Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trends, risks and opportunities in environmental nanotechnology

Abstract

Engineered nanomaterials (ENMs), intentionally synthesized materials with sizes less than 100 nm in at least one dimension, have numerous potential environmental applications, such as pollution remediation and water treatment. However, concerns regarding their potential health and environmental impacts have been raised. In this Review, we assess the opportunities of ENMs in environmental applications versus their potential public and environmental health risks, focusing on water treatment and reuse, and identify strategies for their responsible use. Life-cycle analyses indicate that the highest potential environmental and health impacts of ENMs used in commercial products are associated with production rather than incidental release during use. Typically, the detected or predicted ENM concentrations are 1 to 4 orders of magnitude lower than their respective predicted no-effect concentrations. In addition, ENMs often undergo passivating transformations, such as agglomeration and oxidation, reducing risks after release. Therefore, the environmental and health risks of ENMs are relatively low. However, some point sources under extreme scenarios, such as sewage effluent, can potentially increase localized risks. Adopting green chemistry and immobilization strategies can further limit the release of ENMs, minimizing their potential discharge into the environment. Such strategies to reduce toxicity and exposure enable sustainable application of ENMs, such that the environmental benefits could outweigh the risks if managed properly.

Key points

  • Environmental applications of nanomaterials include pollution control, green chemistry, clean water production, and sensing and monitoring.

  • Despite the potentially substantial environmental benefits of nanotechnology, the large-scale manufacturing requirements, cost limitations and potential health and environmental risks of engineered nanomaterials (ENMs) are common barriers to their widespread use.

  • The environmental and health risks of ENMs are relatively low considering the very low ENM concentrations involved  and the passivating transformations that occur in the environment, although the potential human health and ecosystem impacts of long-term (months to years) exposure to low ENM concentrations (for example, sub-microgram per litre level in water) remain largely unexplored.

  • Life-cycle analyses of ENMs used in commercial products indicate that the highest potential environmental and human health risks are associated with production rather than incidental release.

  • To prevent their release into the environment and mitigate exposure, ENMs should be immobilized in or on substrates such as electrodes, membranes and other matrices. Immobilization also enables ENMs to be reused, promoting sustainable and circular practice.

  • Additionally, ENM-enabled products and processes should undergo a certification process to meet regulated safety standards to promote best practice and increase social acceptance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Links between toxicology research activity and worldwide use of asbestos and ENMs.
Fig. 2: Research priorities and expectations of environmental applications of nanotechnology over time.
Fig. 3: Potential environmental applications of various types of ENMs.
Fig. 4: Processes affecting the transport, transformation and fate of ENMs in the environment.
Fig. 5: Potential environmental impact of ENMs across the life cycle from production to disposal.
Fig. 6: Concentrations and risk characterization ratios of selected ENMs.

Similar content being viewed by others

References

  1. United Nations. The United Nations World Water Development Report 2024: Water for Prosperity and Peace. UNESDOC https://unesdoc.unesco.org/ark:/48223/pf0000388948 (2024).

  2. UN-Water. Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (UN-Water, 2021).

  3. Barhoum, A. et al. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials 12, 177 (2022).

    Article  CAS  Google Scholar 

  4. Hulla, J., Sahu, S. & Hayes, A. Nanotechnology: history and future. Hum. Exp. Toxicol. 34, 1318–1321 (2015).

    Article  CAS  Google Scholar 

  5. Damodharan, J. Nanomaterials in medicine — an overview. Mater. Today Proc. 37, 383–385 (2021).

    Article  CAS  Google Scholar 

  6. Bandala, E. R. & Berli, M. Engineered nanomaterials (ENMs) and their role at the nexus of food, energy, and water. Mater. Sci. Energy Technol. 2, 29–40 (2019).

    Google Scholar 

  7. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article  CAS  Google Scholar 

  8. Baig, N., Kammakakam, I. & Falath, W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021).

    Article  Google Scholar 

  9. Kobayashi, T., Haruta, M., Sano, H. & Nakane, M. A selective CO sensor using Ti-doped α-Fe2O3 with coprecipitated ultrafine particles of gold. Sens. Actuators 13, 339–349 (1988).

    Article  CAS  Google Scholar 

  10. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  11. Miller, T. M. & Grassian, V. H. Adsorption and decomposition of nitrous oxide on zirconia nanoparticles. Colloids Surf. A 105, 113–122 (1995).

    Article  CAS  Google Scholar 

  12. Wang, C.-B. & Zhang, W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997).

    Article  CAS  Google Scholar 

  13. Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    Article  CAS  Google Scholar 

  14. Wiesner, M. & Bottero, J.-Y. Environmental Nanotechnology, Applications and Impacts of Nanomaterials 2nd edn (McGraw Hill, 2016).

  15. Zuo, K. et al. Selective membranes in water and wastewater treatment: role of advanced materials. Mater. Today 50, 516–532 (2021).

    Article  CAS  Google Scholar 

  16. Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M. & Vilas-Vilela, J. L. Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health 17, 5817 (2020).

    Article  CAS  Google Scholar 

  17. Pourzahedi, L., Vance, M. & Eckelman, M. J. Life cycle assessment and release studies for 15 nanosilver-enabled consumer products: investigating hotspots and patterns of contribution. Environ. Sci. Technol. 51, 7148–7158 (2017).

    Article  CAS  Google Scholar 

  18. Service, R. F. Nanotubes: the next asbestos? Science 281, 941 (1998).

    Article  CAS  Google Scholar 

  19. Grout, H., Wiesner, M. R. & Bottero, J.-Y. Analysis of colloidal phases in urban stormwater runoff. Environ. Sci. Technol. 33, 831–839 (1999).

    Article  CAS  Google Scholar 

  20. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  Google Scholar 

  21. Oberdörster, G., Stone, V. & Donaldson, K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1, 2–25 (2007).

    Article  Google Scholar 

  22. Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).

    Article  Google Scholar 

  23. Ferin, J. et al. Increased pulmonary toxicity of ultrafine particles? I. Particle clearance, translocation, morphology. J. Aerosol Sci. 21, 381–384 (1990).

    Article  Google Scholar 

  24. Oberdörster, G., Ferin, J., Finkelstein, G., Wade, P. & Corson, N. Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. J. Aerosol Sci. 21, 384–387 (1990).

    Article  Google Scholar 

  25. Cohen, B. S., Sussman, R. G. & Lippmann, M. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 12, 1082–1091 (1990).

    Article  Google Scholar 

  26. Heffernan, P. Toxicity of asbestos. Br. Med. J. 1, 1894–1895 (1960).

    Article  Google Scholar 

  27. Kante, B. et al. Toxicity of polyalkylcyanoacrylate nanoparticles I: free nanoparticles. J. Pharm. Sci. 71, 786–790 (1982).

    Article  CAS  Google Scholar 

  28. Zhuang, J. & Gentry, R. W. in Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us Vol. 1079 (eds Ripp, S. & Henry, T. B.) 41–67 (American Chemical Society, 2011).

  29. Ganguly, P., Breen, A. & Pillai, S. C. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 4, 2237–2275 (2018).

    Article  CAS  Google Scholar 

  30. Sukhanova, A. et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 13, 44 (2018).

    Article  Google Scholar 

  31. Zhao, J., Lin, M., Wang, Z., Cao, X. & Xing, B. Engineered nanomaterials in the environment: are they safe? Crit. Rev. Environ. Sci. Technol. 51, 1443–1478 (2021).

    Article  Google Scholar 

  32. Kansara, K. et al. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environ. Pollut. 296, 118726 (2022).

    Article  CAS  Google Scholar 

  33. Qu, X., Brame, J., Li, Q. & Alvarez, P. J. J. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 46, 834–843 (2013).

    Article  CAS  Google Scholar 

  34. Jassby, D., Cath, T. Y. & Buisson, H. The role of nanotechnology in industrial water treatment. Nat. Nanotechnol. 13, 670–672 (2018).

    Article  CAS  Google Scholar 

  35. Nagar, A. & Pradeep, T. Clean water through nanotechnology: needs, gaps, and fulfillment. ACS Nano 14, 6420–6435 (2020).

    Article  CAS  Google Scholar 

  36. Sharma, S. et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J. Clean. Prod. 228, 755–769 (2019).

    Article  CAS  Google Scholar 

  37. Gokulakrishnan, S. A. et al. Recent development of photocatalytic nanomaterials in mixed matrix membrane for emerging pollutants and fouling control, membrane cleaning process. Chemosphere 281, 130891 (2021).

    Article  CAS  Google Scholar 

  38. Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

    Article  CAS  Google Scholar 

  39. Xie, Q. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

    Article  CAS  Google Scholar 

  40. Vance, M. E. et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015).

    Article  CAS  Google Scholar 

  41. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  Google Scholar 

  42. Xiao, R. et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 19, 51–58 (2018).

    Article  Google Scholar 

  43. Fennell, B. D., Mezyk, S. P. & McKay, G. Critical review of UV-advanced reduction processes for the treatment of chemical contaminants in water. ACS Environ. Au 2, 178–205 (2022).

    Article  CAS  Google Scholar 

  44. Garcia-Segura, S. et al. Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater — a perspective. Environ. Sci. Nano 7, 2178–2194 (2020).

    Article  CAS  Google Scholar 

  45. Cardoso, I. M. F., Pinto da Silva, L. & Esteves da Silva, J. C. G. Nanomaterial-based advanced oxidation/reduction processes for the degradation of PFAS. Nanomaterials 13, 1668 (2023).

    Article  CAS  Google Scholar 

  46. Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    Article  CAS  Google Scholar 

  47. Razaqpur, A. G., Wang, Y., Liao, X., Liao, Y. & Wang, R. Progress of photothermal membrane distillation for decentralized desalination: a review. Water Res. 201, 117299 (2021).

    Article  CAS  Google Scholar 

  48. Gao, M., Peh, C. K., Meng, F. L. & Ho, G. W. Photothermal membrane distillation toward solar water production. Small Methods 5, 2001200 (2021).

    Article  CAS  Google Scholar 

  49. Qu, X., Alvarez, P. J. J. & Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013).

    Article  CAS  Google Scholar 

  50. Khan, S. T. & Malik, A. Engineered nanomaterials for water decontamination and purification: from lab to products. J. Hazard. Mater. 363, 295–308 (2019).

    Article  CAS  Google Scholar 

  51. Santhosh, C. et al. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137 (2016).

    Article  CAS  Google Scholar 

  52. Janković, N. Z. & Plata, D. L. Engineered nanomaterials in the context of global element cycles. Environ. Sci. Nano 6, 2697–2711 (2019).

    Article  Google Scholar 

  53. Dixit, F. et al. Application of MXenes for water treatment and energy-efficient desalination: a review. J. Hazard. Mater. 423, 127050 (2022).

    Article  CAS  Google Scholar 

  54. Zhao, L. et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci. Total. Environ. 627, 1253–1263 (2018).

    Article  CAS  Google Scholar 

  55. Joseph, L. et al. Removal of contaminants of emerging concern by metal–organic framework nanoadsorbents: a review. Chem. Eng. J. 369, 928–946 (2019).

    Article  CAS  Google Scholar 

  56. Khan, M. S. et al. A review of metal–organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale Adv. 5, 6318–6348 (2023).

    Article  CAS  Google Scholar 

  57. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  Google Scholar 

  58. Zhan, X.-Q. et al. Magnetic MOF for AO7 removal and targeted delivery. Crystals 8, 250 (2018).

    Article  Google Scholar 

  59. Lin, K.-Y. A., Yang, H. & Hsu, F.-K. Zr-metal organic framework and derivatives for adsorptive and photocatalytic removal of acid dyes. Water Environ. Res. 90, 144–154 (2018).

    Article  CAS  Google Scholar 

  60. Zhang, Q. et al. Covalent construction of sustainable hybrid UiO-66-NH2@Tb-CP material for selective removal of dyes and detection of metal ions. ACS Sustain. Chem. Eng. 7, 3203–3212 (2019).

    Article  CAS  Google Scholar 

  61. Gogoi, A., Konch, T. J., Raidongia, K. & Anki Reddy, K. Water and salt dynamics in multilayer graphene oxide (GO) membrane: role of lateral sheet dimensions. J. Membr. Sci. 563, 785–793 (2018).

    Article  CAS  Google Scholar 

  62. Wei, Y. et al. Multilayered graphene oxide membranes for water treatment: a review. Carbon 139, 964–981 (2018).

    Article  CAS  Google Scholar 

  63. Abdel-Karim, R., Reda, Y. & Abdel-Fattah, A. Review — Nanostructured materials-based nanosensors. J. Electrochem. Soc. 167, 037554 (2020).

    Article  CAS  Google Scholar 

  64. Jiang, Y. et al. Adsorption−desorption induced structural changes of Cu-MOF evidenced by solid state NMR and EPR spectroscopy. J. Am. Chem. Soc. 131, 2058–2059 (2009).

    Article  CAS  Google Scholar 

  65. Grillo, R., Rosa, A. H. & Fraceto, L. F. Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119, 608–619 (2015).

    Article  CAS  Google Scholar 

  66. Zhang, T. et al. In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environ. Sci. Nano 6, 1283–1302 (2019).

    Article  CAS  Google Scholar 

  67. Chen, J., Xiu, Z., Lowry, G. V. & Alvarez, P. J. J. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res. 45, 1995–2001 (2011).

    Article  CAS  Google Scholar 

  68. Stefaniuk, M., Oleszczuk, P. & Ok, Y. S. Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem. Eng. J. 287, 618–632 (2016).

    Article  CAS  Google Scholar 

  69. Cotta, M. A. Quantum dots and their applications: what lies ahead? ACS Appl. Nano Mater. 3, 4920–4924 (2020).

    Article  CAS  Google Scholar 

  70. Vikesland, P. J. & Wigginton, K. R. Nanomaterial enabled biosensors for pathogen monitoring — a review. Environ. Sci. Technol. 44, 3656–3669 (2010).

    Article  CAS  Google Scholar 

  71. Brame, J., Long, M., Li, Q. & Alvarez, P. Inhibitory effect of natural organic matter or other background constituents on photocatalytic advanced oxidation processes: mechanistic model development and validation. Water Res. 84, 362–371 (2015).

    Article  CAS  Google Scholar 

  72. Huo, Z.-Y., Du, Y., Chen, Z., Wu, Y.-H. & Hu, H.-Y. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: a state-of-the-art review. Water Res. 173, 115581 (2020).

    Article  CAS  Google Scholar 

  73. Mueller, N. C. & Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008).

    Article  CAS  Google Scholar 

  74. Banfield, J. F. & Zhang, H. Nanoparticles in the environment. Rev. Mineral. Geochem. 44, 1–58 (2001).

    Article  CAS  Google Scholar 

  75. Auffan, M. et al. An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Sci. Rep. 4, 5608 (2014).

    Article  CAS  Google Scholar 

  76. Auffan, M. et al. Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol. 44, 2689–2694 (2010).

    Article  CAS  Google Scholar 

  77. Labille, J. et al. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ. Pollut. 158, 3482–3489 (2010).

    Article  CAS  Google Scholar 

  78. Nowack, B. et al. Meeting the needs for released nanomaterials required for further testing — the SUN approach. Environ. Sci. Technol. 50, 2747–2753 (2016).

    Article  CAS  Google Scholar 

  79. Gottschalk, F., Sun, T. & Nowack, B. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 181, 287–300 (2013).

    Article  CAS  Google Scholar 

  80. Neubauer, N. et al. Nanoscale coloristic pigments: upper limits on releases from pigmented plastic during environmental aging, in food contact, and by leaching. Environ. Sci. Technol. 51, 11669–11680 (2017).

    Article  CAS  Google Scholar 

  81. Scifo, L. et al. Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation. Environ. Pollut. 241, 182–193 (2018).

    Article  CAS  Google Scholar 

  82. Zhao, J. et al. Toxicity of GO to freshwater algae in the presence of Al2O3 particles with different morphologies: importance of heteroaggregation. Environ. Sci. Technol. 52, 13448–13456 (2018).

    Article  CAS  Google Scholar 

  83. Fang, R. et al. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: Tetradesmus obliquus. J. Environ. Sci. 112, 376–387 (2022).

    Article  CAS  Google Scholar 

  84. Gupta, G. S., Senapati, V. A., Dhawan, A. & Shanker, R. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis. J. Colloid Interface Sci. 495, 9–18 (2017).

    Article  CAS  Google Scholar 

  85. Lee, J. et al. C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst. Environ. Sci. Technol. 44, 9488–9495 (2010).

    Article  CAS  Google Scholar 

  86. Kang, S., Herzberg, M., Rodrigues, D. F. & Elimelech, M. Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24, 6409–6413 (2008).

    Article  CAS  Google Scholar 

  87. Liu, Y., Zhao, Y., Sun, B. & Chen, C. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46, 702–713 (2013).

    Article  CAS  Google Scholar 

  88. Liu, L. et al. Facet energy and reactivity versus cytotoxicity: the surprising behavior of CdS nanorods. Nano Lett. 16, 688–694 (2016).

    Article  CAS  Google Scholar 

  89. Lehutso, R. F., Tancu, Y., Maity, A. & Thwala, M. Aquatic toxicity of transformed and product-released engineered nanomaterials: an overview of the current state of knowledge. Process. Saf. Environ. Prot. 138, 39–56 (2020).

    Article  CAS  Google Scholar 

  90. Gao, Y. et al. An overview of light-mediated impact of graphene oxide on algae: photo-transform, toxicity and mechanism. Water 14, 2997 (2022).

    Article  CAS  Google Scholar 

  91. Zhao, F. et al. Effects of oxidation degree on photo-transformation and the resulting toxicity of graphene oxide in aqueous environment. Environ. Pollut. 249, 1106–1114 (2019).

    Article  CAS  Google Scholar 

  92. Hou, W.-C., Lee, P.-L., Chou, Y.-C. & Wang, Y.-S. Antibacterial property of graphene oxide: the role of phototransformation. Environ. Sci. Nano 4, 647–657 (2017).

    Article  CAS  Google Scholar 

  93. Zhao, J. et al. Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae. Water Res. 176, 115735 (2020).

    Article  CAS  Google Scholar 

  94. Gao, Y., Ren, X., Zhang, X. & Chen, C. Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: a comparative study. Environ. Pollut. 251, 821–829 (2019).

    Article  CAS  Google Scholar 

  95. Mahendra, S., Zhu, H., Colvin, V. L. & Alvarez, P. J. Quantum dot weathering results in microbial toxicity. Environ. Sci. Technol. 42, 9424–9430 (2008).

    Article  CAS  Google Scholar 

  96. Xiu, Z., Zhang, Q., Puppala, H. L., Colvin, V. L. & Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012).

    Article  CAS  Google Scholar 

  97. Franklin, N. M. et al. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41, 8484–8490 (2007).

    Article  CAS  Google Scholar 

  98. Lead, J. R. et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects — an updated review. Environ. Toxicol. Chem. 37, 2029–2063 (2018).

    Article  CAS  Google Scholar 

  99. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    Article  CAS  Google Scholar 

  100. Kaegi, R. et al. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 45, 3902–3908 (2011).

    Article  CAS  Google Scholar 

  101. Li, L. et al. Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in Medaka (Oryzias latipes) embryos. Environ. Sci. Technol. 49, 2486–2495 (2015).

    Article  CAS  Google Scholar 

  102. Bae, S., Collins, R. N., Waite, T. D. & Hanna, K. Advances in surface passivation of nanoscale zerovalent iron: a critical review. Environ. Sci. Technol. 52, 12010–12025 (2018).

    Article  CAS  Google Scholar 

  103. Foley, T. J., Johnson, C. E. & Higa, K. T. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chem. Mater. 17, 4086–4091 (2005).

    Article  CAS  Google Scholar 

  104. Corbo, C. et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11, 81–100 (2016).

    Article  CAS  Google Scholar 

  105. Kang, F., Qu, X., Alvarez, P. J. J. & Zhu, D. Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: new insights for heavy metals biomineralization on microbial surfaces. Environ. Sci. Technol. 51, 2776–2785 (2017).

    Article  CAS  Google Scholar 

  106. Kang, F., Alvarez, P. J. & Zhu, D. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ. Sci. Technol. 48, 316–322 (2014).

    Article  CAS  Google Scholar 

  107. de Faria, A. F., Perreault, F., Shaulsky, E., Arias Chavez, L. H. & Elimelech, M. Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl. Mater. Interfaces 7, 12751–12759 (2015).

    Article  Google Scholar 

  108. Lee, C.-G. et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52, 4285–4293 (2018).

    Article  CAS  Google Scholar 

  109. Zhang, S. et al. Membrane-confined iron oxychloride nanocatalysts for highly efficient heterogeneous Fenton water treatment. Environ. Sci. Technol. 55, 9266–9275 (2021).

    Article  CAS  Google Scholar 

  110. Wang, D., Bai, L., Huang, X., Yan, W. & Li, S. Size-dependent acute toxicity and oxidative damage caused by cobalt-based framework (ZIF-67) to Photobacterium phosphoreum. Sci. Total. Environ. 851, 158317 (2022).

    Article  CAS  Google Scholar 

  111. Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C. & Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22, 64–75 (2014).

    Article  CAS  Google Scholar 

  112. Ahmad, F., Wang, X. & Li, W. Toxico-metabolomics of engineered nanomaterials: progress and challenges. Adv. Funct. Mater. 29, 1904268 (2019).

    Article  CAS  Google Scholar 

  113. Wang, Z., Zhang, L., Zhao, J. & Xing, B. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ. Sci. Nano 3, 240–255 (2016).

    Article  Google Scholar 

  114. Kent, R. D., Oser, J. G. & Vikesland, P. J. Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environ. Sci. Technol. 48, 8564–8572 (2014).

    Article  CAS  Google Scholar 

  115. Arvidsson, R. Risk assessments show engineered nanomaterials to be of low environmental concern. Environ. Sci. Technol. 52, 2436–2437 (2018).

    Article  CAS  Google Scholar 

  116. Arvidsson, R., Baun, A., Furberg, A., Hansen, S. F. & Molander, S. Proxy measures for simplified environmental assessment of manufactured nanomaterials. Environ. Sci. Technol. 52, 13670–13680 (2018).

    Article  CAS  Google Scholar 

  117. Giese, B. et al. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 8, 1565 (2018).

    Article  Google Scholar 

  118. Hochella, M. F. et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).

    Article  Google Scholar 

  119. Hochella, M. F., Aruguete, D., Kim, B. & Madden, A. S. Naturally occurring inorganic nanoparticles: General assessment and a global budget for one of earth’s last unexplored major geochemical components in Nature’s Nanostructures (eds Barnard, A. S. & Guo, H.) 1–42 (Pan Stanford, 2012).

  120. Mitrano, D. M., Motellier, S., Clavaguera, S. & Nowack, B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 77, 132–147 (2015).

    Article  CAS  Google Scholar 

  121. Wohlleben, W. & Neubauer, N. Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial. NanoImpact 1, 39–45 (2016).

    Article  Google Scholar 

  122. Lankone, R. S. et al. Methodology for quantifying engineered nanomaterial release from diverse product matrices under outdoor weathering conditions and implications for life cycle assessment. Environ. Sci. Nano 4, 1784–1797 (2017).

    Article  CAS  Google Scholar 

  123. Quadros, M. E. et al. Release of silver from nanotechnology-based consumer products for children. Environ. Sci. Technol. 47, 8894–8901 (2013).

    Article  CAS  Google Scholar 

  124. Benn, T., Cavanagh, B., Hristovski, K., Posner, J. D. & Westerhoff, P. The release of nanosilver from consumer products used in the home. J. Environ. Qual. 39, 1875–1882 (2010).

    Article  CAS  Google Scholar 

  125. Bossa, N. et al. Mechanisms limiting the release of TiO2 nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology. Environ. Sci. Nano 6, 624–634 (2019).

    Article  CAS  Google Scholar 

  126. Xiu, Z. et al. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour. Technol. 101, 1141–1146 (2010).

    Article  CAS  Google Scholar 

  127. Duan, L. et al. Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid. Chem. Eng. J. 448, 137735 (2022).

    Article  CAS  Google Scholar 

  128. Brame, J. A., Hong, S. W., Lee, J., Lee, S.-H. & Alvarez, P. J. J. Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere 90, 2315–2319 (2013).

    Article  CAS  Google Scholar 

  129. Qanbarzadeh, M. et al. An ultraviolet/boron nitride photocatalytic process efficiently degrades poly-/perfluoroalkyl substances in complex water matrices. Environ. Sci. Technol. Lett. 10, 705–710 (2023).

    Article  CAS  Google Scholar 

  130. Ben-Sasson, M. et al. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 62, 260–270 (2014).

    Article  CAS  Google Scholar 

  131. Barrios, A. C. et al. Prolonging the antibacterial activity of nanosilver-coated membranes through partial sulfidation. Environ. Sci. Nano 7, 2607–2617 (2020).

    Article  CAS  Google Scholar 

  132. Bossa, N. et al. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environ. Pollut. 220, 1160–1170 (2017).

    Article  CAS  Google Scholar 

  133. Masion, A., Auffan, M. & Rose, J. Monitoring the environmental aging of nanomaterials: an opportunity for mesocosm testing? Materials 12, 2447 (2019).

    Article  CAS  Google Scholar 

  134. Bi, Y. et al. Four release tests exhibit variable silver stability from nanoparticle-modified reverse osmosis membranes. Water Res. 143, 77–86 (2018).

    Article  CAS  Google Scholar 

  135. Wu, J. et al. Release of silver from nanoparticle-based filter paper and the impacts to mouse gut microbiota. Environ. Sci. Nano 7, 1554–1565 (2020).

    Article  CAS  Google Scholar 

  136. Mittelman, A. M., Lantagne, D. S., Rayner, J. & Pennell, K. D. Silver dissolution and release from ceramic water filters. Environ. Sci. Technol. 49, 8515–8522 (2015).

    Article  CAS  Google Scholar 

  137. Bielefeldt, A. R., Stewart, M. W., Mansfield, E., Scott Summers, R. & Ryan, J. N. Effects of chlorine and other water quality parameters on the release of silver nanoparticles from a ceramic surface. Water Res. 47, 4032–4039 (2013).

    Article  CAS  Google Scholar 

  138. Levi, J. et al. Comparing methods to deposit Pd–In catalysts on hydrogen-permeable hollow-fiber membranes for nitrate reduction. Water Res. 235, 119877 (2023).

    Article  CAS  Google Scholar 

  139. Westerhoff, P. K., Kiser, M. A. & Hristovski, K. Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 30, 109–117 (2013).

    Article  CAS  Google Scholar 

  140. Miller, J. H. et al. Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion. Water Environ. Res. 85, 411–421 (2013).

    Article  CAS  Google Scholar 

  141. Metch, J. W., Ma, Y., Pruden, A. & Vikesland, P. J. Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents. Environ. Sci. Water Res. Technol. 1, 823–831 (2015).

    Article  CAS  Google Scholar 

  142. Sun, T. Y., Gottschalk, F., Hungerbühler, K. & Nowack, B. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut. 185, 69–76 (2014).

    Article  CAS  Google Scholar 

  143. Meesters, J. A. J., Koelmans, A. A., Quik, J. T. K., Hendriks, A. J. & van de Meent, D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environ. Sci. Technol. 48, 5726–5736 (2014).

    Article  CAS  Google Scholar 

  144. Li, G. et al. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. Water Res. 242, 120242 (2023).

    Article  CAS  Google Scholar 

  145. Mitrano, D. M. et al. Detecting nanoparticulate silver using single‐particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 31, 115–121 (2012).

    Article  CAS  Google Scholar 

  146. Johnson, A. et al. Exposure Assessment for Engineered Silver Nanoparticles Throughout the Rivers of England and Wales (CB0433) (Centre for Ecology and Hydrology, 2011).

  147. Keller, A. A. & Lazareva, A. Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett. 1, 65–70 (2014).

    Article  CAS  Google Scholar 

  148. Gottschalk, F., Lassen, C., Kjoelholt, J., Christensen, F. & Nowack, B. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int. J. Environ. Res. Public. Health 12, 5581–5602 (2015).

    Article  CAS  Google Scholar 

  149. Majedi, S. M., Lee, H. K. & Kelly, B. C. Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide nanoparticles in water samples. Anal. Chem. 84, 6546–6552 (2012).

    Article  CAS  Google Scholar 

  150. Sorgog, K. & Kamo, M. Quantifying the precision of ecological risk: conventional assessment factor method vs. species sensitivity distribution method. Ecotoxicol. Environ. Saf. 183, 109494 (2019).

    Article  CAS  Google Scholar 

  151. Kjølholt, J. et al. Environmental Assessment of Nanomaterial Use in Denmark: Final Report (Danish Environmental Protection Agency, 2015).

  152. Coll, C. et al. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10, 436–444 (2016).

    Article  CAS  Google Scholar 

  153. Chen, G., Peijnenburg, W. J. G. M., Xiao, Y. & Vijver, M. G. Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. Food Chem. Toxicol. 112, 563–570 (2018).

    Article  CAS  Google Scholar 

  154. Westerhoff, P. et al. Low risk posed by engineered and incidental nanoparticles in drinking water. Nat. Nanotechnol. 13, 661–669 (2018).

    Article  CAS  Google Scholar 

  155. Carboni, A. et al. Aquatic mesocosm strategies for the environmental fate and risk assessment of engineered nanomaterials. Environ. Sci. Technol. 55, 16270–16282 (2021).

    Article  CAS  Google Scholar 

  156. Zhao, J. et al. Silver nanoparticles in aquatic sediments: occurrence, chemical transformations, toxicity, and analytical methods. J. Hazard. Mater. 418, 126368 (2021).

    Article  CAS  Google Scholar 

  157. Little, S., Johnston, H. J., Stone, V. & Fernandes, T. F. Acute waterborne and chronic sediment toxicity of silver and titanium dioxide nanomaterials towards the oligochaete, Lumbriculus variegatus. NanoImpact 21, 100291 (2021).

    Article  CAS  Google Scholar 

  158. Rajala, J. E., Vehniäinen, E., Väisänen, A. & Kukkonen, J. V. K. Toxicity of silver nanoparticles to Lumbriculus variegatus is a function of dissolved silver and promoted by low sediment pH. Environ. Toxicol. Chem. 37, 1889–1897 (2018).

    Article  CAS  Google Scholar 

  159. Walker, W. C., Bosso, C. J., Eckelman, M., Isaacs, J. A. & Pourzahedi, L. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date. J. Nanopart. Res. 17, 344 (2015).

    Article  Google Scholar 

  160. Eckelman, M. J., Mauter, M. S., Isaacs, J. A. & Elimelech, M. New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ. Sci. Technol. 46, 2902–2910 (2012).

    Article  CAS  Google Scholar 

  161. Pourzahedi, L. & Eckelman, M. J. Comparative life cycle assessment of silver nanoparticle synthesis routes. Environ. Sci. Nano 2, 361–369 (2015).

    Article  CAS  Google Scholar 

  162. Pati, P., McGinnis, S. & Vikesland, P. J. Life cycle assessment of “green” nanoparticle synthesis methods. Environ. Eng. Sci. 31, 410–420 (2014).

    Article  CAS  Google Scholar 

  163. Gilbertson, L. M. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020).

    Article  CAS  Google Scholar 

  164. Gilbertson, L. M., Busnaina, A. A., Isaacs, J. A., Zimmerman, J. B. & Eckelman, M. J. Life cycle impacts and benefits of a carbon nanotube-enabled chemical gas sensor. Environ. Sci. Technol. 48, 11360–11368 (2014).

    Article  CAS  Google Scholar 

  165. Zhai, P., Isaacs, J. A. & Eckelman, M. J. Net energy benefits of carbon nanotube applications. Appl. Energy 173, 624–634 (2016).

    Article  CAS  Google Scholar 

  166. Pourzahedi, L. & Eckelman, M. J. Environmental life cycle assessment of nanosilver-enabled bandages. Environ. Sci. Technol. 49, 361–368 (2015).

    Article  CAS  Google Scholar 

  167. Sánchez Jiménez, A. et al. Safe(r) by design guidelines for the nanotechnology industry. NanoImpact 25, 100385 (2022).

    Article  Google Scholar 

  168. Lin, S., Yu, T., Yu, Z., Hu, X. & Yin, D. Nanomaterials safer-by-design: an environmental safety perspective. Adv. Mater. 30, 1705691 (2018).

    Article  Google Scholar 

  169. Li, M. & Luo, L. Review on application of nanomaterials in soil remediation. J. Phys. Conf. Ser. 1637, 012070 (2020).

    Article  CAS  Google Scholar 

  170. Ravikumar, K. V. G. et al. A comparative study with biologically and chemically synthesized nZVI: applications in Cr(VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Environ. Sci. Pollut. Res. 23, 2613–2627 (2016).

    Article  CAS  Google Scholar 

  171. Duan, H., Wang, D. & Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 44, 5778–5792 (2015).

    Article  CAS  Google Scholar 

  172. Plata, D. L., Hart, A. J., Reddy, C. M. & Gschwend, P. M. Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition. Environ. Sci. Technol. 43, 8367–8373 (2009).

    Article  CAS  Google Scholar 

  173. Nadagouda, M. N., Speth, T. F. & Varma, R. S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 44, 469–478 (2011).

    Article  CAS  Google Scholar 

  174. Rose, J. et al. The SERENADE project; a step forward in the safe by design process of nanomaterials: the benefits of a diverse and interdisciplinary approach. Nano Today 37, 101065 (2021).

    Article  CAS  Google Scholar 

  175. Rose, J. et al. The SERENADE project — a step forward in the safe by design process of nanomaterials: moving towards a product-oriented approach. Nano Today 39, 101238 (2021).

    Article  CAS  Google Scholar 

  176. Loeb, S. K. et al. The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ. Sci. Technol. 53, 2937–2947 (2019).

    Article  CAS  Google Scholar 

  177. Truffier-Boutry, D. et al. Characterization of photocatalytic paints: a relationship between the photocatalytic properties — release of nanoparticles and volatile organic compounds. Environ. Sci. Nano 4, 1998–2009 (2017).

    Article  CAS  Google Scholar 

  178. Morin, J. et al. Application of a mineral binder to reduce VOC emissions from indoor photocatalytic paints. Build. Environ. 156, 225–232 (2019).

    Article  Google Scholar 

  179. Dussert, F. et al. Physico-chemical transformation and toxicity of multi-shell InP quantum dots under simulated sunlight irradiation, in an environmentally realistic scenario. Nanomaterials 12, 3703 (2022).

    Article  CAS  Google Scholar 

  180. Dussert, F. et al. Evaluation of the dermal toxicity of InZnP quantum dots before and after accelerated weathering: toward a safer-by-design strategy. Front. Toxicol. 3, 636976 (2021).

    Article  Google Scholar 

  181. Tarantini, A. et al. Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: a safer by design evaluation. NanoImpact 14, 100168 (2019).

    Article  Google Scholar 

  182. Wegner, K. D., Pouget, S., Ling, W. L., Carrière, M. & Reiss, P. Gallium — a versatile element for tuning the photoluminescence properties of InP quantum dots. Chem. Commun. 55, 1663–1666 (2019).

    Article  CAS  Google Scholar 

  183. Hang, M. N. et al. Influence of nanoparticle morphology on ion release and biological impact of nickel manganese cobalt oxide (NMC) complex oxide nanomaterials. ACS Appl. Nano Mater. 1, 1721–1730 (2018).

    Article  CAS  Google Scholar 

  184. Bai, S., Wang, L., Li, Z. & Xiong, Y. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 4, 1600216 (2017).

    Article  Google Scholar 

  185. Yu, Q. et al. Targeting specific cell organelles with different-faceted nanocrystals that are selectively recognized by organelle-targeting peptides. Chem. Commun. 56, 7613–7616 (2020).

    Article  CAS  Google Scholar 

  186. Długosz, O., Szostak, K., Staroń, A., Pulit-Prociak, J. & Banach, M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials 13, 279 (2020).

    Article  Google Scholar 

  187. Bhanushali, S. & Sastry, M. in Immobilization Strategies: Biomedical, Bioengineering and Environmental Applications (eds. Tripathi, A. & Melo, J. S.) 597–643 (Springer, 2021).

  188. Alipour Atmianlu, P., Badpa, R., Aghabalaei, V. & Baghdadi, M. A review on the various beds used for immobilization of nanoparticles: overcoming the barrier to nanoparticle applications in water and wastewater treatment. J. Environ. Chem. Eng. 9, 106514 (2021).

    Article  CAS  Google Scholar 

  189. Hristovski, K., Baumgardner, A. & Westerhoff, P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 147, 265–274 (2007).

    Article  CAS  Google Scholar 

  190. Hristovski, K., Westerhoff, P. & Crittenden, J. An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titanate nanofibers. J. Hazard. Mater. 156, 604–611 (2008).

    Article  CAS  Google Scholar 

  191. Chen, A. & Ostrom, C. Palladium-based nanomaterials: synthesis and electrochemical applications. Chem. Rev. 115, 11999–12044 (2015).

    Article  CAS  Google Scholar 

  192. Maduraiveeran, G., Sasidharan, M. & Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: synthesis and electrochemical applications. Prog. Mater. Sci. 106, 100574 (2019).

    Article  CAS  Google Scholar 

  193. Zhang, Y., Niu, Q., Gu, X., Yang, N. & Zhao, G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 11, 11992–12014 (2019).

    Article  CAS  Google Scholar 

  194. Yuan, Q. et al. Selective adsorption and photocatalytic degradation of extracellular antibiotic resistance genes by molecularly-imprinted graphitic carbon nitride. Environ. Sci. Technol. 54, 4621–4630 (2020).

    Article  CAS  Google Scholar 

  195. Zuo, K. et al. A hybrid metal–organic framework–reduced graphene oxide nanomaterial for selective removal of chromate from water in an electrochemical process. Environ. Sci. Technol. 54, 13322–13332 (2020).

    Article  CAS  Google Scholar 

  196. Cerrón-Calle, G. A., Fajardo, A. S., Sánchez-Sánchez, C. M. & Garcia-Segura, S. Highly reactive Cu–Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B 302, 120844 (2022).

    Article  Google Scholar 

  197. Sun, M. et al. Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Adv. Funct. Mater. 29, 1903125 (2019).

    Article  Google Scholar 

  198. Baek, Y. et al. High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci. 460, 171–177 (2014).

    Article  CAS  Google Scholar 

  199. Yu, M., Funke, H. H., Falconer, J. L. & Noble, R. D. High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9, 225–229 (2009).

    Article  CAS  Google Scholar 

  200. Jhaveri, J. H. & Murthy, Z. V. P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379, 137–154 (2016).

    Article  CAS  Google Scholar 

  201. Goh, P. S., Lau, W. J., Othman, M. H. D. & Ismail, A. F. Membrane fouling in desalination and its mitigation strategies. Desalination 425, 130–155 (2018).

    Article  CAS  Google Scholar 

  202. Zhou, S. et al. Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal. J. Membr. Sci. 610, 118219 (2020).

    Article  CAS  Google Scholar 

  203. Kumari, P., Bahadur, N. & Dumée, L. F. Photo-catalytic membrane reactors for the remediation of persistent organic pollutants — a review. Sep. Purif. Technol. 230, 115878 (2020).

    Article  CAS  Google Scholar 

  204. Zhao, X. et al. Antifouling membrane surface construction: chemistry plays a critical role. J. Membr. Sci. 551, 145–171 (2018).

    Article  CAS  Google Scholar 

  205. Lu, X. et al. Fabrication of a desalination membrane with enhanced microbial resistance through vertical alignment of graphene oxide. Environ. Sci. Technol. Lett. 5, 614–620 (2018).

    Article  CAS  Google Scholar 

  206. Wu, J., Yu, C. & Li, Q. Novel regenerable antimicrobial nanocomposite membranes: effect of silver loading and valence state. J. Membr. Sci. 531, 68–76 (2017).

    Article  CAS  Google Scholar 

  207. Basheer, A. A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018).

    Article  CAS  Google Scholar 

  208. Kumari, P. et al. Electro-catalytic membrane reactors for the degradation of organic pollutants — a review. React. Chem. Eng. 6, 1508–1526 (2021).

    Article  CAS  Google Scholar 

  209. Iddya, A. et al. A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway. Nat. Nanotechnol. 17, 1222–1228 (2022).

    Article  CAS  Google Scholar 

  210. Abdollahzadeh, M. et al. Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Adv. Mater. 34, 2107878 (2022).

    Article  CAS  Google Scholar 

  211. Kang, Y., Xia, Y., Wang, H. & Zhang, X. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019).

    Article  Google Scholar 

  212. Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    Article  CAS  Google Scholar 

  213. Liu, J. et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Sci. Adv. 6, eabb1110 (2020).

    Article  CAS  Google Scholar 

  214. Yuan, S. et al. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48, 2665–2681 (2019).

    Article  CAS  Google Scholar 

  215. Cheng, N., Zhang, L., Doyle-Davis, K. & Sun, X. Single-atom catalysts: from design to application. Electrochem. Energ. Rev. 2, 539–573 (2019).

    Article  Google Scholar 

  216. Weon, S. et al. Environmental materials beyond and below the nanoscale: single-atom catalysts. ACS EST. Eng. 1, 157–172 (2021).

    Article  CAS  Google Scholar 

  217. Cervantes, F. J. & Ramírez-Montoya, L. A. Immobilized nanomaterials for environmental applications. Molecules 27, 6659 (2022).

    Article  CAS  Google Scholar 

  218. Froggett, S. J., Clancy, S. F., Boverhof, D. R. & Canady, R. A. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part. Fibre Toxicol. 11, 17 (2014).

    Article  Google Scholar 

  219. Vishnu, D., Dhandapani, B., Kannappan Panchamoorthy, G., Vo, D.-V. N. & Ramakrishnan, S. R. Comparison of surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: a review. Environ. Chem. Lett. 19, 3181–3208 (2021).

    Article  CAS  Google Scholar 

  220. Park, S.-H. et al. Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J. Membr. Sci. 499, 80–91 (2016).

    Article  CAS  Google Scholar 

  221. Cooper, R. G. Perspective: the Stage-Gate® idea-to-launch process — update, what’s new, and NexGen Systems. J. Prod. Innov. Manage. 25, 213–232 (2008).

    Article  Google Scholar 

  222. European Commission, Joint Research Centre. NANoREG framework for the safety assessment of nanomaterials. https://doi.org/10.2760/245972 (Publications Office of the European Union, 2017).

  223. Brame, J., Li, Q. & Alvarez, P. J. J. Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci. Technol. 22, 618–624 (2011).

    Article  CAS  Google Scholar 

  224. Harris-Lovett, S. R., Binz, C., Sedlak, D. L., Kiparsky, M. & Truffer, B. Beyond user acceptance: a legitimacy framework for potable water reuse in California. Environ. Sci. Technol. 49, 7552–7561 (2015).

    Article  CAS  Google Scholar 

  225. Gupta, N., Fischer, A. R. H., van der Lans, I. A. & Frewer, L. J. Factors influencing societal response of nanotechnology: an expert stakeholder analysis. J. Nanopart. Res. 14, 857 (2012).

    Article  Google Scholar 

  226. Kidd, J., Westerhoff, P. & Maynard, A. D. Public perceptions for the use of nanomaterials for in-home drinking water purification devices. NanoImpact 18, 100220 (2020).

    Article  Google Scholar 

  227. Ritt, C. L., Werber, J. R., Deshmukh, A. & Elimelech, M. Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53, 6214–6224 (2019).

    Article  CAS  Google Scholar 

  228. Patel, S. K. et al. The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. https://doi.org/10.1039/d0ee00341g (2020).

    Article  Google Scholar 

  229. Lee, B., Wang, L., Wang, Z., Cooper, N. J. & Elimelech, M. Directing the research agenda on water and energy technologies with process and economic analysis. Energy Environ. Sci. 16, 714–722 (2023).

    Article  Google Scholar 

  230. Winter, L. R. et al. Mining nontraditional water sources for a distributed hydrogen economy. Environ. Sci. Technol. 56, 10577–10585 (2022).

    Article  CAS  Google Scholar 

  231. Wilson-Mendenhall, C. D. & Holmes, K. J. Lab meets world: the case for use-inspired basic research in affective science. Affec. Sci. 4, 591–599 (2023).

    Article  Google Scholar 

  232. Hartmann, N. I. B. et al. Environmental Fate and Behaviour of Nanomaterials: New Knowledge on Important Transfomation Processes (Danish Environmental Protection Agency, 2014).

  233. Garner, K. L., Suh, S., Lenihan, H. S. & Keller, A. A. Species sensitivity distributions for engineered nanomaterials. Environ. Sci. Technol. 49, 5753–5759 (2015).

    Article  CAS  Google Scholar 

  234. Book, F. & Backhaus, T. Aquatic ecotoxicity of manufactured silica nanoparticles: a systematic review and meta-analysis. Sci. Total. Environ. 806, 150893 (2022).

    Article  CAS  Google Scholar 

  235. Peters, R. J. B. et al. Detection of nanoparticles in Dutch surface waters. Sci. Total. Environ. 621, 210–218 (2018).

    Article  CAS  Google Scholar 

  236. Hong, H., Adam, V. & Nowack, B. Form‐specific and probabilistic environmental risk assessment of 3 engineered nanomaterials (nano‐Ag, nano‐TiO2, and nano‐ZnO) in European freshwaters. Env. Toxicol. Chem. 40, 2629–2639 (2021).

    Article  CAS  Google Scholar 

  237. Musee, N. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum. Exp. Toxicol. 30, 1181–1195 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT) and the Rice University Water Technologies Entrepreneurship and Research (WaTER) Institute for support.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Qilin Li or Pedro J. J. Alvarez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks H. Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Auffan, M., Eckelman, M.J. et al. Trends, risks and opportunities in environmental nanotechnology. Nat Rev Earth Environ 5, 572–587 (2024). https://doi.org/10.1038/s43017-024-00567-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00567-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene