Abstract
Engineered nanomaterials (ENMs), intentionally synthesized materials with sizes less than 100 nm in at least one dimension, have numerous potential environmental applications, such as pollution remediation and water treatment. However, concerns regarding their potential health and environmental impacts have been raised. In this Review, we assess the opportunities of ENMs in environmental applications versus their potential public and environmental health risks, focusing on water treatment and reuse, and identify strategies for their responsible use. Life-cycle analyses indicate that the highest potential environmental and health impacts of ENMs used in commercial products are associated with production rather than incidental release during use. Typically, the detected or predicted ENM concentrations are 1 to 4 orders of magnitude lower than their respective predicted no-effect concentrations. In addition, ENMs often undergo passivating transformations, such as agglomeration and oxidation, reducing risks after release. Therefore, the environmental and health risks of ENMs are relatively low. However, some point sources under extreme scenarios, such as sewage effluent, can potentially increase localized risks. Adopting green chemistry and immobilization strategies can further limit the release of ENMs, minimizing their potential discharge into the environment. Such strategies to reduce toxicity and exposure enable sustainable application of ENMs, such that the environmental benefits could outweigh the risks if managed properly.
Key points
-
Environmental applications of nanomaterials include pollution control, green chemistry, clean water production, and sensing and monitoring.
-
Despite the potentially substantial environmental benefits of nanotechnology, the large-scale manufacturing requirements, cost limitations and potential health and environmental risks of engineered nanomaterials (ENMs) are common barriers to their widespread use.
-
The environmental and health risks of ENMs are relatively low considering the very low ENM concentrations involved and the passivating transformations that occur in the environment, although the potential human health and ecosystem impacts of long-term (months to years) exposure to low ENM concentrations (for example, sub-microgram per litre level in water) remain largely unexplored.
-
Life-cycle analyses of ENMs used in commercial products indicate that the highest potential environmental and human health risks are associated with production rather than incidental release.
-
To prevent their release into the environment and mitigate exposure, ENMs should be immobilized in or on substrates such as electrodes, membranes and other matrices. Immobilization also enables ENMs to be reused, promoting sustainable and circular practice.
-
Additionally, ENM-enabled products and processes should undergo a certification process to meet regulated safety standards to promote best practice and increase social acceptance.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
United Nations. The United Nations World Water Development Report 2024: Water for Prosperity and Peace. UNESDOC https://unesdoc.unesco.org/ark:/48223/pf0000388948 (2024).
UN-Water. Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (UN-Water, 2021).
Barhoum, A. et al. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials 12, 177 (2022).
Hulla, J., Sahu, S. & Hayes, A. Nanotechnology: history and future. Hum. Exp. Toxicol. 34, 1318–1321 (2015).
Damodharan, J. Nanomaterials in medicine — an overview. Mater. Today Proc. 37, 383–385 (2021).
Bandala, E. R. & Berli, M. Engineered nanomaterials (ENMs) and their role at the nexus of food, energy, and water. Mater. Sci. Energy Technol. 2, 29–40 (2019).
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).
Baig, N., Kammakakam, I. & Falath, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021).
Kobayashi, T., Haruta, M., Sano, H. & Nakane, M. A selective CO sensor using Ti-doped α-Fe2O3 with coprecipitated ultrafine particles of gold. Sens. Actuators 13, 339–349 (1988).
Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).
Miller, T. M. & Grassian, V. H. Adsorption and decomposition of nitrous oxide on zirconia nanoparticles. Colloids Surf. A 105, 113–122 (1995).
Wang, C.-B. & Zhang, W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997).
Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).
Wiesner, M. & Bottero, J.-Y. Environmental Nanotechnology, Applications and Impacts of Nanomaterials 2nd edn (McGraw Hill, 2016).
Zuo, K. et al. Selective membranes in water and wastewater treatment: role of advanced materials. Mater. Today 50, 516–532 (2021).
Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M. & Vilas-Vilela, J. L. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health 17, 5817 (2020).
Pourzahedi, L., Vance, M. & Eckelman, M. J. Life cycle assessment and release studies for 15 nanosilver-enabled consumer products: investigating hotspots and patterns of contribution. Environ. Sci. Technol. 51, 7148–7158 (2017).
Service, R. F. Nanotubes: the next asbestos? Science 281, 941 (1998).
Grout, H., Wiesner, M. R. & Bottero, J.-Y. Analysis of colloidal phases in urban stormwater runoff. Environ. Sci. Technol. 33, 831–839 (1999).
Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).
Oberdörster, G., Stone, V. & Donaldson, K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1, 2–25 (2007).
Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).
Ferin, J. et al. Increased pulmonary toxicity of ultrafine particles? I. Particle clearance, translocation, morphology. J. Aerosol Sci. 21, 381–384 (1990).
Oberdörster, G., Ferin, J., Finkelstein, G., Wade, P. & Corson, N. Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. J. Aerosol Sci. 21, 384–387 (1990).
Cohen, B. S., Sussman, R. G. & Lippmann, M. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 12, 1082–1091 (1990).
Heffernan, P. Toxicity of asbestos. Br. Med. J. 1, 1894–1895 (1960).
Kante, B. et al. Toxicity of polyalkylcyanoacrylate nanoparticles I: free nanoparticles. J. Pharm. Sci. 71, 786–790 (1982).
Zhuang, J. & Gentry, R. W. in Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us Vol. 1079 (eds Ripp, S. & Henry, T. B.) 41–67 (American Chemical Society, 2011).
Ganguly, P., Breen, A. & Pillai, S. C. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 4, 2237–2275 (2018).
Sukhanova, A. et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 13, 44 (2018).
Zhao, J., Lin, M., Wang, Z., Cao, X. & Xing, B. Engineered nanomaterials in the environment: are they safe? Crit. Rev. Environ. Sci. Technol. 51, 1443–1478 (2021).
Kansara, K. et al. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environ. Pollut. 296, 118726 (2022).
Qu, X., Brame, J., Li, Q. & Alvarez, P. J. J. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 46, 834–843 (2013).
Jassby, D., Cath, T. Y. & Buisson, H. The role of nanotechnology in industrial water treatment. Nat. Nanotechnol. 13, 670–672 (2018).
Nagar, A. & Pradeep, T. Clean water through nanotechnology: needs, gaps, and fulfillment. ACS Nano 14, 6420–6435 (2020).
Sharma, S. et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J. Clean. Prod. 228, 755–769 (2019).
Gokulakrishnan, S. A. et al. Recent development of photocatalytic nanomaterials in mixed matrix membrane for emerging pollutants and fouling control, membrane cleaning process. Chemosphere 281, 130891 (2021).
Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).
Xie, Q. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).
Vance, M. E. et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015).
Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).
Xiao, R. et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 19, 51–58 (2018).
Fennell, B. D., Mezyk, S. P. & McKay, G. Critical review of UV-advanced reduction processes for the treatment of chemical contaminants in water. ACS Environ. Au 2, 178–205 (2022).
Garcia-Segura, S. et al. Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater — a perspective. Environ. Sci. Nano 7, 2178–2194 (2020).
Cardoso, I. M. F., Pinto da Silva, L. & Esteves da Silva, J. C. G. Nanomaterial-based advanced oxidation/reduction processes for the degradation of PFAS. Nanomaterials 13, 1668 (2023).
Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).
Razaqpur, A. G., Wang, Y., Liao, X., Liao, Y. & Wang, R. Progress of photothermal membrane distillation for decentralized desalination: a review. Water Res. 201, 117299 (2021).
Gao, M., Peh, C. K., Meng, F. L. & Ho, G. W. Photothermal membrane distillation toward solar water production. Small Methods 5, 2001200 (2021).
Qu, X., Alvarez, P. J. J. & Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013).
Khan, S. T. & Malik, A. Engineered nanomaterials for water decontamination and purification: from lab to products. J. Hazard. Mater. 363, 295–308 (2019).
Santhosh, C. et al. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137 (2016).
Janković, N. Z. & Plata, D. L. Engineered nanomaterials in the context of global element cycles. Environ. Sci. Nano 6, 2697–2711 (2019).
Dixit, F. et al. Application of MXenes for water treatment and energy-efficient desalination: a review. J. Hazard. Mater. 423, 127050 (2022).
Zhao, L. et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci. Total. Environ. 627, 1253–1263 (2018).
Joseph, L. et al. Removal of contaminants of emerging concern by metal–organic framework nanoadsorbents: a review. Chem. Eng. J. 369, 928–946 (2019).
Khan, M. S. et al. A review of metal–organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale Adv. 5, 6318–6348 (2023).
Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).
Zhan, X.-Q. et al. Magnetic MOF for AO7 removal and targeted delivery. Crystals 8, 250 (2018).
Lin, K.-Y. A., Yang, H. & Hsu, F.-K. Zr-metal organic framework and derivatives for adsorptive and photocatalytic removal of acid dyes. Water Environ. Res. 90, 144–154 (2018).
Zhang, Q. et al. Covalent construction of sustainable hybrid UiO-66-NH2@Tb-CP material for selective removal of dyes and detection of metal ions. ACS Sustain. Chem. Eng. 7, 3203–3212 (2019).
Gogoi, A., Konch, T. J., Raidongia, K. & Anki Reddy, K. Water and salt dynamics in multilayer graphene oxide (GO) membrane: role of lateral sheet dimensions. J. Membr. Sci. 563, 785–793 (2018).
Wei, Y. et al. Multilayered graphene oxide membranes for water treatment: a review. Carbon 139, 964–981 (2018).
Abdel-Karim, R., Reda, Y. & Abdel-Fattah, A. Review — Nanostructured materials-based nanosensors. J. Electrochem. Soc. 167, 037554 (2020).
Jiang, Y. et al. Adsorption−desorption induced structural changes of Cu-MOF evidenced by solid state NMR and EPR spectroscopy. J. Am. Chem. Soc. 131, 2058–2059 (2009).
Grillo, R., Rosa, A. H. & Fraceto, L. F. Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119, 608–619 (2015).
Zhang, T. et al. In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environ. Sci. Nano 6, 1283–1302 (2019).
Chen, J., Xiu, Z., Lowry, G. V. & Alvarez, P. J. J. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res. 45, 1995–2001 (2011).
Stefaniuk, M., Oleszczuk, P. & Ok, Y. S. Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem. Eng. J. 287, 618–632 (2016).
Cotta, M. A. Quantum dots and their applications: what lies ahead? ACS Appl. Nano Mater. 3, 4920–4924 (2020).
Vikesland, P. J. & Wigginton, K. R. Nanomaterial enabled biosensors for pathogen monitoring — a review. Environ. Sci. Technol. 44, 3656–3669 (2010).
Brame, J., Long, M., Li, Q. & Alvarez, P. Inhibitory effect of natural organic matter or other background constituents on photocatalytic advanced oxidation processes: mechanistic model development and validation. Water Res. 84, 362–371 (2015).
Huo, Z.-Y., Du, Y., Chen, Z., Wu, Y.-H. & Hu, H.-Y. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: a state-of-the-art review. Water Res. 173, 115581 (2020).
Mueller, N. C. & Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008).
Banfield, J. F. & Zhang, H. Nanoparticles in the environment. Rev. Mineral. Geochem. 44, 1–58 (2001).
Auffan, M. et al. An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Sci. Rep. 4, 5608 (2014).
Auffan, M. et al. Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol. 44, 2689–2694 (2010).
Labille, J. et al. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ. Pollut. 158, 3482–3489 (2010).
Nowack, B. et al. Meeting the needs for released nanomaterials required for further testing — the SUN approach. Environ. Sci. Technol. 50, 2747–2753 (2016).
Gottschalk, F., Sun, T. & Nowack, B. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 181, 287–300 (2013).
Neubauer, N. et al. Nanoscale coloristic pigments: upper limits on releases from pigmented plastic during environmental aging, in food contact, and by leaching. Environ. Sci. Technol. 51, 11669–11680 (2017).
Scifo, L. et al. Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation. Environ. Pollut. 241, 182–193 (2018).
Zhao, J. et al. Toxicity of GO to freshwater algae in the presence of Al2O3 particles with different morphologies: importance of heteroaggregation. Environ. Sci. Technol. 52, 13448–13456 (2018).
Fang, R. et al. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: Tetradesmus obliquus. J. Environ. Sci. 112, 376–387 (2022).
Gupta, G. S., Senapati, V. A., Dhawan, A. & Shanker, R. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis. J. Colloid Interface Sci. 495, 9–18 (2017).
Lee, J. et al. C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst. Environ. Sci. Technol. 44, 9488–9495 (2010).
Kang, S., Herzberg, M., Rodrigues, D. F. & Elimelech, M. Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24, 6409–6413 (2008).
Liu, Y., Zhao, Y., Sun, B. & Chen, C. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46, 702–713 (2013).
Liu, L. et al. Facet energy and reactivity versus cytotoxicity: the surprising behavior of CdS nanorods. Nano Lett. 16, 688–694 (2016).
Lehutso, R. F., Tancu, Y., Maity, A. & Thwala, M. Aquatic toxicity of transformed and product-released engineered nanomaterials: an overview of the current state of knowledge. Process. Saf. Environ. Prot. 138, 39–56 (2020).
Gao, Y. et al. An overview of light-mediated impact of graphene oxide on algae: photo-transform, toxicity and mechanism. Water 14, 2997 (2022).
Zhao, F. et al. Effects of oxidation degree on photo-transformation and the resulting toxicity of graphene oxide in aqueous environment. Environ. Pollut. 249, 1106–1114 (2019).
Hou, W.-C., Lee, P.-L., Chou, Y.-C. & Wang, Y.-S. Antibacterial property of graphene oxide: the role of phototransformation. Environ. Sci. Nano 4, 647–657 (2017).
Zhao, J. et al. Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae. Water Res. 176, 115735 (2020).
Gao, Y., Ren, X., Zhang, X. & Chen, C. Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: a comparative study. Environ. Pollut. 251, 821–829 (2019).
Mahendra, S., Zhu, H., Colvin, V. L. & Alvarez, P. J. Quantum dot weathering results in microbial toxicity. Environ. Sci. Technol. 42, 9424–9430 (2008).
Xiu, Z., Zhang, Q., Puppala, H. L., Colvin, V. L. & Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012).
Franklin, N. M. et al. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41, 8484–8490 (2007).
Lead, J. R. et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects — an updated review. Environ. Toxicol. Chem. 37, 2029–2063 (2018).
Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).
Kaegi, R. et al. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 45, 3902–3908 (2011).
Li, L. et al. Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in Medaka (Oryzias latipes) embryos. Environ. Sci. Technol. 49, 2486–2495 (2015).
Bae, S., Collins, R. N., Waite, T. D. & Hanna, K. Advances in surface passivation of nanoscale zerovalent iron: a critical review. Environ. Sci. Technol. 52, 12010–12025 (2018).
Foley, T. J., Johnson, C. E. & Higa, K. T. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem. Mater. 17, 4086–4091 (2005).
Corbo, C. et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11, 81–100 (2016).
Kang, F., Qu, X., Alvarez, P. J. J. & Zhu, D. Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: new insights for heavy metals biomineralization on microbial surfaces. Environ. Sci. Technol. 51, 2776–2785 (2017).
Kang, F., Alvarez, P. J. & Zhu, D. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ. Sci. Technol. 48, 316–322 (2014).
de Faria, A. F., Perreault, F., Shaulsky, E., Arias Chavez, L. H. & Elimelech, M. Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl. Mater. Interfaces 7, 12751–12759 (2015).
Lee, C.-G. et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52, 4285–4293 (2018).
Zhang, S. et al. Membrane-confined iron oxychloride nanocatalysts for highly efficient heterogeneous Fenton water treatment. Environ. Sci. Technol. 55, 9266–9275 (2021).
Wang, D., Bai, L., Huang, X., Yan, W. & Li, S. Size-dependent acute toxicity and oxidative damage caused by cobalt-based framework (ZIF-67) to Photobacterium phosphoreum. Sci. Total. Environ. 851, 158317 (2022).
Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C. & Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22, 64–75 (2014).
Ahmad, F., Wang, X. & Li, W. Toxico-metabolomics of engineered nanomaterials: progress and challenges. Adv. Funct. Mater. 29, 1904268 (2019).
Wang, Z., Zhang, L., Zhao, J. & Xing, B. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ. Sci. Nano 3, 240–255 (2016).
Kent, R. D., Oser, J. G. & Vikesland, P. J. Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environ. Sci. Technol. 48, 8564–8572 (2014).
Arvidsson, R. Risk assessments show engineered nanomaterials to be of low environmental concern. Environ. Sci. Technol. 52, 2436–2437 (2018).
Arvidsson, R., Baun, A., Furberg, A., Hansen, S. F. & Molander, S. Proxy measures for simplified environmental assessment of manufactured nanomaterials. Environ. Sci. Technol. 52, 13670–13680 (2018).
Giese, B. et al. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 8, 1565 (2018).
Hochella, M. F. et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).
Hochella, M. F., Aruguete, D., Kim, B. & Madden, A. S. Naturally occurring inorganic nanoparticles: General assessment and a global budget for one of earth’s last unexplored major geochemical components in Nature’s Nanostructures (eds Barnard, A. S. & Guo, H.) 1–42 (Pan Stanford, 2012).
Mitrano, D. M., Motellier, S., Clavaguera, S. & Nowack, B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 77, 132–147 (2015).
Wohlleben, W. & Neubauer, N. Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial. NanoImpact 1, 39–45 (2016).
Lankone, R. S. et al. Methodology for quantifying engineered nanomaterial release from diverse product matrices under outdoor weathering conditions and implications for life cycle assessment. Environ. Sci. Nano 4, 1784–1797 (2017).
Quadros, M. E. et al. Release of silver from nanotechnology-based consumer products for children. Environ. Sci. Technol. 47, 8894–8901 (2013).
Benn, T., Cavanagh, B., Hristovski, K., Posner, J. D. & Westerhoff, P. The release of nanosilver from consumer products used in the home. J. Environ. Qual. 39, 1875–1882 (2010).
Bossa, N. et al. Mechanisms limiting the release of TiO2 nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology. Environ. Sci. Nano 6, 624–634 (2019).
Xiu, Z. et al. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour. Technol. 101, 1141–1146 (2010).
Duan, L. et al. Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid. Chem. Eng. J. 448, 137735 (2022).
Brame, J. A., Hong, S. W., Lee, J., Lee, S.-H. & Alvarez, P. J. J. Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere 90, 2315–2319 (2013).
Qanbarzadeh, M. et al. An ultraviolet/boron nitride photocatalytic process efficiently degrades poly-/perfluoroalkyl substances in complex water matrices. Environ. Sci. Technol. Lett. 10, 705–710 (2023).
Ben-Sasson, M. et al. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 62, 260–270 (2014).
Barrios, A. C. et al. Prolonging the antibacterial activity of nanosilver-coated membranes through partial sulfidation. Environ. Sci. Nano 7, 2607–2617 (2020).
Bossa, N. et al. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environ. Pollut. 220, 1160–1170 (2017).
Masion, A., Auffan, M. & Rose, J. Monitoring the environmental aging of nanomaterials: an opportunity for mesocosm testing? Materials 12, 2447 (2019).
Bi, Y. et al. Four release tests exhibit variable silver stability from nanoparticle-modified reverse osmosis membranes. Water Res. 143, 77–86 (2018).
Wu, J. et al. Release of silver from nanoparticle-based filter paper and the impacts to mouse gut microbiota. Environ. Sci. Nano 7, 1554–1565 (2020).
Mittelman, A. M., Lantagne, D. S., Rayner, J. & Pennell, K. D. Silver dissolution and release from ceramic water filters. Environ. Sci. Technol. 49, 8515–8522 (2015).
Bielefeldt, A. R., Stewart, M. W., Mansfield, E., Scott Summers, R. & Ryan, J. N. Effects of chlorine and other water quality parameters on the release of silver nanoparticles from a ceramic surface. Water Res. 47, 4032–4039 (2013).
Levi, J. et al. Comparing methods to deposit Pd–In catalysts on hydrogen-permeable hollow-fiber membranes for nitrate reduction. Water Res. 235, 119877 (2023).
Westerhoff, P. K., Kiser, M. A. & Hristovski, K. Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 30, 109–117 (2013).
Miller, J. H. et al. Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion. Water Environ. Res. 85, 411–421 (2013).
Metch, J. W., Ma, Y., Pruden, A. & Vikesland, P. J. Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents. Environ. Sci. Water Res. Technol. 1, 823–831 (2015).
Sun, T. Y., Gottschalk, F., Hungerbühler, K. & Nowack, B. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut. 185, 69–76 (2014).
Meesters, J. A. J., Koelmans, A. A., Quik, J. T. K., Hendriks, A. J. & van de Meent, D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environ. Sci. Technol. 48, 5726–5736 (2014).
Li, G. et al. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. Water Res. 242, 120242 (2023).
Mitrano, D. M. et al. Detecting nanoparticulate silver using single‐particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 31, 115–121 (2012).
Johnson, A. et al. Exposure Assessment for Engineered Silver Nanoparticles Throughout the Rivers of England and Wales (CB0433) (Centre for Ecology and Hydrology, 2011).
Keller, A. A. & Lazareva, A. Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett. 1, 65–70 (2014).
Gottschalk, F., Lassen, C., Kjoelholt, J., Christensen, F. & Nowack, B. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int. J. Environ. Res. Public. Health 12, 5581–5602 (2015).
Majedi, S. M., Lee, H. K. & Kelly, B. C. Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide nanoparticles in water samples. Anal. Chem. 84, 6546–6552 (2012).
Sorgog, K. & Kamo, M. Quantifying the precision of ecological risk: conventional assessment factor method vs. species sensitivity distribution method. Ecotoxicol. Environ. Saf. 183, 109494 (2019).
Kjølholt, J. et al. Environmental Assessment of Nanomaterial Use in Denmark: Final Report (Danish Environmental Protection Agency, 2015).
Coll, C. et al. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10, 436–444 (2016).
Chen, G., Peijnenburg, W. J. G. M., Xiao, Y. & Vijver, M. G. Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. Food Chem. Toxicol. 112, 563–570 (2018).
Westerhoff, P. et al. Low risk posed by engineered and incidental nanoparticles in drinking water. Nat. Nanotechnol. 13, 661–669 (2018).
Carboni, A. et al. Aquatic mesocosm strategies for the environmental fate and risk assessment of engineered nanomaterials. Environ. Sci. Technol. 55, 16270–16282 (2021).
Zhao, J. et al. Silver nanoparticles in aquatic sediments: occurrence, chemical transformations, toxicity, and analytical methods. J. Hazard. Mater. 418, 126368 (2021).
Little, S., Johnston, H. J., Stone, V. & Fernandes, T. F. Acute waterborne and chronic sediment toxicity of silver and titanium dioxide nanomaterials towards the oligochaete, Lumbriculus variegatus. NanoImpact 21, 100291 (2021).
Rajala, J. E., Vehniäinen, E., Väisänen, A. & Kukkonen, J. V. K. Toxicity of silver nanoparticles to Lumbriculus variegatus is a function of dissolved silver and promoted by low sediment pH. Environ. Toxicol. Chem. 37, 1889–1897 (2018).
Walker, W. C., Bosso, C. J., Eckelman, M., Isaacs, J. A. & Pourzahedi, L. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date. J. Nanopart. Res. 17, 344 (2015).
Eckelman, M. J., Mauter, M. S., Isaacs, J. A. & Elimelech, M. New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ. Sci. Technol. 46, 2902–2910 (2012).
Pourzahedi, L. & Eckelman, M. J. Comparative life cycle assessment of silver nanoparticle synthesis routes. Environ. Sci. Nano 2, 361–369 (2015).
Pati, P., McGinnis, S. & Vikesland, P. J. Life cycle assessment of “green” nanoparticle synthesis methods. Environ. Eng. Sci. 31, 410–420 (2014).
Gilbertson, L. M. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020).
Gilbertson, L. M., Busnaina, A. A., Isaacs, J. A., Zimmerman, J. B. & Eckelman, M. J. Life cycle impacts and benefits of a carbon nanotube-enabled chemical gas sensor. Environ. Sci. Technol. 48, 11360–11368 (2014).
Zhai, P., Isaacs, J. A. & Eckelman, M. J. Net energy benefits of carbon nanotube applications. Appl. Energy 173, 624–634 (2016).
Pourzahedi, L. & Eckelman, M. J. Environmental life cycle assessment of nanosilver-enabled bandages. Environ. Sci. Technol. 49, 361–368 (2015).
Sánchez Jiménez, A. et al. Safe(r) by design guidelines for the nanotechnology industry. NanoImpact 25, 100385 (2022).
Lin, S., Yu, T., Yu, Z., Hu, X. & Yin, D. Nanomaterials safer-by-design: an environmental safety perspective. Adv. Mater. 30, 1705691 (2018).
Li, M. & Luo, L. Review on application of nanomaterials in soil remediation. J. Phys. Conf. Ser. 1637, 012070 (2020).
Ravikumar, K. V. G. et al. A comparative study with biologically and chemically synthesized nZVI: applications in Cr(VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Environ. Sci. Pollut. Res. 23, 2613–2627 (2016).
Duan, H., Wang, D. & Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 44, 5778–5792 (2015).
Plata, D. L., Hart, A. J., Reddy, C. M. & Gschwend, P. M. Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition. Environ. Sci. Technol. 43, 8367–8373 (2009).
Nadagouda, M. N., Speth, T. F. & Varma, R. S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 44, 469–478 (2011).
Rose, J. et al. The SERENADE project; a step forward in the safe by design process of nanomaterials: the benefits of a diverse and interdisciplinary approach. Nano Today 37, 101065 (2021).
Rose, J. et al. The SERENADE project — a step forward in the safe by design process of nanomaterials: moving towards a product-oriented approach. Nano Today 39, 101238 (2021).
Loeb, S. K. et al. The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ. Sci. Technol. 53, 2937–2947 (2019).
Truffier-Boutry, D. et al. Characterization of photocatalytic paints: a relationship between the photocatalytic properties — release of nanoparticles and volatile organic compounds. Environ. Sci. Nano 4, 1998–2009 (2017).
Morin, J. et al. Application of a mineral binder to reduce VOC emissions from indoor photocatalytic paints. Build. Environ. 156, 225–232 (2019).
Dussert, F. et al. Physico-chemical transformation and toxicity of multi-shell InP quantum dots under simulated sunlight irradiation, in an environmentally realistic scenario. Nanomaterials 12, 3703 (2022).
Dussert, F. et al. Evaluation of the dermal toxicity of InZnP quantum dots before and after accelerated weathering: toward a safer-by-design strategy. Front. Toxicol. 3, 636976 (2021).
Tarantini, A. et al. Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: a safer by design evaluation. NanoImpact 14, 100168 (2019).
Wegner, K. D., Pouget, S., Ling, W. L., Carrière, M. & Reiss, P. Gallium — a versatile element for tuning the photoluminescence properties of InP quantum dots. Chem. Commun. 55, 1663–1666 (2019).
Hang, M. N. et al. Influence of nanoparticle morphology on ion release and biological impact of nickel manganese cobalt oxide (NMC) complex oxide nanomaterials. ACS Appl. Nano Mater. 1, 1721–1730 (2018).
Bai, S., Wang, L., Li, Z. & Xiong, Y. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 4, 1600216 (2017).
Yu, Q. et al. Targeting specific cell organelles with different-faceted nanocrystals that are selectively recognized by organelle-targeting peptides. Chem. Commun. 56, 7613–7616 (2020).
Długosz, O., Szostak, K., Staroń, A., Pulit-Prociak, J. & Banach, M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials 13, 279 (2020).
Bhanushali, S. & Sastry, M. in Immobilization Strategies: Biomedical, Bioengineering and Environmental Applications (eds. Tripathi, A. & Melo, J. S.) 597–643 (Springer, 2021).
Alipour Atmianlu, P., Badpa, R., Aghabalaei, V. & Baghdadi, M. A review on the various beds used for immobilization of nanoparticles: overcoming the barrier to nanoparticle applications in water and wastewater treatment. J. Environ. Chem. Eng. 9, 106514 (2021).
Hristovski, K., Baumgardner, A. & Westerhoff, P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 147, 265–274 (2007).
Hristovski, K., Westerhoff, P. & Crittenden, J. An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titanate nanofibers. J. Hazard. Mater. 156, 604–611 (2008).
Chen, A. & Ostrom, C. Palladium-based nanomaterials: synthesis and electrochemical applications. Chem. Rev. 115, 11999–12044 (2015).
Maduraiveeran, G., Sasidharan, M. & Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: synthesis and electrochemical applications. Prog. Mater. Sci. 106, 100574 (2019).
Zhang, Y., Niu, Q., Gu, X., Yang, N. & Zhao, G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 11, 11992–12014 (2019).
Yuan, Q. et al. Selective adsorption and photocatalytic degradation of extracellular antibiotic resistance genes by molecularly-imprinted graphitic carbon nitride. Environ. Sci. Technol. 54, 4621–4630 (2020).
Zuo, K. et al. A hybrid metal–organic framework–reduced graphene oxide nanomaterial for selective removal of chromate from water in an electrochemical process. Environ. Sci. Technol. 54, 13322–13332 (2020).
Cerrón-Calle, G. A., Fajardo, A. S., Sánchez-Sánchez, C. M. & Garcia-Segura, S. Highly reactive Cu–Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B 302, 120844 (2022).
Sun, M. et al. Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Adv. Funct. Mater. 29, 1903125 (2019).
Baek, Y. et al. High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci. 460, 171–177 (2014).
Yu, M., Funke, H. H., Falconer, J. L. & Noble, R. D. High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9, 225–229 (2009).
Jhaveri, J. H. & Murthy, Z. V. P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379, 137–154 (2016).
Goh, P. S., Lau, W. J., Othman, M. H. D. & Ismail, A. F. Membrane fouling in desalination and its mitigation strategies. Desalination 425, 130–155 (2018).
Zhou, S. et al. Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal. J. Membr. Sci. 610, 118219 (2020).
Kumari, P., Bahadur, N. & Dumée, L. F. Photo-catalytic membrane reactors for the remediation of persistent organic pollutants — a review. Sep. Purif. Technol. 230, 115878 (2020).
Zhao, X. et al. Antifouling membrane surface construction: chemistry plays a critical role. J. Membr. Sci. 551, 145–171 (2018).
Lu, X. et al. Fabrication of a desalination membrane with enhanced microbial resistance through vertical alignment of graphene oxide. Environ. Sci. Technol. Lett. 5, 614–620 (2018).
Wu, J., Yu, C. & Li, Q. Novel regenerable antimicrobial nanocomposite membranes: effect of silver loading and valence state. J. Membr. Sci. 531, 68–76 (2017).
Basheer, A. A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018).
Kumari, P. et al. Electro-catalytic membrane reactors for the degradation of organic pollutants — a review. React. Chem. Eng. 6, 1508–1526 (2021).
Iddya, A. et al. A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway. Nat. Nanotechnol. 17, 1222–1228 (2022).
Abdollahzadeh, M. et al. Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Adv. Mater. 34, 2107878 (2022).
Kang, Y., Xia, Y., Wang, H. & Zhang, X. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019).
Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).
Liu, J. et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Sci. Adv. 6, eabb1110 (2020).
Yuan, S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).
Cheng, N., Zhang, L., Doyle-Davis, K. & Sun, X. Single-atom catalysts: from design to application. Electrochem. Energ. Rev. 2, 539–573 (2019).
Weon, S. et al. Environmental materials beyond and below the nanoscale: single-atom catalysts. ACS EST. Eng. 1, 157–172 (2021).
Cervantes, F. J. & Ramírez-Montoya, L. A. Immobilized nanomaterials for environmental applications. Molecules 27, 6659 (2022).
Froggett, S. J., Clancy, S. F., Boverhof, D. R. & Canady, R. A. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part. Fibre Toxicol. 11, 17 (2014).
Vishnu, D., Dhandapani, B., Kannappan Panchamoorthy, G., Vo, D.-V. N. & Ramakrishnan, S. R. Comparison of surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: a review. Environ. Chem. Lett. 19, 3181–3208 (2021).
Park, S.-H. et al. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J. Membr. Sci. 499, 80–91 (2016).
Cooper, R. G. Perspective: the Stage-Gate® idea-to-launch process — update, what’s new, and NexGen Systems. J. Prod. Innov. Manage. 25, 213–232 (2008).
European Commission, Joint Research Centre. NANoREG framework for the safety assessment of nanomaterials. https://doi.org/10.2760/245972 (Publications Office of the European Union, 2017).
Brame, J., Li, Q. & Alvarez, P. J. J. Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci. Technol. 22, 618–624 (2011).
Harris-Lovett, S. R., Binz, C., Sedlak, D. L., Kiparsky, M. & Truffer, B. Beyond user acceptance: a legitimacy framework for potable water reuse in California. Environ. Sci. Technol. 49, 7552–7561 (2015).
Gupta, N., Fischer, A. R. H., van der Lans, I. A. & Frewer, L. J. Factors influencing societal response of nanotechnology: an expert stakeholder analysis. J. Nanopart. Res. 14, 857 (2012).
Kidd, J., Westerhoff, P. & Maynard, A. D. Public perceptions for the use of nanomaterials for in-home drinking water purification devices. NanoImpact 18, 100220 (2020).
Ritt, C. L., Werber, J. R., Deshmukh, A. & Elimelech, M. Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53, 6214–6224 (2019).
Patel, S. K. et al. The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. https://doi.org/10.1039/d0ee00341g (2020).
Lee, B., Wang, L., Wang, Z., Cooper, N. J. & Elimelech, M. Directing the research agenda on water and energy technologies with process and economic analysis. Energy Environ. Sci. 16, 714–722 (2023).
Winter, L. R. et al. Mining nontraditional water sources for a distributed hydrogen economy. Environ. Sci. Technol. 56, 10577–10585 (2022).
Wilson-Mendenhall, C. D. & Holmes, K. J. Lab meets world: the case for use-inspired basic research in affective science. Affec. Sci. 4, 591–599 (2023).
Hartmann, N. I. B. et al. Environmental Fate and Behaviour of Nanomaterials: New Knowledge on Important Transfomation Processes (Danish Environmental Protection Agency, 2014).
Garner, K. L., Suh, S., Lenihan, H. S. & Keller, A. A. Species sensitivity distributions for engineered nanomaterials. Environ. Sci. Technol. 49, 5753–5759 (2015).
Book, F. & Backhaus, T. Aquatic ecotoxicity of manufactured silica nanoparticles: a systematic review and meta-analysis. Sci. Total. Environ. 806, 150893 (2022).
Peters, R. J. B. et al. Detection of nanoparticles in Dutch surface waters. Sci. Total. Environ. 621, 210–218 (2018).
Hong, H., Adam, V. & Nowack, B. Form‐specific and probabilistic environmental risk assessment of 3 engineered nanomaterials (nano‐Ag, nano‐TiO2, and nano‐ZnO) in European freshwaters. Env. Toxicol. Chem. 40, 2629–2639 (2021).
Musee, N. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum. Exp. Toxicol. 30, 1181–1195 (2011).
Acknowledgements
The authors thank the Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT) and the Rice University Water Technologies Entrepreneurship and Research (WaTER) Institute for support.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks H. Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Huang, X., Auffan, M., Eckelman, M.J. et al. Trends, risks and opportunities in environmental nanotechnology. Nat Rev Earth Environ 5, 572–587 (2024). https://doi.org/10.1038/s43017-024-00567-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-024-00567-5