Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building resilience in Asian mega-deltas

Abstract

The five Asian mega-deltas (the Yangtze, the Pearl, the Chao Phraya, the Mekong and the Ganges–Brahmaputra–Meghna deltas) are home to approximately 80% of the global deltaic population and the region experiences 90% of global flood exposure. In this Review, we investigate the similarities and differences between the Asian mega-deltas to identify transferable lessons to improve climate resilience. The deltas are increasingly threatened by coastal flooding, saline intrusion and erosion caused by climate change and human activities such as groundwater extraction and dam construction. Owing to differences in the stages of their development, various resilience measures have been implemented. For example, the Ganges–Brahmaputra–Meghna and Mekong deltas use strategic delta plans to identify risk hotspots and guide decision-making. These deltas also increase resilience at a community level by supporting communities to diversify their livelihoods to respond to changing risks and land conditions. Meanwhile, the Yangtze and Pearl deltas have developed forecasting and sensing technologies to allow them to prepare for and respond to hazards effectively. The Asian mega-deltas should learn from one another to integrate effective resilience plans across regional, delta and community levels. Future cross-delta collaborations and knowledge transfer, for example through the formation of a Regional Delta Resilience Alliance, could help to achieve long-term sustainable delta management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coastal hazards across the five Asian mega-deltas.
Fig. 2: Disaster risk management approaches.
Fig. 3: Building resilience in the five Asian mega-deltas.
Fig. 4: Transferable lessons across the five Asian mega-deltas.

Similar content being viewed by others

References

  1. Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C. & Haruyama, S. The combined impact on the flooding in Vietnam’s Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Estuar. Coast. Shelf Sci. 71, 110–116 (2007).

    Google Scholar 

  2. Syvitski, J. P. M. & Kettner, A. Sediment flux and the anthropocene. Phil. Trans. R. Soc. A 369, 957–975 (2011).

    Google Scholar 

  3. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    CAS  Google Scholar 

  4. Tellman, B. et al. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596, 80–86 (2021).

    CAS  Google Scholar 

  5. Chan, F. K. S., Chen, W. Y., Gu, X., Peng, Y. & Sang, Y. Transformation towards resilient sponge cities in China. Nat. Rev. Earth Environ. 3, 99–101 (2022).

    Google Scholar 

  6. Tatem, A. J. WorldPop, open data for spatial demography. Sci. Data 4, 170004 (2017).

    Google Scholar 

  7. Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 4741 (2020).

    CAS  Google Scholar 

  8. Sun, R. et al. Flood disaster risk assessment of and countermeasures toward Yangtze River Delta by considering index interaction. Nat. Hazards 112, 475–500 (2022).

    Google Scholar 

  9. Chan, F. K. S. et al. Urban flood risks and emerging challenges in a Chinese delta: the case of the Pearl River Delta. Environ. Sci. Policy 122, 101–115 (2021).

    Google Scholar 

  10. Paszkowski, A., Goodbred, S., Borgomeo, E., Khan, M. S. A. & Hall, J. W. Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nat. Rev. Earth Environ. 2, 763–780 (2021).

    Google Scholar 

  11. Dunn, F. E. & Minderhoud, P. S. J. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. Commun. Earth Environ. 3, 2 (2022).

    Google Scholar 

  12. Bhuiyan, M. J. A. N. & Dutta, D. Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise. Nat. Hazards 61, 729–743 (2012).

    Google Scholar 

  13. Reitz, M. D. et al. Effects of tectonic deformation and sea level on river path selection: theory and application to the Ganges–Brahmaputra–Meghnariver delta. J. Geophys. Res. Earth Surf. 120, 671–689 (2015).

    Google Scholar 

  14. Goodbred, S. L. Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sediment. Geol. 162, 83–104 (2003).

    Google Scholar 

  15. Goodbred, S. L. Jr & Kuehl, S. A. Enormous Ganges–Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 28, 1083–1086 (2000).

    Google Scholar 

  16. Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    CAS  Google Scholar 

  17. Brown, S. & Nicholls, R. J. Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci. Total. Environ. 527–528, 362–374 (2015).

    Google Scholar 

  18. Auerbach, L. W. et al. Flood risk of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain. Nat. Clim. Change 5, 153–157 (2015).

    Google Scholar 

  19. Bangladesh Bureau of Statistics. Bangladesh Bureau of Statistics Government of the People’s Republic of Bangladesh http://www.bbs.gov.bd/ (2019).

  20. Dasgupta, S. et al. Cyclones in a changing climate: the case of Bangladesh. Clim. Dev. 6, 96–110 (2014).

    Google Scholar 

  21. Islam, M. T. et al. Revisiting disaster preparedness in coastal communities since 1970s in Bangladesh with an emphasis on the case of tropical cyclone Amphan in May 2020. Int. J. Disaster Risk Reduct. 58, 102175 (2021).

    Google Scholar 

  22. Murshed, S., Rahman, R. & Kaluarachchi, J. Changes in hydrology of the Ganges delta of Bangladesh and corresponding impacts on water resources. J. Am. Water Resour. Assoc. https://doi.org/10.1111/1752-1688.12775 (2019).

  23. Rahman, M. M. & Rahaman, M. M. Impacts of Farakka barrage on hydrological flow of Ganges river and environment in Bangladesh. Sustain. Water Resour. Manag. 4, 767–780 (2018).

    Google Scholar 

  24. Gain, A. K., Benson, D., Rahman, R., Datta, D. K. & Rouillard, J. J. Tidal river management in the southwest Ganges–Brahmaputra delta in Bangladesh: moving towards a transdisciplinary approach? Environ. Sci. Policy 75, 111–120 (2017).

    Google Scholar 

  25. Islam, A. & Guchhait, S. K. Characterizing cross-sectional morphology and channel inefficiency of lower Bhagirathi River, India, in post-Farakka barrage condition. Nat. Hazards 103, 3803–3836 (2020).

    Google Scholar 

  26. Wilson, C. et al. Widespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh. Elem. Sci. Anth. 5, 78 (2017).

    Google Scholar 

  27. Nowreen, S., Jalal, M. R. & Shah Alam Khan, M. Historical analysis of rationalizing southwest coastal polders of Bangladesh. Water Policy 16, 264–279 (2014).

    Google Scholar 

  28. Akter, J., Sarker, M. H., Popescu, I. & Roelvink, D. Evolution of the Bengal delta and its prevailing processes. J. Coast. Res. 32, 1212–1226 (2016).

    Google Scholar 

  29. Adnan, M. S. G., Haque, A. & Hall, J. W. Have coastal embankments reduced flooding in Bangladesh? Sci. Total. Environ. 682, 405–416 (2019).

    CAS  Google Scholar 

  30. Tang, Y.-T., Chan, F. K. S. & Griffiths, J. City profile: Ningbo. Cities 42, 97–108 (2015).

    CAS  Google Scholar 

  31. Yang, H., Li, X. & Elliott, M. Integrated quantitative evaluation framework of sustainable development — the complex case of the Yangtze River Delta. Ocean. Coast. Manag. 232, 106426 (2023).

    Google Scholar 

  32. Varis, O., Kummu, M. & Salmivaara, A. Ten major rivers in monsoon Asia–Pacific: an assessment of vulnerability. Appl. Geogr. 32, 441–454 (2012).

    Google Scholar 

  33. Zuo, Z. & Zhang, R. Influence of soil moisture in eastern China on the East Asian summer monsoon. Adv. Atmos. Sci. 33, 151–163 (2016).

    Google Scholar 

  34. Han, X. & Cao, T. Urbanization level, industrial structure adjustment and spatial effect of urban haze pollution: evidence from China’s Yangtze River Delta urban agglomeration. Atmos. Pollut. Res. 13, 101427 (2022).

    CAS  Google Scholar 

  35. Ge, Y. et al. Assessment of social vulnerability to natural hazards in the Yangtze River Delta, China. Stoch. Environ. Res. Risk Assess. 27, 1899–1908 (2013).

    Google Scholar 

  36. Liu, B., Siu, Y. L., Mitchell, G. & Xu, W. Exceedance probability of multiple natural hazards: risk assessment in China’s Yangtze River Delta. Nat. Hazards 69, 2039–2055 (2013).

    Google Scholar 

  37. Chan, F. K. S. et al. Lessons learnt from typhoons Fitow and In-Fa: implications for improving urban flood resilience in Asian Coastal Cities. Nat. Hazards https://doi.org/10.1007/s11069-021-05030-y (2021).

  38. Zhang, W. et al. Comparing the Yangtze and Mississippi river deltas in the light of coupled natural–human dynamics: lessons learned and implications for management. Geomorphology 399, 108075 (2022).

    Google Scholar 

  39. Wang, Z. Y., Hu, S., Wu, Y. & Shao, X. Delta processes and management strategies in China. Int. J. River Basin Manag. 1, 173–184 (2003).

    Google Scholar 

  40. Li, J. F., Jiang, C. J., Liu, Q. Z. & Zhao, J. K. Water and Sediment Transport and Morphological Evolution in the Yangtze River Estuary (Science Press, 2019).

  41. Qiao, G. et al. 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai. Int. J. Appl. Earth Obs. Geoinf. 68, 238–251 (2018).

    Google Scholar 

  42. Xu, K., Milliman, J. D., Yang, Z. & Wang, H. Yangtze sediment decline partly from Three Gorges dam. Trans. Am. Geophys. Union. 87, 185–190 (2006).

    Google Scholar 

  43. Yang, C.-J. & Jackson, R. B. Opportunities and barriers to pumped-hydro energy storage in the United States. Renew. Sustain. Energy Rev. 15, 839–844 (2011).

    Google Scholar 

  44. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. 109, 5609–5614 (2012).

    CAS  Google Scholar 

  45. Tran, D. D., van Halsema, G., Hellegers, P. J. G. J., Hoang, L. P. & Ludwig, F. Long-term sustainability of the Vietnamese Mekong Delta in question: an economic assessment of water management alternatives. Agric. Water Manag. 223, 105703 (2019).

    Google Scholar 

  46. Triet, N. V. K. et al. Future projections of flood dynamics in the Vietnamese Mekong delta. Sci. Total. Environ. 742, 140596 (2020).

    CAS  Google Scholar 

  47. Kondolf, G. M. et al. Save the Mekong delta from drowning. Science 376, 583–585 (2022).

    CAS  Google Scholar 

  48. Kapoor, K., Scarr, S., Nguyen, P., Trainor, C. & Sharma, M. Starving the Mekong: lives are remade as dams built by China upstream deprive the Mekong river delta of precious sediment. Reuters https://www.reuters.com/graphics/GLOBAL-ENVIRONMENT/MEKONG/egpbyyadnvq/index.html (2022).

  49. Darby, S. E. et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 539, 276–279 (2016).

    Google Scholar 

  50. Anthony, E. J. et al. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 5, 14745 (2015).

    CAS  Google Scholar 

  51. Tuan, L. A., Hoanh, C. T., Miller, F. & Sinh, B. T. Flood and salinity management in the Mekong Delta, Vietnam. Bangkok/Sustainable Mekong Research Network (Sumernet) 61 Ch. 1 (2007).

  52. Tran, T. A., Pittock, J. & Tuan, L. A. Adaptive co-management in the Vietnamese Mekong Delta: examining the interface between flood management and adaptation. Int. J. Water Resour. Dev. 35, 326–342 (2019).

    Google Scholar 

  53. van Staveren, M. F., van Tatenhove, J. P. M. & Warner, J. F. The tenth dragon: controlled seasonal flooding in long-term policy plans for the Vietnamese Mekong delta. J. Environ. Policy Plan. 20, 267–281 (2018).

    Google Scholar 

  54. Tran, T. & James, H. Transformation of household livelihoods in adapting to the impacts of flood control schemes in the Vietnamese Mekong Delta. Water Resour. Rural. Dev. 9, 67–80 (2017).

    Google Scholar 

  55. Hoang, L. P. et al. Managing flood risks in the Mekong Delta: how to address emerging challenges under climate change and socioeconomic developments. Ambio 47, 635–649 (2018).

    Google Scholar 

  56. De Dominicis, M., Wolf, J., van Hespen, R., Zheng, P. & Hu, Z. Mangrove forests can be an effective coastal defence in the Pearl River Delta, China. Commun. Earth Environ. 4, 13 (2023).

    Google Scholar 

  57. Chan, F. K. S., Chuah, C. J., Ziegler, A. D., Dąbrowski, M. & Varis, O. Towards resilient flood risk management for Asian coastal cities: lessons learned from Hong Kong and Singapore. J. Clean. Prod. 187, 576–589 (2018).

    Google Scholar 

  58. Yang, T. et al. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. J. Hydrol. 380, 386–405 (2010).

    Google Scholar 

  59. Zhang, S. et al. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Glob. Planet. Change 60, 365–380 (2008).

    Google Scholar 

  60. Xu, Y.-S., Zhang, D.-X., Shen, S.-L. & Chen, L.-Z. Geo-hazards with characteristics and prevention measures along the coastal regions of China. Nat. Hazards 49, 479–500 (2009).

    Google Scholar 

  61. Huang, P., Ma, C. & Zhou, A. Assessment of groundwater sustainable development considering geo-environment stability and ecological environment: a case study in the Pearl River Delta, China. Environ. Sci. Pollut. Res. 29, 18010–18035 (2022).

    Google Scholar 

  62. Huang, Z., Zong, Y. & Zhang, W. Coastal inundation due to sea level rise in the pearl river Delta, China. Nat. Hazards 33, 247–264 (2004).

    Google Scholar 

  63. Chan, F. K. S., Mitchell, G., Adekola, O. & McDonald, A. Flood risk in Asia’s urban mega-deltas: drivers, impacts and response. Environ. Urbanization ASIA 3, 41–61 (2012).

    Google Scholar 

  64. Weng, Q. A historical perspective of river basin management in the Pearl River Delta of China. J. Environ. Manag. 85, 1048–1062 (2007).

    Google Scholar 

  65. Yang, L., Scheffran, J., Qin, H. & You, Q. Climate-related flood risks and urban responses in the Pearl River Delta, China. Region. Environ. Change 15, 379–391 (2015).

    Google Scholar 

  66. Zanuttigh, B., Nicholls, R. & Hanson, S. in Coastal Risk Management in a Changing Climate (eds Zanuttigh, B. et al.) Ch. 1 (Butterworth-Heinemann, 2015).

  67. Liew, S. C., Gupta, A., Chia, A. S. & Ang, W. C. The flood of 2011 in the lower Chao Phraya valley, Thailand: study of a long-duration flood through satellite images. Geomorphology 262, 112–122 (2016).

    Google Scholar 

  68. Sawangnate, C., Chaisri, B. & Kittipongvises, S. Flood hazard mapping and flood preparedness literacy of the elderly population residing in Bangkok, Thailand. Water 14, 1268 (2022).

    Google Scholar 

  69. Aobpaet, A., Caro Cuenca, M., Hooper, A. & Trisirisatayawong, I. InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int. J. Remote. Sens. 34, 2969–2982 (2013).

    Google Scholar 

  70. Pumpuang, A. & Aobpaet, A. The comparison of land subsidence between east and west side of Bangkok, Thailand. Built Environ. J. 17, 1–9 (2020).

    Google Scholar 

  71. Dutta, D. An integrated tool for assessment of flood vulnerability of coastal cities to sea-level rise and potential socio-economic impacts: a case study in Bangkok, Thailand. Hydrol. Sci. J. 56, 805–823 (2011).

    Google Scholar 

  72. Shakti, P. C. et al. Probable flood inundation depth and extent in the Chao Phraya River basin for different return periods. J. Disaster Res. 17, 901–912 (2022).

    Google Scholar 

  73. Sriariyawat, A. et al. An approach to flood hazard mapping for the Chao Phraya River basin using rainfall–runoff–inundation model. J. Disaster Res. 17, 864–876 (2022).

    Google Scholar 

  74. Magnan, A. K. et al. Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Sci. Rep. 12, 10677 (2022).

    CAS  Google Scholar 

  75. Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

    Google Scholar 

  76. Mirza, M. M. Q. Climate change, flooding in South Asia and implications. Reg. Env. Change 11, 95–107 (2011).

    Google Scholar 

  77. May, W. The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Clim. Dyn. 37, 1843–1868 (2011).

    Google Scholar 

  78. Trenary, L. L. & Han, W. Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophys. Res. Lett. 35, L17602 (2008).

    Google Scholar 

  79. Wu, J., Gao, X., Zhu, Y., Shi, Y. & Giorgi, F. Projection of the future changes in tropical cyclone activity affecting East Asia over the Western North Pacific based on multi-RegCM4 simulations. Adv. Atmos. Sci. 39, 284–303 (2022).

    Google Scholar 

  80. Mind the risk: a global ranking of cities under threat from natural disasters. Swiss Re https://reliefweb.int/report/world/mind-risk-global-ranking-cities-under-threat-natural-disasters (2014).

  81. Nakamura, R., Shibayama, T., Esteban, M., Iwamoto, T. & Nishizaki, S. Simulations of future typhoons and storm surges around Tokyo Bay using IPCC AR5 RCP 8.5 scenario in multi global climate models. Coast. Eng. J. 62, 101–127 (2020).

    Google Scholar 

  82. Warren, R., Price, J., VanDerWal, J., Cornelius, S. & Sohl, H. The implications of the United Nations Paris agreement on climate change for globally significant biodiversity areas. Clim. Change 147, 395–409 (2018).

    Google Scholar 

  83. Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 10, 3847 (2019).

    CAS  Google Scholar 

  84. Lai, Y. et al. Compound floods in Hong Kong: hazards, triggers, and socio-economic consequences. J. Hydrol. Reg. Stud. 46, 101321 (2023).

    Google Scholar 

  85. Rahman, S. et al. Projected changes of inundation of cyclonic storms in the Ganges–Brahmaputra–Meghna delta of Bangladesh due to SLR by 2100. J. Earth Syst. Sci. 128, 145 (2019).

    Google Scholar 

  86. Clarke, T. Delta blues. Nature 422, 254–256 (2003).

    CAS  Google Scholar 

  87. Haque, A., Kay, S. & Nicholls, R. J. in Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis (eds Nicholls, R. J. et al.) 293–314 (Springer International Publishing, 2018).

  88. Dunn, F. E. et al. Projections of historical and 21st century fluvial sediment delivery to the Ganges–Brahmaputra–Meghna, Mahanadi, and Volta deltas. Sci. Total. Environ. 642, 105–116 (2018).

    CAS  Google Scholar 

  89. Baiyu, G. Vast River Diversion Plan Afoot in Western China (Dialogue Earth, 2020); https://dialogue.earth/en/water/11762-vast-river-diversion-plan-afoot-in-western-china-2/.

  90. Rahman, M. et al. Recent sediment flux to the Ganges–Brahmaputra–Meghna delta system. Sci. Total. Environ. 643, 1054–1064 (2018).

    CAS  Google Scholar 

  91. Higgins, S. A., Overeem, I., Rogers, K. G. & Kalina, E. A. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elem. Sci. Anth. 6, 20 (2018).

    Google Scholar 

  92. Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total. Environ. 625, 114–134 (2018).

    CAS  Google Scholar 

  93. Van Binh, D., Sumi, T., Kantoush, S., Mai, N. P. & La Trung, V. In Proc. Int. Assoc. Hydro-Environment Eng. Res. Asia Pacif. Div. Congr. on Multi-Perspective Water Sustain. Development (IAHR-APD 2018) 123–131 (Curran Associates, Inc., 2018).

  94. Hydropower dams. OpenDevelopment Mekong https://opendevelopmentmekong.net/topics/hydropower/ (2015).

  95. Kondolf, G. M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    Google Scholar 

  96. Lv, Y., Li, W., Wen, J., Xu, H. & Du, S. Population pattern and exposure under sea level rise: low elevation coastal zone in the Yangtze River Delta, 1990–2100. Clim. Risk Manag. 33, 100348 (2021).

    Google Scholar 

  97. Nicholls, R. J. et al. In Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis (eds Robert, J. N. et al.) 71–90 (Springer, 2018).

  98. Wu, W., Ren, H. & Lu, L. Increasingly expanded future risk of dengue fever in the Pearl River Delta, China. PLoS Negl. Trop. Dis. 15, e0009745 (2021).

    Google Scholar 

  99. Cheung, P. T. Y. The politics of regional cooperation in the Greater Pearl River Delta. Asia Pacif. Viewp. 53, 21–37 (2012).

    Google Scholar 

  100. Canton, J. The extreme future of megacities. Significance 8, 53–56 (2011).

    Google Scholar 

  101. Steckler, M. S. et al. Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and gravity recovery and climate experiment (GRACE) data. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2009JB007018 (2010).

  102. Krien, Y. et al. Present-day subsidence in the Ganges–Brahmaputra–Meghna delta: eastern amplification of the Holocene sediment loading contribution. Geophys. Res. Lett. 46, 10764–10772 (2019).

    Google Scholar 

  103. Minderhoud, P. S. J. The Sinking Mega-Delta: Present and Future Subsidence of the Vietnamese Mekong Delta https://dspace.library.uu.nl/bitstream/handle/1874/375843/20190204-uses168-thesis_minderhoud.pdf?sequence=1&isAllowed=y (Utrecht Univ., 2019).

  104. Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2, 011005 (2020).

    Google Scholar 

  105. Vasilopoulos, G. et al. Establishing sustainable sediment budgets is critical for climate-resilient mega-deltas. Environ. Res. Lett. 16, 064089 (2021).

    Google Scholar 

  106. Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong delta, Vietnam. Environ. Res. Lett. 9, 084010 (2014).

    Google Scholar 

  107. Paprocki, K. Threatening dystopias: development and adaptation regimes in Bangladesh. Ann. Am. Assoc. Geogr. 108, 955–973 (2018).

    Google Scholar 

  108. Paprocki, K. All that is solid melts into the bay: anticipatory ruination on Bangladesh’s climate frontier. In Frontier Assemblages (eds Cons, J. & Eilenberg, M.) 25–39 (Wiley, 2019).

  109. Brunier, G., Anthony, E. J., Goichot, M., Provansal, M. & Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: the marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 224, 177–191 (2014).

    Google Scholar 

  110. Wang, Y., Huang, C., Wu, G. & Wang, W. Status and challenges of water resources and supply in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China. Water Cycle 3, 65–70 (2022).

    Google Scholar 

  111. Yang, J. Economic synergistic development of Guangdong–Hong Kong–Macao Greater Bay Area urban agglomeration: based on composite system. Comput. Intell. Neurosci. 2022, 7677188 (2022).

    Google Scholar 

  112. IPCC AR6 Climate Change 2023: Synthesis Report (eds Core Writing Team Aldunce, P. et al.) (IPCC, 2023).

  113. Tanner, T., Bahadur, A. & Moench, M. Challenges for Resilience Policy and Practice (Overseas Development Institute, 2017).

  114. Keating, A. et al. Development and testing of a community flood resilience measurement tool. Nat. Hazards Earth Syst. Sci. 17, 77–101 (2017).

    Google Scholar 

  115. The 13th five-year plan for energy conservation and climate change strategy of Shanghai. Government of Shanghai https://www.shanghai.gov.cn/shssswzxgh/20200820/0001-22403_51762.html (2017).

  116. Wang, Y., Zhai, J., Gao, G., Liu, Q. & Song, L. Risk assessment of rainstorm disasters in the Guangdong–Hong Kong–Macao Greater Bay Area of China during 1990–2018. Geom. Nat. Hazards Risk 13, 267–288 (2022).

    CAS  Google Scholar 

  117. Lamond, J. & Everett, G. Sustainable blue–green infrastructure: a social practice approach to understanding community preferences and stewardship. Landsc. Urban. Plan. 191, 103639 (2019).

    Google Scholar 

  118. Rupp-Armstrong, S. & Nicholls, R. J. Coastal and estuarine retreat: a comparison of the application of managed realignment in England and Germany. J. Coast. Res. 23, 1418–1430 (2007).

    Google Scholar 

  119. The First Nine Months of Investment in Water Conservancy in our Province Nearly 70 Billion Yuan, Exceeding the First Three Quarters of the Target Tasks. Government of Guangdong Province https://www.gd.gov.cn/gdywdt/zwzt/fjxzc/yxsj/content/post_4030484.html (2022).

  120. Shannon, K. in Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities Vol. 3 (eds Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 163–182 (Springer, 2013).

  121. Chan, F. K. S., Adekola, O., Mitchell, G., Ng, C. N. & McDonald, A. Towards sustainable flood risk management in the Chinese coastal megacities. a case study of practice in the Pearl River delta. Irrig. Drain. 62, 501–509 (2013).

    Google Scholar 

  122. Quan, N. H. et al. Conservation of the Mekong delta wetlands through hydrological management. Ecol. Res. 33, 87–103 (2018).

    Google Scholar 

  123. Islam, S. N. in The Sundarbans: A Disaster-Prone Eco-Region: Increasing Livelihood Security (ed. Sen, H. S.) 29–58 (Springer, 2019).

  124. Phan, L. K., van Thiel de Vries, J. S. M. & Stive, M. J. F. Coastal mangrove squeeze in the Mekong Delta. J. Coast. Res. 31, 233–243 (2015).

    Google Scholar 

  125. Mazda, Y., Magi, M., Kogo, M. & Hong, P. N. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1, 127–135 (1997).

    Google Scholar 

  126. Seijger, C., Hoang, V. T. M., van Halsema, G., Douven, W. & Wyatt, A. Do strategic delta plans get implemented? The case of the Mekong Delta Plan. Region. Environ. Change 19, 1131–1145 (2019).

    Google Scholar 

  127. Vo, H. T. M. et al. Political agenda-setting for strategic delta planning in the Mekong delta: converging or diverging agendas of policy actors and the Mekong Delta Plan? J. Environ. Plan. Manag. 62, 1454–1474 (2019).

    Google Scholar 

  128. Qi, Y. et al. Developing a “Sponge Catchment Management Plan (SCMP)” framework at the catchment scale: the case of Guiyang, SW China. River 2, 109–125 (2023).

    Google Scholar 

  129. Griffiths, J., Chan, F. K. S., Shao, M., Zhu, F. & Higgitt, D. L. Interpretation and application of sponge city guidelines in China. Phil. Trans. A 378, 20190222 (2020).

    Google Scholar 

  130. Chan, F. K. S. et al. “Sponge City” in China — a breakthrough of planning and flood risk management in the urban context. Land. Use Policy 76, 772–778 (2018).

    Google Scholar 

  131. Chan, F. K. S. et al. Meeting financial challenge facing China’s Sponge City Program (SCP) — Hong Kong as a gateway to green finance. Nature-Based Solut. 2, 100019 (2022).

    Google Scholar 

  132. Hemmati, M., Kornhuber, K. & Kruczkiewicz, A. Enhanced urban adaptation efforts needed to counter rising extreme rainfall risks. npj Urban. Sustain. 2, 16 (2022).

    Google Scholar 

  133. Barbour, E. J. et al. The unequal distribution of water risks and adaptation benefits in coastal Bangladesh. Nat. Sustain. 5, 294–302 (2022).

    Google Scholar 

  134. Paszkowski, A., Laurien, F., Mechler, R. & Hall, J. Quantifying community resilience to riverine hazards in Bangladesh. Glob. Environ. Change 84, 102778 (2024).

    Google Scholar 

  135. Chowdhooree, I. Indigenous knowledge for enhancing community resilience: an experience from the south-western coastal region of Bangladesh. Int. J. Disaster Risk Reduct. 40, 101259 (2019).

    Google Scholar 

  136. van Staveren, M. F., Warner, J. F. & Shah Alam Khan, M. Bringing in the tides. from closing down to opening up delta polders via tidal river management in the southwest delta of Bangladesh. Water Policy 19, 147–164 (2016).

    Google Scholar 

  137. Ayeb-Karlsson, S., van der Geest, K., Ahmed, I., Huq, S. & Warner, K. A people-centred perspective on climate change, environmental stress, and livelihood resilience in Bangladesh. Sustain. Sci. 11, 679–694 (2016).

    Google Scholar 

  138. Nguyen, H. Q. et al. Farmer adoptability for livelihood transformations in the Mekong delta: a case in Ben Tre province. J. Environ. Plan. Manag. 62, 1603–1618 (2019).

    Google Scholar 

  139. Wei, X., Cai, S., Ni, P. & Zhan, W. Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China. Sci. Rep. 10, 16743 (2020).

    CAS  Google Scholar 

  140. Hill, C. et al. in Deltas in the Anthropocene (eds Nicholls, R. J., Adger, W. N., Hutton, C. W. & Hanson, S. E.) 127–151 (Springer, 2020).

  141. Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y. & Kästner, K. Tidal controls on river delta morphology. Nat. Geosci. 10, 637–645 (2017).

    CAS  Google Scholar 

  142. This year, the province’s water conservancy plan will complete an investment of 70 billion yuan. Government of Zhejiang Province https://www.zj.gov.cn/art/2023/2/10/art_1554467_60034313.html (2023).

  143. White, G. F. Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States (Univ. Chicago, 1942); https://iucat.iu.edu/iub/3879028.

  144. Lein, H. The poorest and most vulnerable? On hazards, livelihoods and labelling of riverine communities in Bangladesh. Singap. J. Trop. Geogr. 30, 98–113 (2009).

    Google Scholar 

  145. Hallegatte, S. & Rozenberg, J. Climate change through a poverty lens. Nat. Clim. Change 7, 250–256 (2017).

    Google Scholar 

  146. Pal, I., Kumar, A. & Mukhopadhyay, A. Risks to coastal critical infrastructure from climate change. Annu. Rev. Environ. Resour. 48, 681–712 (2023).

    Google Scholar 

  147. Haque, R., Parr, N. & Muhidin, S. Climate-related displacement, impoverishment and healthcare accessibility in mainland Bangladesh. Asian Popul. Stud. 16, 220–239 (2020).

    Google Scholar 

  148. Kreibich, H. & Thieken, A. Coping with floods in the city of Dresden, Germany. Nat. Hazards 51, 423–436 (2009).

    Google Scholar 

  149. Jones, L. et al. A typology for urban green infrastructure, to guide multifunctional planning of nature-based solutions. Nature-Based Solut. https://doi.org/10.1016/j.nbsj.2022.100041 (2022).

  150. Phuong, T. National online conference on Planning and Publication of National Comprehensive Planning (Can Tho, 2023); https://www.cantho.gov.vn/wps/portal/home/en/detail/news-and-events/national+online+conference+on+planning+and+publication+of+national+comprehensive+planning.

  151. Toledo-Gallegos, V. M., My, N. H. D., Tuan, T. H. & Börger, T. Valuing ecosystem services and disservices of blue/green infrastructure. Evidence from a choice experiment in Vietnam. Econ. Anal. Policy 75, 114–128 (2022).

    Google Scholar 

  152. Lu, X., Shun Chan, F. K., Chen, W. Q., Chan, H. K. & Gu, X. An overview of flood-induced transport disruptions on urban streets and roads in Chinese megacities: lessons and future agendas. J. Env. Manage 321, 115991 (2022).

    Google Scholar 

  153. Wolf, K., Dawson, R. J., Mills, J. P., Blythe, P. & Morley, J. Towards a digital twin for supporting multi-agency incident management in a smart city. Sci. Rep. 12, 16221 (2022).

    CAS  Google Scholar 

  154. Chan, F. K. S. et al. Build in prevention and preparedness to improve climate resilience in coastal cities: lessons from China’s GBA. One Earth 4, 1356–1360 (2021).

    Google Scholar 

  155. Silverman, A. I. et al. Making waves: uses of real-time, hyperlocal flood sensor data for emergency management, resiliency planning, and flood impact mitigation. Water Res. 220, 118648 (2022).

    CAS  Google Scholar 

  156. Chan, F. K. S. et al. Selected global flood preparation and response lessons: implications for more resilient Chinese cities. Nat. Hazards https://doi.org/10.1007/s11069-023-06102-x (2023).

  157. Choy, C. W., Lau, D. S. & He, Y. Super typhoons Hato and Mangkhut. Part I: Analysis of maximum intensity and wind structure. Weather 77, 314–320 (2022).

    Google Scholar 

  158. Li, Y. et al. Vulnerability to typhoons: a comparison of consequence and driving factors between typhoon Hato (2017) and typhoon Mangkhut (2018). Sci. Total. Env. 838, 156476 (2022).

    CAS  Google Scholar 

  159. Szabo, S. et al. Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges–Brahmaputra and Amazon delta regions. Sustain. Sci. 11, 539–554 (2016).

    Google Scholar 

  160. Paul, B., Rashid, H., Islam, M. S. & Hunt, L. Cyclone evacuation in Bangladesh: tropical cyclones Gorky (1991) vs. Sidr (2007). Environ. Hazards 9, 89–101 (2010).

    Google Scholar 

  161. Adshead, D. et al. Climate threats to coastal infrastructure and sustainable development outcomes. Nat. Clim. Change 14, 344–352 (2024).

    Google Scholar 

  162. Rahman, A. F., Dragoni, D. & El-Masri, B. Response of the Sundarbans coastline to sea level rise and decreased sediment flow: a remote sensing assessment. Remote. Sens. Environ. 115, 3121–3128 (2011).

    Google Scholar 

  163. Leal Filho, W. et al. Climate change adaptation responses among riparian settlements: a case study from Bangladesh. PLoS One 17, e0278605 (2022).

    CAS  Google Scholar 

  164. Salack, S. et al. Low-cost adaptation options to support green growth in agriculture, water resources, and coastal zones. Sci. Rep. 12, 17898 (2022).

    CAS  Google Scholar 

  165. Driving resilience for Vietnam’s Mekong delta. Royal HaskoningDHV https://www.royalhaskoningdhv.com/en/projects/driving-resilience-for-vietnams-mekong-delta (2022).

  166. Outline of the Plan for the Integrated Development of the Yangtze River Delta Region. Central People’s Government of the People’s Republic of China https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm (2019).

  167. Zevenbergen, C., Gersonius, B. & Radhakrishan, M. Flood resilience. Phil. Trans. A 378, 20190212 (2020).

    Google Scholar 

  168. Liu, D. J. & Ye, Y. C. Relative sea level rise and land subsidence of Yangtze River Delta. Geol. Hazard. Environ. Prot. 16, 5 (2005).

    Google Scholar 

  169. Fang, J. et al. Benefits of subsidence control for coastal flooding in China. Nat. Commun. 13, 6946 (2022).

    CAS  Google Scholar 

  170. Ngo, L.-M., Kieu, L. T., Hoang, H.-Y. & Nguyen, H.-B. Experiences of housing adapted to sea level rise and applicability for houses in the Can Gio District, Ho Chi Minh City, Vietnam. Sustainability 12, 3743 (2020).

    Google Scholar 

  171. Becker, M. et al. Water level changes, subsidence, and sea level rise in the Ganges–Brahmaputra–Meghna delta. Proc. Natl Acad. Sci. USA 117, 1867–1876 (2020).

    CAS  Google Scholar 

  172. Sea level rise projection map — Bangkok. Earth.org https://earth.org/data_visualization/sea-level-rise-by-the-end-of-the-century-bangkok/ (2020).

  173. Roome, J. Implementing Bangladesh Delta Plan 2100: key to boost economic growth. World Bank https://blogs.worldbank.org/endpovertyinsouthasia/implementing-bangladesh-delta-plan-2100-key-boost-economic-growth (2021).

  174. Tian, Z. et al. Dynamic adaptive engineering pathways for mitigating flood risks in Shanghai with regret theory. Nat. Water https://doi.org/10.1038/s44221-022-00017-w (2023).

    Article  Google Scholar 

  175. China’s policies and actions for addressing climate change (2019). Ministry of Ecology and Environment of the People’s Republic of China https://english.mee.gov.cn/Resources/Reports/reports/201912/P020191204495763994956.pdf (2019).

  176. Notice on Issuing Guangdong Province’s Climate Change Plan (Government of Guangdong Province, 2011); https://www.gd.gov.cn/gkmlpt/content/0/139/post_139497.html#7.

  177. Hong Kong’s Climate Action Plan 2050 (Government of Hong Kong, 2021); https://www.eeb.gov.hk/sites/default/files/pdf/cap_2050_en.pdf.

  178. Thailand: Climate Change Master Plan (CCMP). Government of Thailand https://www.preventionweb.net/publication/thailand-climate-change-master-plan-ccmp (2015).

  179. Singkran, N. Flood risk management in Thailand: from a passive to a progressive paradigm. Int. J. Disaster Risk Reduct. 25, 92–100 (2017).

    Google Scholar 

  180. Nguyen, T. T. et al. Implementation of a specific urban water management — sponge city. Sci. Total. Env. 652, 147–162 (2019).

    Google Scholar 

  181. Lu, X. et al. Improving urban flood resilience via GDELT GKG analyses in China’s sponge cities. Sci. Rep. 12, 20317 (2022).

    CAS  Google Scholar 

  182. Welch, A. C., Nicholls, R. J. & Lázár, A. N. Evolving deltas: coevolution with engineered interventions. Elem. Sci. Anth. https://doi.org/10.1525/elementa.128 (2017).

  183. Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: how threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).

    Google Scholar 

Download references

Acknowledgements

This study is funded by the National Key Research and Development Program of China (2019YFC1510400), and the National Natural Science Foundation of China (41850410497).

Author information

Authors and Affiliations

Authors

Contributions

F.K.S.C. and A.P. are the lead authors and corresponding authors; they contributed equally to designing, supervising, writing, editing, reviewing and being responsible for all figures and text. Z.W. and X.L. are the joint corresponding authors, who contributed an equivalent workload to editing, providing ideas, graphic design and reviewing the manuscript. Other co-authors contributed to the editing, internal review, documentation support and information collection.

Corresponding authors

Correspondence to Faith Ka Shun Chan, Amelie Paszkowski, Zilin Wang or Xiaohui Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Tuhin Ghosh, Christopher Hackney and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bangladesh Bureau of Statistics: http://www.bbs.gov.bd/

Bangladesh Delta Plan 2100: https://www.bdp2100kp.gov.bd/

Hong Kong Observatory: https://www.hko.gov.hk/en/wservice/tsheet/pms/stormsurgedb.htm

Mekong Delta Plan: https://www.mekongdeltaplan.com/

Mekong Delta Regional Masterplan: https://www.royalhaskoningdhv.com/en/projects/driving-resilience-for-vietnams-mekong-delta

Nature-Based Solutions: https://www.iucn.org/our-work/nature-based-solutions

Predicted tides: http://www.weather.gov.hk/tide/estation_select.htm

Rainstorm warnings: http://www.hko.gov.hk/wservice/warning/rainstor.htm

United Nations disaster risk reduction terminology: https://www.undrr.org/drr-glossary/terminology

World Population Review: https://worldpopulationreview.com

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, F.K.S., Paszkowski, A., Wang, Z. et al. Building resilience in Asian mega-deltas. Nat Rev Earth Environ 5, 522–537 (2024). https://doi.org/10.1038/s43017-024-00561-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00561-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing