Abstract
Mantle plumes originate at depths near the core−mantle boundary (~2,800 km). As such, they provide invaluable information about the composition of the deep mantle and insight into convection, crustal formation, and crustal recycling, as well as global heat and volatile budgets. In this Review, we discuss the effectiveness and challenges of using isotopic analyses of plume-generated rocks to infer mantle composition and to constrain geodynamic models. Isotopic analyses of plume-derived ocean island basalts, including radiogenic (Sr, Nd, Pb, Hf, W, noble gas) and stable isotopes (Li, C, O, S, Fe, Tl), permit determination of mantle plume composition, which in turn generate insight into mantle plume origins, dynamics, mantle heterogeneities, early-formed mantle reservoirs, crustal recycling processes, core−mantle interactions and mantle evolution. Nevertheless, the magmatic flux, temperature, tectonic environment and compositions of mantle plumes can vary. Consequently, plumes and their melts are best evaluated along a spectrum that acknowledges their different properties, particularly mantle flux, before making interpretations about the interior of the Earth. To provide insight into specific mantle and plume processes, future work should document correlations across elemental and isotopic data sets on the same sample powder, coordinate targeting sampling strategies, and refine stable isotopic fractionation factors through experiments. Such work will benefit from collaboration across geochemical laboratories, as well as among geochemists, mineral physicists, seismologists and geodynamicists.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
Figure 2a–f and the Supplementary figures were constructed from a combined data set of precompiled files for oceanic island groups from GeoRoc and several curated data sets64,81,86. New data were downloaded from the GeoRoc geochemistry database in October 2021 and include data from Azores, Easter and Salas y Gomez Islands, Iceland, Kerguelen and St Helena. Primary GeoRoc data selection criteria were geological setting (Ocean Island), selection of ocean island chain, type of material (whole rock) and type of rock (volcanic rock). GeoRoc data from the initial search were combined with additional data downloaded from GeoRoc in July 2020 and 2021, some of which is presented in ref. 86. These data include Samoa, Cook−Austral Islands, Pitcairn−Gambier, Easter, Galápagos, Society and Mauritius (see supplementary information in ref. 86 for a full list of references). New Pitcairn and Society trace element concentration and isotope composition data from ref. 118 were added to the GeoRoc compilation, along with data from the Galápagos from ref. 64. Hawaiian-Emperor data were taken from ref. 81. The total number of samples in the compiled data set is 19,824 and most isotopic data are post-1990. The format of each of these precompiled files was standardized and imported into R, a free open-source statistical computing application for analysis and plotting. All data sets except those downloaded in October 2021 were renormalized to the same standard values to ensure comparability81. For major element and isotope plots, no filters were used on the data set to assess data quality, which varied between laboratories, instrumentation, methods and detection limits over the past 40–50 years (much of these metadata are not included in the GeoRoc database or are inconsistently included and therefore difficult to apply across such a varied data set). For trace element plots, a filter of SiO2 >55 wt% and total alkalis (Na2O+K2O) <8 wt% was applied to remove highly silica-undersaturated samples or lavas that were produced by anomalously low degrees of partial melting. This filter removes samples with heavily enriched incompatible trace element concentrations, which would skew the average results presented in the extended trace element spider diagram.
References
White, W. M. Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115–118 (1985).
Zindler, A. & Hart, S. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571 (1986).
Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).
Hofmann, A. W. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise on Geochemistry 1st edn, Vol. 2 (ed. Carlson, R.) 61–102 (2003).
Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).
White, W. M. Probing the Earth’s deep interior through geochemistry. Geochem. Perspect. 4, 95–251 (2015).
Davies, D. R. & Davies, J. J. Thermally-driven mantle plumes reconcile multiple hot-spot observations. Earth Planet. Sci. Lett. 278, 50–54 (2009).
Tkalčić, H., Young, M., Muir, J. B., Davies, D. R. & Mattesini, M. Strong, multi-scale heterogeneity in Earth’s lowermost mantle. Sci. Rep. 5, 18416 (2015).
Garnero, E. J. Heterogeneity of the lowermost mantle. Ann. Rev. Earth Planet. Sci. 28, 509–537 (2000).
Koelemeijer, P., Ritsema, J., Deuss, A. & van Heijst, H.-J. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth’s mantle. Geophys. J. Int. 204, 1024–1039 (2016).
Ritsema, J. & Lekic, V. Heterogeneity of seismic wave velocity in Earth’s mantle. Ann. Rev. Earth Planet. Sci. 48, 377–401 (2020).
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–581 (2013).
Duvernay, T., Davies, D. R., Mathews, C. R., Gibson, A. H. & Kramer, S. C. Linking intraplate volcanism to lithospheric structure and asthenospheric flow. Geochem. Geophys. Geosyst. 22, e2021GC009953 (2021).
Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).
French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).
Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).
Jackson, M. G., Becker, T. W. & Konter, J. G. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: implications for storage in the large low shear wave velocity provinces. Geochem. Geophys. Geosyst. 19, 3496–3519 (2018).
Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalog of deep mantle plumes: new results from finite frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).
Boschi, L., Becker, T. W. & Steinberger, B. Mantle plumes: dynamic models and seismic images. Geochem. Geophys. Geosyst. 8, Q10006 (2007).
King, S. D. & Adam, C. Hotspot swells revisited. Phys. Earth Planet. Int. 235, 66–83 (2014).
Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227, 531–538 (2004).
Thorne, M. S. & Garnero, E. J. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. Solid Earth 109, 1–22 (2004).
Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006).
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).
Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of the Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).
Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. Solid Earth 99, 19867–19884 (1994).
Brandenburg, J. P., Hauri, E. H., van Keken, P. E. & Ballentine, C. J. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett. 276, 1–13 (2008).
Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7, 366–370 (2014).
Williams, C., Li, M., McNamara, A. K., Garnero, E. J. & van Soest, M. C. Episodic entrainment of deep primordial mantle material into ocean island basalts. Nat. Commun. 6, 8937 (2015).
Nakagawa, T. & Tackley, P. J. Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core. Geochem. Geophys. Geosyst. 15, 619–633 (2014).
Jones, T. D., Sime, N. & van Keken, P. E. Burying Earth’s primitive mantle in the slab graveyard. Geochem. Geophys. Geosystems 22, e2020GC009396 (2021).
Gu, T., Li, M., McCammon, C. & Lee, K. K. M. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).
Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999).
Limare, A., Jaupart, C., Kaminski, E., Fourel, L. & Farnetani, C. G. Convection in an internally heated stratified heterogeneous reservoir. J. Fluid Mech. 870, 67–105 (2019).
French, S. W. & Romanowicz, B. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).
Fourel, L. et al. The Earth’s mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources. Exp. Fluids 58, 90 (2017).
McNamara, A. K. A review of large low shear velocity provinces and ultra-low velocity zones. Tectonophysics 760, 199–220 (2019).
Cottaar, S. & Romanowicz, B. An unsually large ULVZ at the base of the mantle near Hawaii. Earth Planet. Sci. Lett. 355, 213–222 (2012).
Knittle, E. & Jeanloz, R. Melting curve of (Mg,Fe)SiO3 perovskite to 96 GPa: evidence for a structural transition in lower mantle melts. Geophys. Res. Lett. 16, 421–424 (1989).
Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth’s mantle. Science 273, 1528–1530 (1996).
Dobson, D. P. & Brodholt, J. P. Subducted banded iron formations as a source of ultralow-velocity zones at the core–mantle boundary. Nature 434, 371–374 (2005).
Mao, W. L. et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science 312, 564–565 (2006).
Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 71, 194–211 (2020).
Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core–mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).
Lee, K. K. M. et al. Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth Planet. Sci. Lett. 223, 381–393 (2004).
Ricolleau, A. et al. Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J. Geophys. Res. 115, B08202 (2010).
Dorfman, S. M., Meng, Y., Prakapenka, V. B. & Duffy, T. S. Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite. Earth Planet. Sci. Lett. 361, 249–257 (2013).
Litasov, K. D. & Ohtani, E. in Advances in High-Pressure Mineralogy Vol. 421 (ed. Ohtani, E.) 115–156 (Spec. Pap. Geol. Soc. Am., 2007).
Zhou, W.-Y. et al. Constraining composition and temperature variations in the mantle transition zone. Nat. Commun. 13, 1094 (2022).
Creasy, N., Girard, J., Eckert, J. O. & Lee, K. K. M. The role of redox on bridgmanite crystal chemistry and calcium speciation in the lower mantle. J. Geophys. Res. Solid Earth 125, 2020JB020783 (2020).
Tschauner, O. et al. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346, 1100–1102 (2014).
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–241 (2017).
Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).
Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat. Geosci. 4, 831–838 (2011).
Nobre-Silva, I. G., Weis, D. & Scoates, J. S. Isotopic systematics of the early Mauna Kea shield phase and insight into the deep mantle beneath the Pacific Ocean. Geochem. Geophys. Geosyst. 14, 659–676 (2013).
Williamson, N. M. B., Weis, D., Scoates, J. S., Pelletier, H. & Garcia, M. O. Tracking the geochemical transition between the Kea-dominated Northwest Hawaiian Ridge and the bilateral Loa-Kea trends of the Hawaiian Islands. Geochem. Geophys. Geosyst. 20, 4354–4369 (2019).
Kerr, R. & Mériaux, C. Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst. 5, 1–42 (2004).
Farnetani, C. G. & Hofmann, A. W. Dynamics and internal structure of a lower mantle plume conduit. Earth Planet. Sci. Lett. 282, 314–322 (2009).
Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat. Geosci. 4, 874–878 (2011).
Chauvel, C. et al. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochem. Geophys. Geosyst. 13, Q07005 (2012).
Payne, J. A., Jackson, M. G. & Hall, P. S. Parallel volcano trends and geochemical asymmetry of the Society hotspot track. Geology 41, 19–22 (2013).
Harpp, K. S., Hall, P. S. & Jackson, M. G. in The Galápagos: A Natural Laboratory for the Earth Sciences (eds Harpp, K. S., Mittelstaedt, E., d’Ozouville, N. & Graham, D. W.) 27–40 (AGU, Geophys. Monog. Series 204, 2014).
Harpp, K. S. & Weis, D. Insights into the origins and compositions of mantle plumes: a comparison of Galápagos and Hawai‘i. Geochem. Geophys. Geosyst. 21, e2019GC008887 (2020).
Rohde, J. et al. 70 Ma chemical zonation of the Tristan–Gough hotspot track. Geology 41, 335–338 (2013).
Harrison, L. N., Weis, D. & Garcia, M. O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. Earth Planet. Sci. Lett. 463, 298–309 (2017).
Jones, T. D. et al. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. Nature 545, 472–476 (2017).
Schilling, J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352, 397–403 (1991).
Sleep, N. H. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. Solid Earth 95, 6715–6736 (1990).
White, R. S. Melt production rates in mantle plumes. Phil. Trans. R. Soc. Lond. 342, 137–153 (1993).
Kingsley, R. H. & Schilling, J.-G. Plume–ridge interaction in the Easter–Salas y Gomez seamount chain — Easter Microplate system: Pb isotope evidence. J. Geophys. Res. 103, 24159 –24177 (1998).
Kingsley, R. H., Blichert-Toft, J., Fontignie, D. & Schilling, J.-G. Hafnium, neodymium, and strontium isotope and parent–daughter element systematics in basalts from the plume–ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochem. Geophys. Geosyst. 8, Q04005 (2007).
Jackson, M. G. & Dasgupta, R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 276, 175–186 (2008).
Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).
Jackson, M. G. et al. Contrasting old and young volcanism from Aitutaki, Cook Islands: implications for a hotspot origin. J. Petrol. 61, egaa037 (2020).
Duncan, R. A., McCulloch, M. T., Barsczus, H. G. & Nelson, D. R. Plume versus lithospheric sources for melts at Ua Pou, Marquesas Islands. Nature 322, 534–538 (1986).
Haase, K. M., Beier, C. & Kemner, F. A comparison of the magmatic evolution of Pacific intraplate volcanoes: constraints on melting in mantle plumes. Front. Earth Sci. 6, 242 (2019).
Harrison, L. N. & Weis, D. The size and emergence of geochemical heterogeneities in the Hawaiian mantle plume constrained by Sr-Nd-Hf isotopic variation over ~47 million years. Geochem. Geophys. Geosyst. 19, 1–20 (2018).
Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hotspot tracks: plume heads and tails. Science 246, 103–107 (1989).
Wessel, P. Regional-residual separation of bathymetry and revised estimates of Hawaii plume flux. Geophys. J. Int. 204, 932–947 (2016).
Weis, D., Harrison, L., McMillan, R. & Williamson, N. W. B. Fine-scale structure of Earth’s deep mantle resolved through statistical analysis of Hawaiian basalt geochemistry. Geochem. Geophys. Geosyst. 21, e2020GC009292 (2020).
Wessel, P. & Kroenke, L. Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes. Earth Planet. Sci. Lett. 284, 467–472 (2009).
Farnetani, C. G., Hofmann, A. W. & Class, C. How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth Planet. Sci. Lett. 359–360, 240–247 (2012).
White, W. M., McBirney, A. R. & Duncan, R. A. Petrology and geochemistry of the Galápagos islands: portrait of a pathological mantle plume. J. Geophys. Res. Solid Earth 98, 19533–19563 (1993).
Harpp, K. S. & White, W. M. Tracing a mantle plume: isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosyst. 2, 1–46 (2001).
Harrison, L. N., Weis, D. & Garcia, M. O. The multiple depleted mantle components in the Hawaiian-Emperor chain. Chem. Geol. 532, 1–22 (2020).
Weis, D. & Frey, F. A. Submarine basalts of the Northern Kerguelen Plateau: interaction between the Kerguelen plume and the Southeast Indian Ridge revealed at ODP Site 1140. J. Petrol. 43, 1287–1309 (2002).
Regelous, M., Hofmann, A. W., Abouchami, W. & Galer, S. J. G. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).
Harpp, K. S. & Geist, D. J. The evolution of Galápagos volcanoes: an alternative perspective. Front. Earth Sci. 6, 50 (2018).
Ito, G., Lin, J. & Gable, C. W. Dynamics of mantle flow and melting at a ridge-centered hotspot: iceland and the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 144, 53–74 (1996).
Konter, J. G. & Jackson, M. G. Large volumes of rejuvenated volcanism in Samoa: evidence supporting tectonic influence on late-stage volcanism. Geochem. Geophys. Geosyst. 13, Q0AM04 (2012).
Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).
Kerr, B. C., Scholl, D. W. & Klemperer, S. L. Seismic stratigraphy of Detroit Seamount, Hawaiian-Emperor seamount chain: post-hot-spot shield-building volcanism and deposition of the Meiji drift. Geochem. Geophys. Geosyst. 6, Q07L10 (2005).
Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H. & Layne, G. D. Pb isotopic variability in melt inclusions from the EMI–EMII–HIMU mantle end-members and the role of the oceanic lithosphere. Earth Planet. Sci. Lett. 240, 605–620 (2005).
Stracke, A., Genske, F., Berndt, J. & Koornneef, J. M. Ubiquitous ultra-depleted domains in Earth’s mantle. Nat. Geosci. 12, 851–855 (2019).
Rudge, J. F., Maclennan, J. & Stracke, A. The geochemical consequences of mixing melts from a heterogeneous mantle. Geochim. Cosmochim. Acta 114, 112–143 (2013).
White, W. M. Oceanic island basalts and mantle plumes: the geochemical perspective. Ann. Rev. Earth Planet. Sci. 38, 133–160 (2010).
Hofmann, A. W., Jochum, K., Seufert, M. & White, W. M. Nb and Pb in oceanic basalts — new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45 (1986).
Newsom, H. E., White, W. M., Jochum, K. P. & Hofmann, A. W. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth Planet. Sci. Lett. 80, 299–313 (1986).
Willbold, M. & Stracke, A. Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, Q04004 (2006).
Gast, P. W. Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta 32, 1057–1086 (1968).
Putirka, K., Perfit, M., Ryerson, F. J. & Jackson, M. G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 241, 177–206 (2007).
Jackson, M. G., Weis, D. & Huang, S. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics. Geochem. Geophys. Geosyst. 13, 919 Q09009 (2012).
Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992).
Zindler, A., Jagoutz, E. & Goldstein, S. Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective. Nature 298, 519–523 (1982).
Stracke, A., Hofmann, A. W. & Hart, S. R. FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6, Q05007 (2005).
Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995 (1996).
Farley, K. A., Natland, J. H. & Craig, H. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett. 111, 183–199 (1992).
Chauvel, C., Hofmann, A. W. & Vidal, P. HIMU−EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119 (1992).
Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).
Chauvel, C., McDonough, W., Guille, G., Maury, R. & Duncan, R. Contrasting old and young volcanism in Rurutu Island, Austral chain. Chem. Geol. 139, 125–143 (1997).
Kelley, K. A., Plank, T., Farr, L., Ludden, J. & Staudigel, H. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383 (2005).
Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007).
Weiss, Y., Class, C., Goldstein, S. L. & Hanyu, T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 537, 666–670 (2016).
Homrighausen, S. et al. Global distribution of the HIMU end-member: formation through Archean plume-lid tectonics. Earth Sci. Rev. 182, 85–101 (2018).
Castillo, P. R. The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos 216–217, 254–263 (2015).
Eisele, J. et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197–212 (2002).
Cordier, C., Delavault, H. & Chauvel, C. Geochemistry of the Society and Pitcairn-Gambier mantle plumes: what they share and do not share. Geochim. Cosmochim. Acta 306, 362–384 (2021).
Boyet, M. et al. New constraints on the origin of the EM-1 component revealed by the measurement of the La-Ce isotope systematics in Gough Island lavas. Geochem. Geophys. Geosyst. 20, 2484–2498 (2019).
Weis, D., Bassias, Y., Gautier, I. & Mennessier, J.-P. Kerguelen Plateau (South Indian Ocean): isotopic study of MD48 dredge basalts: Kerguelen type signature. Geochim. Cosmochim. Acta 53, 2125–2131 (1989).
Blichert-Toft, J., Frey, F. A. & Albarède, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999).
Garapić, G. et al. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: implications for the origin of EM-1 (enriched mantle 1). Lithos 228, 1–11 (2015).
Delavault, H., Chauvel, C., Thomassot, E., Devey, C. W. & Dazas, B. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc. Natl Acad. Sci. USA. 113, 12952–12956 (2016).
Wang, X.-J. et al. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc. Natl Acad. Sci. USA 115, 86828687 (2018).
Weaver, B. L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381–397 (1991).
White, W. M. & Duncan, R. A. Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. in Earth Processes Reading the Isotopic Code (eds Basu, A. & Hart, S.) 183–206 (AGU, 1996).
Jackson, M. G., Kurz, M. D., Hart, S. R. & Workman, R. K. New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high He-3/He-4 mantle. Earth Planet. Sci. Lett. 264, 360–374 (2007).
Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochem. Geophys. Geosyst. 5, Q04008 (2004).
Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005).
Gonnermann, H. M. & Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009).
Hofmann, A. W., Class, C. & Goldstein, S. L. Size and composition of the MORB+OIB mantle reservoir. Geochem. Geophys. Geosyst. 23, e2022GC010339 (2022).
Stracke, A., Bourdon, B. & McKenzie, D. Melt extraction in the Earth’s mantle: constraints from U-Th-Pa-Ra studies in oceanic basalts. Earth Planet. Sci. Lett. 244, 97–112 (2006).
Parai, R., Mukhopadhyay, S., Tucker, J. M. & Pető, M. K. The emerging portrait of an ancient, heterogeneous and continuously evolving mantle plume source. Lithos 346, 105153 (2019).
Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, Q0500 (2004).
Genske, F., Stracke, A., Berndt, J. & Klemme, S. Process-related isotope variability in oceanic basalts revealed by high-precision Sr isotope ratios in olivine-hosted melt inclusions. Chem. Geol. 524, 1–10 (2019).
Frey, F. A., Huang, S., Blichert-Toft, J., Regelous, M. & Boyet, M. Origin of depleted components in basalt related to the Hawaiian hot spot: evidence from isotopic and incompatible element ratios. Geochem. Geophys. Geosyst. 6, Q02L07 (2005).
Bizimis, M., Sen, G., Salters, V. J. M. & Keshav, S. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism. Geochim. Cosmochim. Acta 69, 2629–2646 (2005).
DeFelice, C., Mallick, S., Saal, A. E. & Huang, S. An isotopically depleted lower mantle component is intrinsic to the Hawaiian mantle plume. Nat. Geosci. 12, 487–492 (2019).
White, W. M., Schilling, J.-G. & Hart, S. R. Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North Atlantic. Nature 263, 659–663 (1976).
Schilling, J.-G., Kingsley, R. H. & Devine, J. D. Galápagos hot spot-spreading center system: 1. Spatial petrological and geochemical variations (83°W–101°W). J. Geophys. Res. Solid Earth 87, 5593–5610 (1982).
Humphris, S. E., Thompson, G., Schilling, J.-G. & Kingsley, R. H. Petrological and geochemical variations along the Mid-Atlantic Ridge between 46°S and 32°S: influence of the Tristan da Cunha mantle plume. Geochim. Cosmochim. Acta 49, 1445–1464 (1985).
Moreira, M., Doucelance, R., Kurz, M. D., Dupré, B. & Allègre, C. J. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett. 169, 89–205 (1999).
Stracke, A., Willig, M., Genske, F., Béguelin, P. & Todd, E. Chemical geodynamics insights from a machine learning approach. Geochem. Geophys. Geosyst. 23, e2022GC010606 (2022).
Allègre, C. J. Chemical geodynamics. Tectonophysics 81, 109–132 (1982).
Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).
Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).
Morris, J., Valentine, R. & Harrison, T. 10Be imaging of sediment accretion and subduction along the northeast Japan and Costa Rica convergent margins. Geology 30, 59–62 (2002).
Turner, S., Bourdon, B. & Gill, J. Insights into magma genesis at convergent margins from U-series isotopes. Rev. Mineral. Geochem. 52, 255–315 (2003).
Deschamps, F. et al. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem. Geol. 269, 262–277 (2010).
Tang, M., Rudnick, R. L. & Chauvel, C. Sedimentary input to the source of Lesser Antilles lavas: a Li perspective. Geochim. Cosmochim. Acta 144, 43–58 (2014).
Smith, E. M. et al. Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. Sci. Adv. 7, eabe9773 (2021).
Porter, K. A. & White, W. M. Deep mantle subduction flux. Geochem. Geophys. Geosyst. 10, Q12016 (2009).
Ryan, J. G. & Chauvel, C. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 479–508 (Elsevier, 2014).
Turner, S. J. & Langmuir, C. H. Sediment and ocean crust both melt at subduction zones. Earth Planet. Sci. Lett. 584, 117424 (2022).
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat. Geosci. 1, 64–67 (2008).
Rudnick, R. L. & Gao, S. Composition of the continental crust. in Treatise on Geochemistry (eds Heinrich, D. H. & Karl, K. T.) 1–64 (Pergamon, 2003).
Stracke, A. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331, 274–299 (2012).
Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albaréde, F. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 79–99 (1999).
Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).
Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
Tucker, J. M., Mukhopadhyay, S. & Schilling, J.-G. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355–356, 244–254 (2012).
Parai, R., Mukhopadhyay, S. & Standish, J. J. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet. Sci. Lett. 359, 227–239 (2012).
Péron, S., Mukhopadhyay, S., Kurz, M. D. & Graham, D. W. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021).
Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, 1–9 (2022).
Parai, R. & Mukhopadhyay, S. Xenon isotopic constraints on the history of volatile recycling into the mantle. Nature 560, 223–227 (2018).
Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon anomalies. Geochem. Perspect. Lett. 9, 1–25 (2018).
Caffee, M. W. et al. Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Science 285, 2115–2118 (1999).
Avice, G. & Marty, B. Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & Venus. Space Sci. Rev. 216, 1–18 (2020).
Pető, M. K., Mukhopadhyay, S. & Kelley, K. A. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369, 13–23 (2013).
Tomascak, P. B. Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. Rev. Mineral. Geochem. 55, 153–195 (2004).
Penniston-Dorland, S., Liu, X.-M. & Rudnick, R. L. Lithium isotope geochemistry. Rev. Mineral. Geochem. 82, 165–217 (2017).
Bouman, C., Elliott, T. & Vroon, P. Z. Lithium inputs to subduction zones. Chem. Geol. 212, 59–79 (2004).
Chan, L.-H. & Frey, F. A. Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochem. Geophys. Geosyst. 4, 8707 (2003).
Vlastélic, I., Koga, K., Chauvel, C., Jaques, G. & Télouk, P. Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain. Earth Planet. Sci. Lett. 286, 456–466 (2009).
Krienitz, M. S. et al. Lithium isotope variations in ocean island basalts — implications for the development of mantle heterogeneities. J. Petrol. 53, 2333–2347 (2012).
Harrison, L. N., Weis, D., Hanano, D. & Barnes, E. Lithium isotopic signature of Hawaiian basalts. in Hawaiian Volcanoes: From Source to Surface (eds Carey, R., Cayol, V., Poland, P. & Weis, D.), Geophys. Monog. Ser. 208, 74–104 (AGU, 2015).
Marschall, H. R. et al. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 207, 102–138 (2017).
Rehkämper, M. et al. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197, 65–81 (2002).
Nielsen, S. G. et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 251, 120–133 (2006).
Nielsen, S. G., Rehkämper, M. & Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82, 759–798 (2017).
Brett, A. et al. Thallium elemental and isotopic systematics in ocean island lavas. Geochim. Cosmochim. Acta 301, 187–210 (2021).
Nielsen, S. G., Rehkämper, M., Norman, M. D., Halliday, A. N. & Harrison, D. Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439, 314–317 (2006).
Williamson, N. M. B., Weis, D. & Prytulak, J. Thallium isotopic compositions in Hawaiian lavas: evidence for recycled materials on the Kea side of the Hawaiian mantle plume. Geochem. Geophys. Geosyst. 22, e2021GC009765 (2021).
Blusztajn, J. et al. Thallium isotope systematics in volcanic rocks from St Helena — constraints on the origin of the HIMU reservoir. Chem. Geol. 476, 292–301 (2018).
Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007).
Cabral, R. A. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013).
Dottin, J. W. III, Labidi, J., Jackson, M. G., Woodhead, J. & Farquhar, J. Isotopic evidence for multiple recycled sulfur reservoirs in the Mangaia mantle plume. Geochem. Geophys. Geosyst. 21, e2020GC009081 (2020).
Elderfield, H. The oceanic chemistry of the rare-earth elements. Philos. Trans. R. Soc. London. Ser. A 325, 105–126 (1988).
Israel, C. et al. Formation of the Ce-Nd mantle array: crustal extraction vs. recycling by subduction. Earth Planet. Sci. Lett. 530, 115941 (2020).
Boyet, M., Garcon, M., Arndt, N., Carlson, R. W. & Konc, Z. Residual liquid from deep magma ocean crystallization in the source of komatiites from the ICDP drill core in the Barberton Greenstone Belt. Geochim. Cosmochim. Acta 304, 141–159 (2021).
Cottaar, S., Martin, C., Li, Z. & Parai, R. The root to the Galápagos mantle plume on the core–mantle boundary. Seismica 1, 1–12 (2022).
Hernlund, J. W. & McNamara, A. K. in Treatise on Geophysics (ed. Schubert, G.) Vol. 7, 461–519 (Elsevier, 2015).
Touboul, M. & Walker, R. J. High precision tungsten isotope measurement by thermal ionization mass spectrometry. Int. J. Mass Spectrom. 309, 109–117 (2012).
Horan, M. et al. Tracking Hadean processes in modern basalts with 142-neodymium. Earth Planet. Sci. Lett. 484, 184–191 (2018).
Jacobsen, S. B. & Wasserburg, G. J. The mean age of mantle and crustal reservoirs. J. Geophys. Res. Solid Earth 84, 7411–7427 (1979).
O’Nions, R. K., Evensen, N. M. & Hamilton, P. J. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res. Solid Earth 84, 6091–6101 (1979).
DePaolo, D. J. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta 44, 1185–1196 (1980).
Frossard, P., Israel, C., Bouvier, A. & Boyet, M. Earth’s composition was modified by collisional erosion. Science 377, 1529–1532 (2022).
Johnston, S. et al. Nd isotope variation between the Earth–Moon system and enstatite chondrites. Nature 611, 501–506 (2022).
Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).
Shahar, A., Elardo, S. M. & Macris, C. A. Equilibrium fractionation of non-traditional stable isotopes: an experimental approach. Rev. Min. Geochem. 82, 65–84 (2017).
Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous Nd-142/Nd-144 ratios in the Reunion hotspot source. Nature 555, 89–93 (2018).
Faure, P. et al. Determination of the refractory enrichment factor of the bulk silicate Earth from metal-silicate experiments on rare earth elements. Earth Planet. Sci. Lett. 554, 116644 (2021).
Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).
Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and He-3/He-4 signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).
Peters, B. J., Mundl-Petermeier, A., Carlson, R. W., Walker, R. J. & Day, J. M. D. Combined lithophile–siderophile isotopic constraints on Hadean processes preserved in ocean island basalt sources. Geochem. Geophys. Geosyst. 22, e2020GC009479 (2021).
Rizo, H. et al. 182W evidence for core–mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).
Moreira, M., Kunz, J. & Allègre, C. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).
Parai, R. & Mukhopadhyay, S. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16, 719–735 (2015).
Parai, R. & Mukhopadhyay, S. Heavy noble gas signatures of the North Atlantic Popping Rock 2 Pi D43: implications for mantle noble gas heterogeneity. Geochim. Cosmochim. Acta 294, 89–105 (2021).
Caracausi, A., Avice, G., Burnard, P. G., Furi, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).
Bekaert, D. V., Broadley, M. W., Caracausi, A. & Marty, B. Novel insights into the degassing history of Earth’s mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).
Wetherill, G. W. Radiometric chronology of the early solar system. Ann. Rev. Nucl. Sci. 25, 283–328 (1975).
Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002).
Yin, Y., Zhang, Q., Zhang, Y., Zhai, S. & Liu, Y. Electrical and thermal conductivity of Earth’s core and its thermal evolution — a review. Acta Geochim. 41, 665–688 (2022).
Walker, R. J. Siderophile element constraints on the origin of the Moon. Philos. Trans. Math. Phys. Eng. Sci. 372, 20130258 (2014).
McDonough, W. F. in Geophysical Monograph 217. Deep Earth: Physics and Chemistry of the Lower Mantle and Core (eds Terasaki, H. & Fischer, R. A.) 145–159 (John Wiley & Sons, Inc., AGU, 2016).
Badro, J., Brodholt, J. P., Pieta, H., Siebert, J. & Ryerso, F. J. Core formation and core composition from coupled geochemical and geophysical constraints. Proc. Natl Acad. Sci. USA 112, 12310–12314 (2015).
Shahar, A. et al. Pressure-dependent isotopic composition of iron alloys. Science 352, 580–582 (2016).
Shahar, A. et al. High-temperature Si isotope fractionation between iron metal and silicate. Geochim. Cosmochim. Acta 75, 7688–7697 (2011).
Georg, R. B., Reynolds, B. C., West, A. J., Burton, K. W. & Halliday, A. N. Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet. Sci. Lett. 261, 476–490 (2007).
Hin, R. C. et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017).
Elardo, S. M., Shahar, A., Mock, T. D. & Sio, C. K. The effect of core composition on iron isotope fractionation between planetary cores and mantles. Earth Planet. Sci. Lett. 513, 124–134 (2019).
Tronnes, R. G. et al. Core formation, mantle differentiation, and core–mantle interaction within Earth and terrestrial planets. Tectonophysics 760, 165–198 (2019).
Hayden, L. A. & Watson, E. B. A diffusion mechanism for core–mantle interaction. Nature 450, 709–711 (2007).
Humayun, M., Qui, L. & Norman, M. D. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004).
Brandon, A. D., Walker, R. J., Morgan, J. W., Norman, M. D. & Prichard, H. M. Coupled 186Os and 187Os evidence for core–mantle interaction. Science 280, 1570–1573 (1998).
Brandon, A. D. et al. Os-186-Os-187 systematics of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet. Sci. Lett. 206, 411–426 (2003).
Brandon, A. D., Humayun, M., Puchtel, I. S., Leya, I. & Zolensky, M. Osmium isotope evidence for an s-process carrier in primitive chondrites. Science 309, 1233–1236 (2005).
Ireland, T. J., Walker, R. J. & Brandon, A. D. 186Os–187Os systematics of Hawaiian picrites revisited: new insights into Os isotopic variations in ocean island basalts. Geochim. Cosmochim. Acta 75, 4456–4475 (2011).
Touboul, M., Puchtel, I. S. & Walker, R. J. W-182 evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).
Trinquier, A., Touboul, M. & Walker, R. J. High-precision tungsten isotopic analysis by multicollection negative thermal ionization mass spectrometry based on simultaneous measurement of W and 18O/16O isotope ratios for accurate fractionation correction. Anal. Chem. 88, 1542–1546 (2016).
Armytage, R. M. G., Jephcoat, A. P., Bouhifd, M. A. & Porcelli, D. Metal-silicate partitioning of iodine at high pressures and temperatures: implications for the Earth’s core and (129)*Xe budgets. Earth Planet. Sci. Lett. 373, 140–149 (2013).
Porcelli, D. & Halliday, A. The core as a possible source of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001).
Bouhifd, M. A., Jephcoat, A. P., Porcelli, D., Kelley, S. P. & Marty, B. Potential of Earth’s core as a reservoir for noble gases: case for helium and neon. Geochem. Perspect. Lett. 15, 15–18 (2020).
Roth, A. S. G. et al. The primordial He budget of the Earth set by percolative core formation in planetesimals. Geochem. Perspect. Lett. 9, 26–31 (2019).
Olson, P. L. & Sharp, Z. D. Primordial helium-3 exchange between Earth’s core and mantle. Geochem. Geophys. Geosyst. 23, e2021GC009985 (2022).
Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA. 117, 30993–31001 (2020).
Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowitcz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).
Kim, Y. H. et al. Structural transitions in MgSiO3 glasses and melts at the core–mantle boundary observed via inelastic X-ray scattering. Geophys. Res. Lett. 46, 13756–13764 (2019).
Brown, S. M., Tanton, L. T. E. & Walker, R. J. Effects of magma ocean crystallization and overturn on the development of 142Nd and 182W isotopic heterogeneities in the primordial mantle. Earth Planet. Sci. Lett. 408, 319–330 (2014).
Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled W-182–Nd-142 record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17, 2168–2193 (2016).
Lee, C. T. A. et al. Upside-down differentiation and generation of a primordial lower mantle. Nature 463, 930–933 (2010).
Gülcher, A. J. P., Gebhardt, D. J., Ballmer, M. D. & Tackley, P. J. Variable dynamic styles of primordial heterogeneity preservation in the Earth’s lower mantle. Earth Planet. Sci. Lett. 536, 116160 (2020).
Morino, P., Caro, G., Reisberg, L. & Schumacher, A. Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147Sm−142,143Nd systematics in ultramafic rocks of the Saglek block (3.25−3.9 Ga; northern Labrador, Canada). Earth Planet. Sci. Lett. 463, 136–150 (2017).
Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).
Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 109 (2020).
Brandenburg, J. P. & van Keken, P. E. Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res. Solid Earth 112, B06403 (2007).
Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle. Geochem. Geophys. Geosyst. 10, Q03004 (2009).
Whitehead, J. A. & Luther, D. S. Dynamics of laboratory diapir and plume models. J. Geophys. Res. Solid Earth 80, 705–717 (1975).
Korenaga, J. Firm mantle plumes and the nature of the core–mantle boundary region. Earth Planet. Sci. Lett. 232, 29–37 (2005).
Olson, P., Schubert, G. & Anderson, C. Structure of axisymmetric mantle plumes. J. Geophys. Res. Solid Earth 98, 6829–6844 (1993).
Kumagai, I., Davaille, A., Kurita, K. & Stutzmann, E. Thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35, L16301 (2008).
Tackley, P. J. in The Core–Mantle Boundary Region (ed. Gurnis, M.), Geophys. Monogr. Ser. 28, 231–253 (AGU, 1998).
Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999).
Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349–350, 198–208 (2012).
Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E. & Toriumi, M. Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter. 119, 299–309 (2000).
Ammann, M. W., Brodholt, J. P., Wookey, J. & Dobson, D. P. First-principles constraints on diffusion in lower-mantle minerals and a weak D” layer. Nature 465, 462–465 (2010).
Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).
Karato, S. Rheology of the deep upper mantle and its implications for the preservation of the continental roots: a review. Tectonophysics 481, 82–98 (2010).
Gülcher, A. J. P., Ballmer, M. D. & Tackley, P. Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth’s lower mantle. Solid Earth 12, 2087–2107 (2021).
Farnetani, C. G., Hofmann, A. W., Duvernay, T. & Limare, A. Dynamics of rheological heterogeneities in mantle plumes. Earth Planet. Sci. Lett. 499, 74–82 (2018).
Jones, T. D., Davies, D. R., Campbell, I. H., Wilson, C. R. & Kramer, S. C. Do mantle plumes preserve the heterogeneous structure of their deep-mantle source? Earth Planet. Sci. Lett. 434, 10–17 (2016).
Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).
Putirka, K. Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36, 83–286 (2008).
Garcia, M. O., Tree, J. P., Wessel, P. & Smith, J. R. Puhahonu: Earth’s biggest and hottest shield volcano. Earth Planet. Sci. Lett. 542, 116296 (2020).
Garcia, M. O. et al. in The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces (eds Neal, C. R., Sager, W. W., Sano, T. & Erba, E.) 1–25 (Spec. Pap. Geol. Soc. Am., 511, 2015).
Bao, X., Lithgow-Bertelloni, C. R., Jackson, M. G. & Romanowicz, B. On the relative temperatures of Earth’s volcanic hotspots and mid-ocean ridges. Science 375, 57–61 (2022).
Hegner, E. & Tatsumoto, M. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie Seamount chain northeast Pacific. J. Geophys. Res. Solid Earth 94, 17839–17846 (1989).
Chadwick, J., Keller, R., Kamenov, G., Yogodzinski, G. & Lupton, J. The Cobb hot spot: HIMU-DMM mixing and melting controlled by a progressively thinning lithospheric lid. Geochem. Geophys. Geosyst. 15, 3107–3122 (2014).
Hosseini, K. et al. SubMachine: web-based tools for exploring seismic tomography and other models of Earth’s deep interior. Geochem. Geophys. Geosyst. 19, 1464–1483 (2018).
Wamba, M. D., Montagner, J.-P. & Romanowicz, B. Imaging deep-mantle plumbing beneath La Réunion and Comores hot spots: vertical plume conduits and horizontal ponding zones. Sci. Adv. 9, eade3723 (2023).
Farnetani, C. G. & Samuel, H. Beyond the thermal plume paradigm. Geophys. Res. Lett. 32, L07311 (2005).
Garnero, E. & McNamara, A. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).
Elliott, T., Thomas, A., Jeffcoate, A. & Niu, Y. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565–568 (2006).
Tomascak, P. B., Langmuir, C. H., leRoux, P. J. & Shirey, S. B. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta 72, 1626–1637 (2008).
Kobayashi, K., Tanaka, R., Moriguti, T., Shimizu, K. & Nakamura, E. Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem. Geol. 212, 143–161 (2004).
Ryan, J. G. & Kyle, P. R. Lithium abundance and lithium isotope variaitons in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chem. Geol. 212, 125–142 (2004).
Nishio, Y. et al. Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet. Sci. Lett. 217, 245–261 (2004).
Chan, L.-H., Lassiter, J. C., Hauri, E. H., Hart, S. R. & Blusztajn, J. Lithium isotope systematics of lavas from the Cook-Austral Islands: constraints on the origin of HIMU mantle. Earth Planet. Sci. Lett. 277, 433–442 (2009).
Manga, T., Wiechert, U., Stuart, F. M., Halliday, A. N. & Harrison, D. Combined Li-He isotopes on Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle. Geochim. Cosmochim. Acta 75, 922–936 (2011).
Schuessler, J. A., Schoenberg, R. & Sigmarsson, O. Iron and lithium isotope systematics of the Heckla volcano, Iceland — evidence for Fe isotope fractionation during magma differentiation. Chem. Geol. 258, 78–91 (2009).
Genske, F. S. et al. Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chem. Geol. 373, 27–36 (2014).
Andreasen, R., Sharma, M., Subbarao, K. V. & Viladkar, S. G. Where on Earth is the enriched Hadean reservoir? Earth Planet. Sci. Lett. 266, 14–28 (2008).
Murphy, D. T., Brandon, A. D., Debaille, V., Burgess, R. & Ballentine, C. In search of a hidden long-term isolated sub-chondritic 142Nd/144Nd reservoir in the deep mantle: implications for the Nd isotope systematics of the Earth. Geochim. Cosmochim. Acta 74, 738–750 (2010).
Burkhardt, C. et al. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature 537, 394–398 (2016).
Saji, N. K., Wielandt, D., Paton, C. & Bizzaro, M. Ultra-high-precision Nd-isotope measurements of geological materials by MC-ICPMS. J. Anal. At. Spectrom. 31, 1490–1504 (2016).
de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. Nd-142/Nd-144 inferences on the nature and origin of the source of high He-3/He-4 magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).
Garçon, M. et al. Factors influencing the precision and accuracy of Nd isotope measurements by thermal ionization mass spectrometry. Chem. Geol. 476, 493–514 (2018).
Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Proc. Natl Acad. Sci. USA 117, 14738–14744 (2020).
Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High He-3/He-4 ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).
Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).
Kruijer, T. S. & Kleine, T. No W-182 excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).
Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, J. M. R. & Murthy, V. R. Krypton and xenon in lunar fines. Geochim. Cosmochim. Acta 4, 1915–1955 (1973).
Farnetani, C. G., Legras, B. & Tackley, P. J. Mixing and deformation in mantle plumes. Earth Planet. Sci. Lett. 196, 1–15 (2002).
Lin, S. C. & van Keken, P. E. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem. Geophys. Geosyst. 7, Q03003 (2006).
Coffin, M. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).
White, R. S. & McKenzie, D. P. Volcanism at rifts. Sci. Am. 261, 62–71 (1989).
Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).
Dziewonski, A. M. & Woodhouse, J. H. Global images of the Earth’s interior. Science 236, 37–48 (1987).
Masters, G., Laske, G., Bolton, H. & Dziewonski, A. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. Geophys. Monogr. Ser. 117, 63–87 (2000).
Garnero, E., Lay, T. & McNamara, A. Implications of lower mantle structural heterogeneity for existence and nature of whole mantle plumes. Spec. Pap. Geol. Soc. Am. 430, 79–101 (2007).
Pearce, J. A., Ernst, R. E., Peate, D. W. & Rogers, C. LIP printing: use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos 392–393, 106068 (2021).
Doucet, S., Scoates, J. S., Weis, D. & Giret, A. Constraining the components of the Kerguelen mantle plume: a Hf-Pb-Sr-Nd isotopic study of picrites and high-MgO basalts from the Kerguelen Archipelago. Geochem. Geophys. Geosyst. 6, Q04007 (2005).
Frey, F. A., Weis, D., Borisova, A. & Xu, G. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: new perspectives from ODP Leg 120 sites. J. Petrol. 43, 1207–1239 (2002).
Yang, H.-J. et al. Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: implications for the Kerguelen plume. J. Petrol. 39, 711–748 (1998).
Upadhyay, D., Scherer, E. E. & Mezger, K. Fractionation and mixing of Nd isotopes during thermal ionization mass spectrometry: implications for high precision 142Nd/144Nd analyses. J. Anal. At. Spec. 23, 561–568 (2008).
Roth, A. S. G. et al. Combined Sm-147, Sm-146-Nd-143, Nd-142 constraints on the longevity and residence time of early terrestrial crust. Geochem. Geophys. Geosyst. 15, 2329–2345 (2014).
O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).
Manhès, G., Minster, J. F. & Allègre, C. J. Comparative uranium–thorium–lead and rubidium–strontium study of the Saint Sèverin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett. 39, 14–24 (1978).
Dupré, B. & Allègre, C. J. Pb-Sr-Nd isotopic correlation and the chemistry of the North Atlantic mantle. Nature 286, 17–22 (1980).
McDonough, W. F. & Chauvel, C. Sample contamination explains the Pb isotopic composition of some Rurutu Island and Sasha Seamount basalts. Earth Planet. Sci. Lett. 105, 397–404 (1991).
Abouchami, W., Galer, S. J. G. & Hofmann, A. W. High precision lead isotope systematics of lavas from the Hawaiian scientific drilling project. Chem. Geol. 169, 187–209 (2000).
Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC–ICP–MS. Geochem. Geophys. Geosyst. 7, Q08006 (2006).
Weis, D. et al. Hf isotope compositions of U.S. Geological Survey reference materials. Geochem. Geophys. Geosyst. 8, Q06006 (2007).
Hanano, D., Scoates, J. S. & Weis, D. Alteration mineralogy and the effect of acid-leaching on the Pb-isotope systematics of ocean-island basalts. Am. Min. 94, 17–26 (2009).
Nobre-Silva, I. G., Weis, D., Barling, J. & Scoates, J. S. Basalt leaching systematics and consequences for Pb isotopic compositions by MC–ICP–MS. Geochem. Geophys. Geosyst. 10, Q08012 (2009).
Nobre-Silva, I. G., Weis, D. & Scoates, J. S. Effects of acid leaching on the Sr-Nd-Hf isotopic compositions of ocean island basalts. Geochem. Geophys. Geosyst. 11, Q09011 (2010).
Nobre-Silva, I. G., Weis, D., Scoates, J. S. & Barling, J. The Ninetyeast Ridge and its relation to the Kerguelen, Amsterdam and St. Paul hotspots in the Indian Ocean. J. Petrol. 54, 1177–1210 (2013).
Acknowledgements
D.W. acknowledges support from the Natural Sciences and Engineering Research Council of Canada through a Discovery Grant (‘From mantle geodynamics to environmental processes: a geochemical perspective’) and from UBC for the Killam Professorship. K.S.H. received support from the National Science Foundation Grant RUI ‘The effect of a mid-ocean ridge-centered environment on a zoned mantle plume and associated secondary magmatism’ (NSF award number 2018283). L.N.H. is grateful for the support of the U.S. Geological Survey (USGS) Volcano Science Center and the USGS Mendenhall Postdoctoral program. M.B. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 682778). C.C. acknowledges support from ERC (Grant Agreement No. 833632 — Survival of Hadean Remnants in a Dynamic mantle). R.P. was supported by NSF EAR 2145663. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of the article. D.W. shared the vision and all authors contributed substantially to discussion of the content during various online meetings, as a group and for individual sections. All authors wrote the article. K.S.H., M.B. and C.C. coordinated sections. L.N.H., V.A.F. and N.M.B.W. compiled data and helped for figures. All authors reviewed and/or edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks V. Salters, C. Class, A. Sobolev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Weis, D., Harpp, K.S., Harrison, L.N. et al. Earth’s mantle composition revealed by mantle plumes. Nat Rev Earth Environ 4, 604–625 (2023). https://doi.org/10.1038/s43017-023-00467-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-023-00467-0