Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Characteristics and changes of glacial lakes and outburst floods

Abstract

Global glacier mass loss has accelerated, producing more and larger glacial lakes. Many of these glacial lakes are a source of glacial lake outburst floods (GLOFs), which pose threats to people and infrastructure. In this Review, we synthesize global changes in glacial lakes and GLOFs. More than 110,000 glacial lakes currently exist, covering a total area of ~15,000 km2, having increased in area by ~22% dec–1 from 1990 to 2020. More than 10 million people are exposed to the impacts of GLOFs, commonly associated with dam failure or wave overtopping associated with mass movements. Although data limitations are substantial, more than 3,000 GLOFs have been recorded from 850 to 2022, particularly in Alaska (24%), High Mountain Asia (HMA; 18%) and Iceland (19%), the majority (64.8%) being from ice-dammed lakes. Recorded GLOFs have increased in most glaciated mountain regions of the world, with ongoing deglaciation and lake expansion expected to increase GLOF frequency further. In HMA, GLOF hazards are projected to triple by 2100, but changes in other regions will likely be lower given topographic constraints on lake evolution. Future research should prioritize acquiring field data on lake and dam properties, producing globally coordinated multi-temporal lake mapping, and robust and efficient modelling of GLOFs for comprehensive hazard assessment and response planning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of glacial lakes and historical GLOFs.
Fig. 2: Methodology for quantifying glacial lake changes and impacts.
Fig. 3: Global and regional changes in glacial lake area.
Fig. 4: The triggers and mechanisms of GLOFs.
Fig. 5: Future formation and growth of glacial lakes and GLOF hazard.
Fig. 6: Global potential future glacial lakes and GLOF hazard.

Similar content being viewed by others

Data availability

The global compilation of glacial lakes is available at https://doi.org/10.6084/m9.figshare.25656531.

References

  1. Marta, S. et al. The retreat of mountain glaciers since the Little Ice Age: a spatially explicit database. Data 6, 107 (2021).

    Article  Google Scholar 

  2. Lee, E. et al. Accelerated mass loss of Himalayan glaciers since the Little Ice Age. Sci. Rep. 11, 24284 (2021).

    Article  CAS  Google Scholar 

  3. Carrivick, J. L. et al. Mass loss of glaciers and ice caps across Greenland since the Little Ice Age. Geophys. Res. Lett. 50, e2023GL103950 (2023).

    Article  Google Scholar 

  4. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  CAS  Google Scholar 

  5. Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Article  CAS  Google Scholar 

  6. Roe, G. H., Baker, M. B. & Herla, F. Centennial glacier retreat as categorical evidence of regional climate change. Nat. Geosci. 10, 95–99 (2017).

    Article  CAS  Google Scholar 

  7. Roe, G. H., Christian, J. E. & Marzeion, B. On the attribution of industrial-era glacier mass loss to anthropogenic climate change. Cryosphere 15, 1889–1905 (2021).

    Article  Google Scholar 

  8. Vargo, L. J. et al. Anthropogenic warming forces extreme annual glacier mass loss. Nat. Clim. Change 10, 856–861 (2020).

    Article  CAS  Google Scholar 

  9. Shugar, D. H. et al. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945 (2020).

    Article  CAS  Google Scholar 

  10. Andreassen, L. M., Nagy, T., Kjøllmoen, B. & Leigh, J. R. An inventory of Norway’s glaciers and ice-marginal lakes from 2018–19 Sentinel-2 data. J. Glaciol. 68, 1085–1106 (2022).

    Article  Google Scholar 

  11. Zhang, G. et al. Glacial lake evolution and glacier–lake interactions in the Poiqu River basin, central Himalaya, 1964–2017. J. Glaciol. 65, 347–365 (2019).

    Article  Google Scholar 

  12. Wang, X. et al. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 12, 2169–2182 (2020).

    Article  Google Scholar 

  13. Chen, F. et al. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 13, 741–766 (2021).

    Article  Google Scholar 

  14. Corr, D., Leeson, A., McMillan, M., Zhang, C. & Barnes, T. An inventory of supraglacial lakes and channels across the West Antarctic Ice Sheet. Earth Syst. Sci. Data 14, 209–228 (2022).

    Article  Google Scholar 

  15. Wood, J. L. et al. Contemporary glacial lakes in the Peruvian Andes. Glob. Planet. Change 204, 103574 (2021).

    Article  Google Scholar 

  16. Carrivick, J. L. & Quincey, D. J. Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet. Glob. Planet. Change 116, 156–163 (2014).

    Article  Google Scholar 

  17. Wilson, R. et al. Glacial lakes of the Central and Patagonian Andes. Glob. Planet. Change 162, 275–291 (2018).

    Article  Google Scholar 

  18. How, P. et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 11, 4481 (2021).

    Article  CAS  Google Scholar 

  19. Rick, B., McGrath, D., Armstrong, W. & McCoy, S. W. Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019. Cryosphere 16, 297–314 (2022).

    Article  Google Scholar 

  20. Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Article  CAS  Google Scholar 

  21. Furian, W., Maussion, F. & Schneider, C. Projected 21st-century glacial lake evolution in High Mountain Asia. Front. Earth Sci. 10, 821798 (2022).

    Article  Google Scholar 

  22. Linsbauer, A. et al. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya–Karakoram region. Ann. Glaciol. 57, 119–130 (2016).

    Article  Google Scholar 

  23. Steffen, T., Huss, M., Estermann, R., Hodel, E. & Farinotti, D. Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century. Earth Surf. Dynam. 10, 723–741 (2022).

    Article  Google Scholar 

  24. Zheng, G. et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 11, 411–417 (2021).

    Article  Google Scholar 

  25. Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

    Article  CAS  Google Scholar 

  26. Lützow, N., Veh, G. & Korup, O. A global database of historic glacier lake outburst floods. Earth Syst. Sci. Data 2023, 2983–3000 (2023).

    Article  Google Scholar 

  27. Gudmundsson, M. T., Sigmundsson, F. & Björnsson, H. Ice–volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 389, 954–957 (1997).

    Article  CAS  Google Scholar 

  28. Stefánsdóttir, M. B. & Gíslason, S. R. The erosion and suspended matter/seawater interaction during and after the 1996 outburst flood from the Vatnajökull Glacier, Iceland. Earth Planet. Sc. Lett. 237, 433–452 (2005).

    Article  Google Scholar 

  29. Hewitt, K. Natural dams and outburst floods of the Karakoram Himalaya. Hydrol. Sci. J. 27, 266–267 (1982).

    Google Scholar 

  30. Mayo, L. R. Advance of Hubbard Glacier and 1986 outburst of Russell Fiord, Alaska, U.S.A. Ann. Glaciol. 13, 189–194 (1989).

    Article  Google Scholar 

  31. Björnsson, H. Subglacial lakes and jökulhlaups in Iceland. Glob. Planet. Change 35, 255–271 (2003).

    Article  Google Scholar 

  32. Hewitt, K. in Glaciers of the Karakoram Himalaya: Glacial Environments, Processes, Hazards and Resources (ed Hewitt, K.) 245–265 (Springer, 2014).

  33. Veh, G. et al. Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature 614, 701–707 (2023).

    Article  CAS  Google Scholar 

  34. Motyka, R. J. & Truffer, M. Hubbard Glacier, Alaska: 2002 closure and outburst of Russell Fjord and postflood conditions at Gilbert Point. J. Geophys. Res. Earth Surf. 112, F02004 (2007).

    Article  Google Scholar 

  35. Carrivick, J. L. & Tweed, F. S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Change 144, 1–16 (2016).

    Article  Google Scholar 

  36. Carey, M. Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Glob. Planet. Change 47, 122–134 (2005).

    Article  Google Scholar 

  37. Allen, S. K., Rastner, P., Arora, M., Huggel, C. & Stoffel, M. Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides 13, 1479–1491 (2016).

    Article  Google Scholar 

  38. Taylor, C., Robinson, T. R., Dunning, S., Rachel Carr, J. & Westoby, M. Glacial lake outburst floods threaten millions globally. Nat. Commun. 14, 487 (2023).

    Article  CAS  Google Scholar 

  39. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote. Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  40. McFeeters, S. K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote. Sens. 17, 1425–1432 (1996).

    Article  Google Scholar 

  41. Zhang, G., Yao, T., Xie, H., Wang, W. & Yang, W. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Change 131, 148–157 (2015).

    Article  Google Scholar 

  42. Wulder, M. A. et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 280, 113195 (2022).

    Article  Google Scholar 

  43. Wulder, M. A. et al. Current status of Landsat program, science, and applications. Remote. Sens. Environ. 225, 127–147 (2019).

    Article  Google Scholar 

  44. Shugar, D. H. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373, 300–306 (2021).

    Article  CAS  Google Scholar 

  45. Wangchuk, S., Bolch, T. & Zawadzki, J. Towards automated mapping and monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using Sentinel-1 Synthetic Aperture Radar data. Int. J. Remote. Sens. 40, 4642–4667 (2019).

    Article  Google Scholar 

  46. Taylor, L. S. et al. Remote sensing of the mountain cryosphere: current capabilities and future opportunities for research. Prog. Phys. Geogr. Earth Environ. 45, 931–964 (2021).

    Article  Google Scholar 

  47. Kaushik, S., Singh, T., Joshi, P. K. & Dietz, A. J. Automated mapping of glacial lakes using multisource remote sensing data and deep convolutional neural network. Int. J. Appl. Earth Obs. Geoinf. 115, 103085 (2022).

    Google Scholar 

  48. Clague, J. J. & Mathews, W. H. The magnitude of Jökulhlaups. J. Glaciol. 12, 501–504 (1973).

    Article  Google Scholar 

  49. Walder, J. S. & Costa, J. E. Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surf. Proc. Land. 21, 701–723 (1996).

    Article  Google Scholar 

  50. Cook, S. J. & Quincey, D. J. Estimating the volume of Alpine glacial lakes. Earth Surf. Dyn. 3, 559–575 (2015).

    Article  Google Scholar 

  51. Dykes, R. C., Brook, M. S., Robertson, C. M. & Fuller, I. C. Twenty-first century calving retreat of Tasman Glacier, Southern Alps, New Zealand. Arct. Antarct. Alp. Res. 43, 1–10 (2011).

    Article  Google Scholar 

  52. Purdie, H., Bealing, P., Tidey, E., Gomez, C. & Harrison, J. Bathymetric evolution of Tasman Glacier terminal lake, New Zealand, as determined by remote surveying techniques. Glob. Planet. Change 147, 1–11 (2016).

    Article  Google Scholar 

  53. Zhang, G. et al. Underestimated mass loss from lake-terminating glaciers in the greater Himalaya. Nat. Geosci. 16, 333–338 (2023).

    Article  CAS  Google Scholar 

  54. Carrivick, J. L. et al. Ice-dammed lake drainage evolution at Russell Glacier, West Greenland. Front. Earth Sci. 5, 100 (2017).

    Article  Google Scholar 

  55. RGI Consortium. Randolph Glacier Inventory - A Dataset of Global Glacier Outlines, Version 6. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center https://doi.org/10.7265/4m1f-gd79 (2017).

  56. Emmer, A., Merkl, S. & Mergili, M. Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria. Geomorphology 246, 602–616 (2015).

    Article  Google Scholar 

  57. Nie, Y. et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote. Sens. Environ. 189, 1–13 (2017).

    Article  Google Scholar 

  58. Carrivick, J. L., Tweed, F. S., Sutherland, J. L. & Mallalieu, J. Toward numerical modeling of interactions between ice-marginal proglacial lakes and glaciers. Front. Earth Sci. 8, 577068 (2020).

    Article  Google Scholar 

  59. Mölg, N. et al. Inventory and evolution of glacial lakes since the Little Ice Age: lessons from the case of Switzerland. Earth Surf. Proc. Land. 46, 2551–2564 (2021).

    Article  Google Scholar 

  60. Otto, J.-C. in Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes (eds Heckmann, T. & Morche, D.) 231–247 (Springer International, 2019).

  61. Carrivick, J. L. & Tweed, F. S. Deglaciation controls on sediment yield: towards capturing spatio-temporal variability. Earth Sci. Rev. 221, 103809 (2021).

    Article  CAS  Google Scholar 

  62. Emmer, A. et al. 160 glacial lake outburst floods (GLOFs) across the Tropical Andes since the Little Ice Age. Glob. Planet Change 208, 103722 (2022).

    Article  Google Scholar 

  63. Vilca, O., Mergili, M., Emmer, A., Frey, H. & Huggel, C. The 2020 glacial lake outburst flood process chain at Lake Salkantaycocha (Cordillera Vilcabamba, Peru). Landslides 18, 2211–2223 (2021).

    Article  Google Scholar 

  64. Compagno, L., Huss, M., Zekollari, H., Miles, E. S. & Farinotti, D. Future growth and decline of high mountain Asia’s ice-dammed lakes and associated risk. Commun. Earth Environ. 3, 191 (2022).

    Article  Google Scholar 

  65. Glasser, N. F., Jansson, K. N., Harrison, S. & Kleman, J. The glacial geomorphology and Pleistocene history of South America between 38° S and 56° S. Quat. Sci. Rev. 27, 365–390 (2008).

    Article  Google Scholar 

  66. Lister, G. S. A 15,000-year isotopic record from Lake Zürich of deglaciation and climatic change in Switzerland. Quat. Res. 29, 129–141 (1988).

    Article  CAS  Google Scholar 

  67. Sutherland, J. L., Carrivick, J. L., Shulmeister, J., Quincey, D. J. & James, W. H. M. Ice-contact proglacial lakes associated with the Last Glacial Maximum across the Southern Alps, New Zealand. Quat. Sci. Rev. 213, 67–92 (2019).

    Article  Google Scholar 

  68. Carrivick, J. L. & Tweed, F. S. Proglacial lakes: character, behaviour and geological importance. Quat. Sci. Rev. 78, 34–52 (2013).

    Article  Google Scholar 

  69. Loriaux, T. & Casassa, G. Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Glob. Planet. Change 102, 33–40 (2013).

    Article  Google Scholar 

  70. Wang, X. et al. Using remote sensing data to quantify changes in glacial lakes in the Chinese Himalaya. Mt. Res. Dev. 32, 203–212 (2012).

    Article  CAS  Google Scholar 

  71. Khadka, N., Zhang, G. & Thakuri, S. Glacial lakes in the Nepal Himalaya: inventory and decadal dynamics (1977–2017). Remote. Sens. 10, 1913 (2018).

    Article  Google Scholar 

  72. Mergili, M., Müller, J. P. & Schneider, J. F. Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Glob. Planet. Change 107, 13–24 (2013).

    Article  Google Scholar 

  73. Emmer, A. et al. 70 years of lake evolution and glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the future. Geomorphology 365, 107178 (2020).

    Article  Google Scholar 

  74. Carrivick, J. L. et al. Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: past, present and future. Glob. Planet. Change 211, 103792 (2022).

    Article  Google Scholar 

  75. Buckel, J., Otto, J. C., Prasicek, G. & Keuschnig, M. Glacial lakes in Austria — distribution and formation since the Little Ice Age. Glob. Planet. Change 164, 39–51 (2018).

    Article  Google Scholar 

  76. Westoby, M. J. et al. Modelling outburst floods from moraine-dammed glacial lakes. Earth Sci. Rev. 134, 137–159 (2014).

    Article  Google Scholar 

  77. Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R. & Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 362, 53–57 (2018).

    Article  CAS  Google Scholar 

  78. Kargel, J. S. et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351, aac8353 (2015).

    Article  Google Scholar 

  79. Lala, J. M., Rounce, D. R. & McKinney, D. C. Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: reassessing Imja Tsho’s hazard. Hydrol. Earth Syst. Sci. 22, 3721–3737 (2018).

    Article  Google Scholar 

  80. Westoby, M. J. et al. Numerical modelling of glacial lake outburst floods using physically based dam-breach models. Earth Surf. Dyn. 3, 171–199 (2015).

    Article  Google Scholar 

  81. Veh, G. et al. Trends, breaks, and biases in the frequency of reported glacier lake outburst floods. Earth’s Future 10, e2021EF002426 (2022).

    Article  Google Scholar 

  82. Rick, B., McGrath, D., McCoy, S. W. & Armstrong, W. H. Unchanged frequency and decreasing magnitude of outbursts from ice-dammed lakes in Alaska. Nat. Commun. 14, 6138 (2023).

    Article  CAS  Google Scholar 

  83. Tweed, F. S. & Russell, A. J. Controls on the formation and sudden drainage of glacier-impounded lakes: implications for jökulhlaup characteristics. Prog. Phys. Geogr. Earth Environ. 23, 79–110 (1999).

    Article  Google Scholar 

  84. Richardson, S. D. & Reynolds, J. M. An overview of glacial hazards in the Himalayas. Quat. Int. 65-66, 31–47 (2000).

    Article  Google Scholar 

  85. Björnsson, H. Understanding jökulhlaups: from tale to theory. J. Glaciol. 56, 1002–1010 (2010).

    Article  Google Scholar 

  86. Roberts, M. J., Pálsson, F., Gudmundsson, M. T., Björnsson, H. & Tweed, F. S. Ice–water interactions during floods from Grænalón glacier-dammed lake, Iceland. Ann. Glaciol. 40, 133–138 (2005).

    Article  Google Scholar 

  87. Post, A. & Mayo, L. R. Glacier dammed lakes and outburst floods in Alaska. Hydrologic Investigations Atlas HA-455 (USGS, 1971).

  88. Stone, K. H. Alaskan ice-dammed lakes. Ann. Assoc. Am. Geogr. 53, 332–349 (1963).

    Article  Google Scholar 

  89. Carrivick, J. L. & Tweed, F. S. A review of glacier outburst floods in Iceland and Greenland with a megafloods perspective. Earth Sci. Rev. 196, 102876 (2019).

    Article  Google Scholar 

  90. Russell, A. J., Carrivick, J. L., Ingeman-Nielsen, T., Yde, J. C. & Williams, M. A new cycle of jökulhlaups at Russell Glacier, Kangerlussuaq, West Greenland. J. Glaciol. 57, 238–246 (2011).

    Article  Google Scholar 

  91. Iturrizaga, L. Historical glacier-dammed lakes and outburst floods in the Karambar valley (Hindukush–Karakoram). GeoJournal 62/63, 1–47 (2005).

    Article  Google Scholar 

  92. Liestøl, O. Glacier dammed lakes in Norway. Nor. Geogr. Tidsskr. 15, 122–149 (1956).

    Article  Google Scholar 

  93. Ancey, C. et al. Hydraulic reconstruction of the 1818 Gitro glacial lake outburst flood. Water Resour. Res. 55, 8840–8863 (2019).

    Article  Google Scholar 

  94. Awal, R. et al. Experimental study on glacial lake outburst floods due to waves overtopping and erosion of moraine dam. Annu. Disas. Prev. Res. Inst. Kyoto Univ. 53, 583–594 (2010).

    Google Scholar 

  95. Clague, J. J. & Evans, S. G. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat. Sci. Rev. 19, 1763–1783 (2000).

    Article  Google Scholar 

  96. Evans, S. G. & Clague, J. J. Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10, 107–128 (1994).

    Article  Google Scholar 

  97. Maharjan, S. B. et al. The Status of Glacial Lakes in the Hindu Kush HimalayaICIMOD Research Report 2018/1 (International Centre for Integrated Mountain Development (ICIMOD), 2018).

  98. Komori, J., Koike, T., Yamanokuchi, T. & Tshering, P. Glacial lake outburst events in the Bhutan Himalayas. Glob. Environ. Res. 16, 59–70 (2012).

    Google Scholar 

  99. Zheng, G. et al. Numerous unreported glacial lake outburst floods in the Third Pole revealed by high-resolution satellite data and geomorphological evidence. Sci. Bull. 66, 1270–1273 (2021).

    Article  Google Scholar 

  100. Emmer, A. Glacier Retreat and Glacial Lake Outburst Floods (GLOFs) (Oxford University Press, 2017).

  101. Huggel, C., Haeberli, W., Kääb, A., Bieri, D. & Richardson, S. An assessment procedure for glacial hazards in the Swiss Alps. Can. Geotech. J. 41, 1068–1083 (2004).

    Article  Google Scholar 

  102. Emmer, A. Vanishing evidence? On the longevity of geomorphic GLOF diagnostic features in the Tropical Andes. Geomorphology 422, 108552 (2023).

    Article  Google Scholar 

  103. Emmer, A. et al. Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective. Nat. Hazards Earth Syst. Sci. 22, 3041–3061 (2022).

    Article  Google Scholar 

  104. Bigelow, D. G. et al. The role of englacial hydrology in the filling and drainage of an ice-dammed lake, Kaskawulsh Glacier, Yukon, Canada. J. Geophys. Res. Earth Surf. 125, e2019JF005110 (2020).

    Article  Google Scholar 

  105. Huss, M., Bauder, A., Werder, M., Funk, M. & Hock, R. Glacier-dammed lake outburst events of Gornersee, Switzerland. J. Glaciol. 53, 189–200 (2007).

    Article  Google Scholar 

  106. Goodsell, B., Anderson, B., Lawson, W. J. & Owens, I. F. Outburst flooding at Franz Josef Glacier, South Westland, New Zealand. N. Z. J. Geol. Geophys. 48, 95–104 (2005).

    Article  Google Scholar 

  107. Smellie, J. L. & Edwards, B. R. Glaciovolcanism on Earth and Mars: Products, Processes and Palaeoenvironmental Significance (Cambridge Univ. Press, 2016).

  108. Björnsson, H. et al. Glacier–volcano interactions deduced by SAR interferometry. J. Glaciol. 47, 58–70 (2001).

    Article  Google Scholar 

  109. Wang, S., Qin, D. & Xiao, C. Moraine-dammed lake distribution and outburst flood risk in the Chinese Himalaya. J. Glaciol. 61, 115–126 (2015).

    Article  Google Scholar 

  110. Allen, S. K., Zhang, G., Wang, W., Yao, T. & Bolch, T. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Sci. Bull. 64, 435–445 (2019).

    Article  Google Scholar 

  111. Dubey, S. & Goyal, M. K. Glacial lake outburst flood hazard, downstream impact, and risk over the Indian Himalayas. Water Resour. Res. 56, e2019WR026533 (2020).

    Article  Google Scholar 

  112. Rinzin, S. et al. GLOF hazard, exposure, vulnerability, and risk assessment of potentially dangerous glacial lakes in the Bhutan Himalaya. J. Hydrol. 619, 129311 (2023).

    Article  Google Scholar 

  113. Sattar, A. et al. Modeling lake outburst and downstream hazard assessment of the Lower Barun Glacial Lake, Nepal Himalaya. J. Hydrol. 598, 126208 (2021).

    Article  Google Scholar 

  114. Klimeš, J., Benešová, M., Vilímek, V., Bouška, P. & Cochachin Rapre, A. The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru. Nat. Hazards 71, 1617–1638 (2013).

    Article  Google Scholar 

  115. Allen, S. et al. Assessment Principles for Glacier and Permafrost Hazards in Mountain Regions (Oxford Research Encyclopedias: Natural Hazard Science, 2022).

  116. Worni, R. et al. Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina). J. Hydrol. 444, 134–145 (2012).

    Article  Google Scholar 

  117. Rounce, D. R., McKinney, D. C., Lala, J. M., Byers, A. C. & Watson, C. S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 20, 3455–3475 (2016).

    Article  Google Scholar 

  118. Chen, N. et al. Small outbursts into big disasters: earthquakes exacerbate climate-driven cascade processes of the glacial lakes failure in the Himalayas. Geomorphology 422, 108539 (2023).

    Article  Google Scholar 

  119. Mani, P. et al. Geomorphic process chains in high-mountain regions — a review and classification approach for natural hazards assessment. Rev. Geophys. 61, e2022RG000791 (2023).

    Article  Google Scholar 

  120. Bajracharya, B., Shrestha, A. B. & Rajbhandari, L. Glacial lake outburst floods in the Sagarmatha region. Mt. Res. Dev. 27, 336–344 (2007).

    Article  Google Scholar 

  121. Schneider, D., Huggel, C., Cochachin, A., Guillén, S. & García, J. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv. Geosci. 35, 145–155 (2014).

    Article  Google Scholar 

  122. Nie, Y., Liu, W., Liu, Q., Hu, X. & Westoby, M. J. Reconstructing the Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya: evolution, process and impacts. Geomorphology 370, 107393 (2020).

    Article  Google Scholar 

  123. Mergili, M., Fischer, J.-T., Krenn, J. & Pudasaini, S. P. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model. Dev. 10, 553–569 (2017).

    Article  CAS  Google Scholar 

  124. Carrivick, J. L., Manville, V., Graettinger, A. & Cronin, S. J. Coupled fluid dynamics–sediment transport modelling of a Crater Lake break-out lahar: Mt. Ruapehu, New Zealand. J. Hydrol. 388, 399–413 (2010).

    Article  Google Scholar 

  125. Staines, K. E. H. & Carrivick, J. L. Geomorphological impact and morphodynamic effects on flow conveyance of the 1999 jökulhlaup at Sólheimajökull, Iceland. Earth Surf. Proc. Land. 40, 1401–1416 (2015).

    Article  Google Scholar 

  126. Worni, R., Huggel, C., Clague, J. J., Schaub, Y. & Stoffel, M. Coupling glacial lake impact, dam breach, and flood processes: a modeling perspective. Geomorphology 224, 161–176 (2014).

    Article  Google Scholar 

  127. Harrison, S. et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12, 1195–1209 (2018).

    Article  Google Scholar 

  128. Veh, G., Korup, O., von Specht, S., Roessner, S. & Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Change 9, 379–383 (2019).

    Article  Google Scholar 

  129. Linsbauer, A., Paul, F. & Haeberli, W. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. J. Geophys. Res. 117, F03007 (2012).

    Google Scholar 

  130. Haeberli, W. et al. New lakes in deglaciating high-mountain regions — opportunities and risks. Clim. Change 139, 201–214 (2016).

    Article  Google Scholar 

  131. King, O., Bhattacharya, A., Bhambri, R. & Bolch, T. Glacial lakes exacerbate Himalayan glacier mass loss. Sci. Rep. 9, 18145 (2019).

    Article  Google Scholar 

  132. Sutherland, J. L. et al. Proglacial lakes control glacier geometry and behavior during recession. Geophys. Res. Lett. 47, e2020GL088865 (2020).

    Article  Google Scholar 

  133. Khan, G. et al. Expansion of Shishper Glacier lake and recent glacier lake outburst flood (GLOF), Gilgit-Baltistan, Pakistan. Environ. Sci. Pollut. Res. Int. 28, 20290–20298 (2021).

    Article  Google Scholar 

  134. Hewitt, K. & Liu, J. Ice-dammed lakes and outburst floods, Karakoram Himalaya: historical perspectives on emerging threats. Phys. Geogr. 31, 528–551 (2010).

    Article  Google Scholar 

  135. Millan, R., Mouginot, J., Rabatel, A. & Morlighem, M. Ice velocity and thickness of the world’s glaciers. Nat. Geosci. 15, 124–129 (2022).

    Article  CAS  Google Scholar 

  136. Furian, W., Loibl, D. & Schneider, C. Future glacial lakes in High Mountain Asia: an inventory and assessment of hazard potential from surrounding slopes. J. Glaciol. 67, 653–670 (2021).

    Article  Google Scholar 

  137. Frey, H., Haeberli, W., Linsbauer, A., Huggel, C. & Paul, F. A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Nat. Hazards Earth Syst. Sci. 10, 339–352 (2010).

    Article  Google Scholar 

  138. Maussion, F. et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model. Dev. 12, 909–931 (2019).

    Article  Google Scholar 

  139. Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).

    Article  CAS  Google Scholar 

  140. Gharehchahi, S. et al. Glacier ice thickness estimation and future lake formation in Swiss Southwestern Alps — the Upper Rhône Catchment: a VOLTA application. Remote Sens. 12, 3443 (2020).

    Article  Google Scholar 

  141. Otto, J. C., Helfricht, K., Prasicek, G., Binder, D. & Keuschnig, M. Testing the performance of ice thickness models to estimate the formation of potential future glacial lakes in Austria. Earth Surf. Proc. Land.47, 723–741 (2021).

    Article  Google Scholar 

  142. Viani, C. et al. Potential future lakes from continued glacier shrinkage in the Aosta Valley Region (Western Alps, Italy). Geomorphology 355, 107068 (2020).

    Article  Google Scholar 

  143. Viani, C., Giardino, M., HuGgel, C., Perotti, L. & Mortara, G. An overview of glacier lakes in the Western Italian Alps from 1927 to 2014 based on multiple data sources (historical maps, orthophotos and reports of the glaciological surveys). Geogr. Fis. Din. Quat. 39, 203–214 (2016).

    Google Scholar 

  144. Magnin, F., Haeberli, W., Linsbauer, A., Deline, P. & Ravanel, L. Estimating glacier-bed overdeepenings as possible sites of future lakes in the de-glaciating Mont Blanc massif (Western European Alps). Geomorphology 350, 106913 (2020).

    Article  Google Scholar 

  145. Drenkhan, F., Guardamino, L., Huggel, C. & Frey, H. Current and future glacier and lake assessment in the deglaciating Vilcanota–Urubamba basin, Peruvian Andes. Glob. Planet. Change 169, 105–118 (2018).

    Article  Google Scholar 

  146. Colonia, D. et al. Compiling an inventory of glacier-bed overdeepenings and potential new lakes in de-glaciating areas of the Peruvian Andes: approach, first results, and perspectives for adaptation to climate change. Water 9, 336 (2017).

    Article  Google Scholar 

  147. Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    Article  Google Scholar 

  148. Azam, M. F. et al. Review of the status and mass changes of Himalayan–Karakoram glaciers. J. Glaciol. 64, 61–74 (2018).

    Article  Google Scholar 

  149. Haeberli, W., Schaub, Y. & Huggel, C. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293, 405–417 (2017).

    Article  Google Scholar 

  150. Schwanghart, W., Worni, R., Huggel, C., Stoffel, M. & Korup, O. Uncertainty in the Himalayan energy–water nexus: estimating regional exposure to glacial lake outburst floods. Environ. Res. Lett. 11, 074005 (2016).

    Article  Google Scholar 

  151. Mal, S., Allen, S. K., Frey, H., Huggel, C. & Dimri, A. P. Sectorwise assessment of glacial lake outburst flood danger in the Indian Himalayan Region. Mt. Res. Dev. 41, R1–R12 (2021).

    Article  Google Scholar 

  152. Allen, S. K. et al. Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin. Nat. Hazards Earth Syst. Sci. 22, 3765–3785 (2022).

    Article  Google Scholar 

  153. Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2, 91–106 (2021).

    Article  Google Scholar 

  154. Li, D. et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. 15, 520–530 (2022).

    Article  CAS  Google Scholar 

  155. Tiberti, R. et al. Food web complexity of high mountain lakes is largely affected by glacial retreat. Ecosystems 23, 1093–1106 (2020).

    Article  Google Scholar 

  156. Allen, S. K. et al. Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats. Nat. Hazards 84, 1741–1763 (2016).

    Article  Google Scholar 

  157. Farinotti, D. et al. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere 11, 949–970 (2017).

    Article  Google Scholar 

  158. Carrivick, J. L., Davies, B. J., James, W. H. M., Quincey, D. J. & Glasser, N. F. Distributed ice thickness and glacier volume in southern South America. Glob. Planet. Change 146, 122–132 (2016).

    Article  Google Scholar 

  159. Carrivick, J. L., Davies, B. J., James, W. H. M., McMillan, M. & Glasser, N. F. A comparison of modelled ice thickness and volume across the entire Antarctic Peninsula region. Geogr. Ann. Ser. A Phys. Geogr. 101, 45–67 (2019).

    Article  Google Scholar 

  160. Li, F. et al. Influence of glacier inventories on ice thickness estimates and future glacier change projections in the Tian Shan range, Central Asia. J. Glaciol. 69, 266–280 (2023).

    Article  Google Scholar 

  161. Chen, W. et al. Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau. Cryosphere 16, 197–218 (2022).

    Article  Google Scholar 

  162. Moreira, A. et al. Tandem-L: a highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface. IEEE Geosci. Remote. Sens. Mag. 3, 8–23 (2015).

    Article  Google Scholar 

  163. Banda, F., Dall, J. & Tebaldini, S. Single and multipolarimetric P-band SAR tomography of subsurface ice structure. IEEE Trans. Geosci. Remote. 54, 2832–2845 (2016).

    Article  Google Scholar 

  164. Huggel, C. et al. Glacier Lake 513, Peru: lessons for early warning service development. WMO Bull. 69, 45–52 (2020).

    Google Scholar 

Download references

Acknowledgements

This Review was supported by grants from the Basic Science Center for Tibetan Plateau Earth System (BSCTPES; NSFC project no. 41988101-03) and the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0201). The authors thank W. Chen, Q. Tang and Y. Tang for their assistance in preparing figures and tables.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and J.L.C. conceptualized the Review and coordinated inputs. D.H.S. and C.L. contributed to the Introduction. A.E., M.M. and N.M. contributed to the section on global and regional changes of lake size and abundance. G.V., J.L.C., S.S. and N.L. contributed to the section on historical glacial lake outburst floods. G.Z., M.H. and S.A. contributed to the section on future glacial lakes and outburst floods. G.Z., S.A. and J.L.C. contributed to the section on summary and future perspectives. X.W. contributed to some of the figures. G.Z. and J.L.C. led the writing, and all authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Guoqing Zhang or Jonathan L. Carrivick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Yong Nie, Jan-Christoph Otto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Carrivick, J.L., Emmer, A. et al. Characteristics and changes of glacial lakes and outburst floods. Nat Rev Earth Environ 5, 447–462 (2024). https://doi.org/10.1038/s43017-024-00554-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00554-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing