1997).
Johnson, N. C. & Xie, S.-P. Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci. 3, 842–845 (2010).
Zheng, X.-T., Xie, S.-P., Vecchi, G. A., Liu, Q. & Hafner, J. Indian Ocean Dipole response to global warming: analysis of ocean–atmospheric feedbacks in a coupled model. J. Clim. 23, 1240–1253 (2010).
Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).
Zheng, X.-T., Lu, J. & Hui, C. Response of seasonal phase locking of Indian Ocean Dipole to global warming. Clim. Dyn. 57, 2737–2751 (2021).
Endris, H. S. et al. Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim. Dyn. 52, 2029–2053 (2019).
Zhao, X. & Allen, R. J. Strengthening of the Walker circulation in recent decades and the role of natural sea surface temperature variability. Environ. Res. Commun. 1, 021003 (2019).
Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).
Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).
Marathe, S., Terray, P. & Karumuri, A. Tropical Indian Ocean and ENSO relationships in a changed climate. Clim. Dyn. 56, 3255–3276 (2021).
Annamalai, H., Hamilton, K. & Sperber, K. R. The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Clim. 20, 1071–1092 (2007).
Li, X., Ting, M., Li, C. & Henderson, N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Clim. 28, 4107–4125 (2015).
Hui, C. & Zheng, X.-T. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability. Clim. Dyn. 51, 3597–3611 (2018).
Ng, B., Cai, W., Cowan, T. & Bi, D. Influence of internal climate variability on Indian Ocean Dipole properties. Sci. Rep. 8, 13500 (2018).
Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).
Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Li, G., Xie, S.-P. & Du, Y. A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J. Clim. 29, 5589–5608 (2016).
Abram, N. J. et al. Palaeoclimate perspectives on the Indian Ocean Dipole. Quat. Sci. Rev. 237, 106302 (2020).
IPCC, 2019: Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, 2019).
Arias, P. et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S. & Mudelsee, M. Recent intensification of tropical climate variability in the Indian Ocean. Nat. Geosci. 1, 849–853 (2008).
Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).
Oppo, D. W., Rosenthal, Y. & Linsley, B. K. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature 460, 1113–1116 (2009).
Mohtadi, M. et al. North Atlantic forcing of tropical Indian Ocean climate. Nature 509, 76–80 (2014).
DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, eaat9658 (2018).
Thirumalai, K., DiNezio, P. N., Tierney, J. E., Puy, M. & Mohtadi, M. An El Niño mode in the glacial Indian ocean? Paleoceanogr. Paleoclimatol. 34, 1316–1327 (2019).
Tierney, J. E. et al. The influence of Indian Ocean atmospheric circulation on Warm Pool hydroclimate during the Holocene epoch. J. Geophys. Res. Atmos. 117, https://doi.org/10.1029/2012JD018060 (2012).
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389–392 (2013).
Rustic, G. T., Koutavas, A., Marchitto, T. M. & Linsley, B. K. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling. Science 350, 1537–1541 (2015).
Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).
Grothe, P. R. et al. Enhanced El Niño–Southern Oscillation variability in recent decades. Geophys. Res. Lett. 47, e2019GL083906 (2020).
Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4–CMIP6 midHolocene simulations. Clim. Past. 16, 1847–1872 (2020).
Ying, J. et al. Emergence of climate change in the tropical Pacific. Nat. Clim. Change 12, 356–364 (2022).
Geng, T. et al. Emergence of changing central-Pacific and eastern-Pacific El Niño–Southern Oscillation in a warming climate. Nat. Commun. 13, 6616 (2022).
Wang, G., Cai, W. & Santoso, A. Variability of the Indian Ocean Dipole post-2100 reverses to a reduction despite persistent global warming. Nat. Commun. 15, 5023 https://doi.org/10.1038/s41467-024-49401-y (2024).
Jochum, M. & Murtugudde, R. Temperature advection by tropical instability waves. J. Phys. Oceanogr. 36, 592–605 (2006).
Moum, J. et al. Sea surface cooling at the Equator by subsurface mixing in tropical instability waves. Nat. Geosci. 2, 761–765 (2009).
Holmes, R. M., McGregor, S., Santoso, A. & England, M. H. Contribution of tropical instability waves to ENSO irregularity. Clim. Dyn. 52, 1837–1855 (2019).
Warner, S. J. & Moum, J. N. Feedback of mixing to ENSO phase change. Geophys. Res. Lett. 46, 13920–13927 (2019).
Xue, A. et al. Delineating the seasonally modulated nonlinear feedback onto ENSO from tropical instability waves. Geophys. Res. Lett. 47, e2019GL085863 (2020).
Cai, W. et al. Southern Ocean warming and its climatic impacts. Sci. Bull. 68, 946–960 (2023).
Wang, G. et al. Future Southern Ocean warming linked to projected ENSO variability. Nat. Clim. Change 12, 649–654 (2022).
Cai, W. et al. Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nat. Clim. Change 13, 235–239 (2023).
Planton, Y. Y. et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Am. Meteorol. Soc. 102, E193–E217 (2021).
Liu, Y., Cai, W., Lin, X., Li, Z. & Zhang, Y. Nonlinear El Niño impacts on the global economy under climate change. Nat. Commun. 14, 5887 (2023).
Cai, W. et al. Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies. Nat. Commun. 15, 5009 (2024).
Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST) Version 5 10.7289/V5T72FNM (NOAA National Centers for Environmental Information, 2017).
Acknowledgements
This work is funded by the Chinese Academy of Sciences (XDB40030000). G.W. and B.N. are supported by the Australian government under the National Environmental Science Program. N.A. is funded by the Australian Research Council (CE170100023 and SR200100008). K.Y. is funded by the National Natural Science Foundation of China (42105032). T.G. is supported by the National Natural Science Foundation of China project (42206209, 42276006) and the China National Postdoctoral Program for Innovative Talents (BX20220279). Y.D. is funded by the National Natural Science Foundation of China (42090042, 42149910 and 42049910) and the Chinese Academy of Sciences (133244KYSB20190031, 183311KYSB20200015). J.L. is supported by the National Natural Science Foundation of China (42288101). T.L. is supported by the National Natural Science Foundation of China (42088101). T.I. is funded by the Institut de Recherche pour le Développement (IRD). S.S. is funded by the National Natural Science Foundation of China (41976021). T.T. is funded by the JSPS KAKENHI (JP22K18727). X.Z. is funded by the National Natural Science Foundation of China (41975092). S.H. is funded by the National Natural Science Foundation of China (42022040).
Author information
Authors and Affiliations
Contributions
G.W., W.C. and A.S. conceived the Review and coordinated the manuscript preparation, interpretation, discussion and writing. B.N., K.Y. and A.S. led the sections on the observed and simulated IOD processes. N.A. led the section on palaeoclimate data and created Fig. 6 with input from G.W. G.W. and T.G. conducted analysis and created Fig. 7. W.C. and G.W. led the remaining sections, and G.W. conducted analysis and generated other figures. All authors contributed to the manuscript preparation, interpretation, discussion and writing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Shanshan Liu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Wang, G., Cai, W., Santoso, A. et al. The Indian Ocean Dipole in a warming world. Nat Rev Earth Environ 5, 588–604 (2024). https://doi.org/10.1038/s43017-024-00573-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-024-00573-7